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8 primaries related to Higgs physics, 3 related to Triple Gauge Couplings and 7 related to Z-
pole measurements at LEP. Starting from these experimentally measurable deformations (and
not operators), we construct the dimension 6 Lagrangian in a bottom up way. We, thus, show
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1. Introduction

The first run of LHC was not successful in finding any sign of new physics. This suggests
the presence of a mass gap between the electroweak scale and the scale of new physics. A model
independent way of studying effects of Beyond Standard Model (BSM) physics, in this scenario, is
using effective field theory (EFT) to write the BSM Lagrangian as,

Leff =
Λ4

g2
∗
L

(
Dµ

Λ
,

g∗H
Λ

,
g∗ fL,R

Λ3/2 ,
gFµν

Λ2

)
'L4 +L6 + · · · . (1.1)

Here L4 is the Standard Model (SM) Lagrangian and L6 the dimension 6 extension. As the number
of possible measurable deformations is larger than the number of couplings at a given order, one can
make predictions relating different measurements; for instance, at the dimension 4 level we have
the predictions, mZ = mW/cosθW , Yf =

√
2m f /v etc., where mW and mZ are the W and Z masses,

Yf is the yukawa coupling, m f is the fermion mass and v = 246 GeV the vacuum expectation value
(VEV) of the Higgs field. While all the predictions of the the SM Lagrangian are known, the
predictions at the dimension 6 level were recently presented for the first time in Ref. [1]. In this
paper we summarise the main results of Ref. [1].

We will not use the usual approach of writing a basis of dimension 6 operators and then study-
ing their impact on measurements [2, 3]. Instead we will start from measurable deformations and
construct the BSM Lagrangian in a bottom up way. We will show that, apart from four fermion
deformations and a gluon self interaction term, the measurement of 18 deformations can constrain
all possible terms in the dimension 6 Lagrangian (ignoring CP or minimal flavour violating (MFV)
terms). These deformations are the three (h f̄L fR + h.c.) deformations, the custodial preserving
Higgs boson coupling to W and Z bosons, h AµνAµν , h AµνZµν , h GµνGµν , h3, seven Zµ f̄ γµ f
interactions and three triple gauge coupling (TGC) interactions. These can be, respectively, mea-
sured by Higgs production and decay processes at the LHC, the double Higgs production process,
Z-pole measurements and TGC measurements in the ee/pp→WW processes. Here and else-
where, Gµν is the non-abelian gluon field strength and the electroweak field strengths are defined
by Zµν ≡ Ẑµν − igcθW W+

[µW−
ν ] , Aµν ≡ Âµν − igsθW W+

[µW−
ν ] and W±µν ≡ Ŵ±µν ± igW±[µ (sθW A+cθW Z)ν ]

with V̂µν ≡ ∂µVν−∂νVµ . All other deformations are correlated to these deformations by accidental
symmetries at the dimension 6 level. For example, take the BSM primary deformation h AµνAµν ,
that is related to the h→ γγ branching ratio. At the dimension 6 level, this deformation cannot be
generated alone, and as we will show, it must be accompanied by other deformations,

∆L h
γγ = κγγ

(
h
v
+

h2

2v2

)[
AµνAµν +ZµνZµν +2W+

µνW−µν

]
. (1.2)

This is because h AµνAµν alone is not a dimension 6 operator, and the other terms are necessary
to build a dimension-6 operator. Eq. (1.2) is an example of a BSM primary effect, that includes all
the deformations that are generated in a correlated way along with the BSM primary deformation.
In this work we list all the BSM primary effects corresponding to the BSM primaries mentioned
above. We will demand that each BSM primary effect should contribute only to the corresponding
BSM primary and none other, so Eq. (1.2) above contributes to h→ γγ only and not to any of
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the other 17 BSM primaries. The dimension 6 Lagrangian is a sum of all these independent BSM
primary effects.

These BSM Primary effects can be thought of as a basis of observables where each operator
contributes to only one observable (see also [4, 5]). These BSM primary effects are, in our opinion,
more suitable for describing BSM processes than any other basis of dimension 6 operators. This is
because using these, the amplitude for any BSM process at the dimension 6 level can be directly
expressed as a function of the BSM primary measurements, making the correlations of such a
process with all other measurements explicit.

2. The Higgs primaries

The first set of primaries we consider are those related to processes involving the Higgs boson.
First, we consider a class of BSM interactions, which affect only Higgs physics and do not affect
electroweak symmetry breaking (EWSB) processes such as Z-pole or TGC measurements. Take
for instance the deformation in the SM Lagrangian generated by the shift,

Yf (ĥ) = Yf +δYf ĥ2/v2 + · · · (2.1)

where ĥ = v+ h is the Higgs field. In the vacuum this just gives a redefinition of the Yukawa
couplings in the SM Lagrangian so that the effect of this deformation can be measured only via a
process like h→ f f , that involves the Higgs excitation h. This deformation gives the BSM primary
effect,

∆L h
f f =δgh

f f

(
h f̄L fR +h.c.

)(
1+

3h
2v

+
h2

2v2

)
. (2.2)

In operator language this corresponds to adding H†H to the dimension 4 SM Yukawa coupling
operator, H being the Higgs doublet; Eq. (2.2) is in fact exactly this operator. Similarly we can
generate deformations by similar Higgs dependent redefinitions of the other SM-parameters,

e(ĥ), sθW (ĥ), gs(ĥ), λh(ĥ), Zh(ĥ) . (2.3)

These generate the BSM primary effects corresponding to the primaries h AµνAµν , h AµνZµν ,
h GµνGµν , h3 and h (W 2 +Z2/2cθW ), respectively. Here, e is the electric charge, gs is the strong
coupling, λh is the Higgs quartic coupling in the quartic term −λh(H†H)2/4, Zh is the coefficient
of the Higgs kinetic term and sθW and cθW are sinθW and cosθW , respectively. The explicit results
were obtained in Ref [1] and have been reproduced here in Table 1. Again these BSM primary
effects correspond to adding H†H to operators in the dimension 4 SM Lagrangian.

While, the above class of interactions can definitely be constrained by only Higgs measure-
ments, we have not shown that these are all the Higgs primaries. This turns out to be the case,
however, because as we will see, all other terms in the dimension 6 Lagrangian are better con-
strained by either TGC or Z-pole measurements than Higgs physics.
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3. Deviation from universality in the Z-boson couplings

In the SM the couplings of the W/Z bosons to various particles are related to each other in
definite ways due to the gauge coupling universality of the underlying SU(2)×U(1) gauge sym-
metry. Once electroweak symmetry is broken and the Higgs field gets a VEV the universality of
the W/Z-boson coupling can be broken by higher dimensional operators and the coupling to each
particle can be individually altered. Including only the first family fermions, there are seven Z-
boson couplings (to the three leptons and four quarks), two W -boson couplings, the Z-coupling
to the Higgs field ĥ (which can be measured by measuring the Z-mass), and the gauge boson self
interactions, i.e. the TGCs and the Quartic Gauge Couplings (QGC). Note that the W coupling to
the Higgs field has already been considered when we promoted Zh to a function of ĥ (see ∆L h

VV in
Table 1). The analysis in Ref. [1] reveals two important facts:
(1) Not all these couplings can be independently deformed at the dimension 6 level. This is because,
there are only seven dimension 6 operators controlling the nine W/Z-couplings to fermions so that
the W -coupling deformations are not independent of the Z-coupling deformations. Thus, we have
the following BSM primary effects for the W/Z-coupling to leptons,

∆L V
ee = δgZ

eR
ĥ2

v2 Zµ ēRγµeR +δgZ
eL

ĥ2

v2

[
Zµ ēLγµeL−

cθW√
2
(W+µ

ν̄LγµeL +h.c.)
]

+δgZ
νL

ĥ2

v2

[
Zµ

ν̄LγµνL +
cθW√

2
(W+µ

ν̄LγµeL +h.c.)
]

(3.1)

and a similar expression for the couplings to quarks (see Table 1).
(2) A linear combination of the W/Z-couplings to fermions and the Higgs field does not have any
measurable impact on W/Z decays or W/Z mass measurements. This is the linear combination
that is obtained by performing the shift,

s2
θW
→ s2

θW
(1+2δgZ

1 c2
θW

ĥ2/v2), (3.2)

keeping e constant, only in the part of the SM Lagrangian involving W/Z-couplings to fermions
and the Higgs field ĥ,

−δgZ
1 c2

θW

ĥ2

v2

[
g2ĥ2

2

(
W+

µ W−µ +
c2θW

2c4
θW

ZµZµ

)
+g(W−µ Jµ

−+h.c.)+
gc2θW

c3
θW

ZµJµ

Z +2etθW ZµJµ
em

]
.

(3.3)

Clearly, for ĥ = v, this amounts to just a redefinition of sθW only in the fermionic and Higgs sector
and it thus has no measurable impact in processes related to W/Z interactions of fermions and
Higgs field. This deformation can, however, be measured by measuring the triple and quartic
gauge couplings. This is because the shift s2

θW
→ s2

θW
(1+ 2δgZ

1 c2
θW
) is equivalent to the opposite

shift s2
θW
→ s2

θW
(1− 2δgZ

1 c2
θW
) only in the pure gauge sector which gives rise to the gZ

1 TGC and
other QGCs in a correlated way:

δgZ
1 =

δgZWW

gZWW
SM

=
δgWWWW

2c2
θW

gWWWW
SM

=
δgZZWW

2gZZWW
SM

=
δgγZWW

gγZWW
SM

. (3.4)
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Higgs Primaries

∆L h
γγ = κγγ

(
h
v +

h2

2v2

)[
Aµν Aµν +Zµν Zµν +2W+

µνW−µν

]

∆L h
Zγ

= κZγ

(
h
v +

h2

2v2

)[
tθW Aµν Zµν +

c2θW
2c2

θW

Zµν Zµν +W+
µνW−µν

]
∆L h

GG = κGG

(
h
v +

h2

2v2

)
GA

µν GA µν ,

∆L h
f f = δgh

f f

(
h f̄L fR +h.c.

)(
1+ 3h

2v +
h2

2v2

)
∆L3h = δg3h h3

(
1+ 3h

2v +
3h2

4v2 +
h3

8v3

)
∆L h

VV = δgh
VV

[
h
(

W+µW−µ +
Zµ Zµ

2c2
θW

)
+∆h

]
Z-pole Primaries

∆L V
ee = δgZ

eR
ĥ2

v2 Zµ ēRγµ eR +δgZ
eL

ĥ2

v2

[
Zµ ēLγµ eL−

cθW√
2
(W+µ ν̄Lγµ eL +h.c.)

]
+δgZ

νL
ĥ2

v2

[
Zµ ν̄Lγµ νL +

cθW√
2
(W+µ ν̄Lγµ eL +h.c.)

]
∆L V

qq = δgZ
uR

ĥ2

v2 Zµ ūRγµ uR +δgZ
dR

ĥ2

v2 Zµ d̄Rγµ dR +δgZ
dL

ĥ2

v2

[
Zµ d̄Lγµ dL−

cθW√
2
(W+µ ūLγµ dL +h.c.)

]
+δgZ

uL
ĥ2

v2

[
Zµ ūLγµ uL +

cθW√
2
(W+µ ūLγµ dL +h.c.)

]
.

TGC-Primaries

∆LgZ
1
=δgZ

1

[
igcθW

(
Zµ(W+νW−µν−h.c.)+ZµνW+

µ W−ν
)
−2gc2

θW
h
v

(
W−µ Jµ

−+h.c.+
c2θW
c3

θW

Zµ Jµ

Z +
2s2

θW
cθW

Zµ Jµ
em

)
×
(
1+ h

2v

)
+ e2v

2c2
θW

hZµ Zµ +g2c2
θW

v∆h−g2c2
θW

(
W+

µ W−µ +
c2θW
2c4

θW

Zµ Zµ

)(
5h2

2 + 2h3

v + h4

2v2

)
∆Lκγ

=
δκγ

v2

[
ieĥ2(Aµν − tθW Zµν)W+µW−ν +Zν ∂µ ĥ2(tθW Aµν − t2

θW
Zµν)

+ (ĥ2−v2)
2 ×

(
tθW Zµν Aµν +

c2θW
2c2

θW

Zµν Zµν +W+
µνW−µν

)]
∆Lλγ

=
iλγ

m2
W

[
(eAµν +gcθW Zµν)W−ρ

ν W+
ρµ

]
Table 1: We list the 18 most important BSM Primary effects. Here ∆h contains terms with at least two Higgs
bosons (see Ref. [1] for the full expression). CP and minimal flavor violating BSM Primary effects can be
found in Ref. [1]. The rest of the dimension 6 deformations comprise four fermion deformations and a gluon
self interaction term.

The expression in Eq. (3.3), however, contributes to δgh
VV . The final expression for the gZ

1 primary
effect after making the redefinition δgh

VV → δgh
VV +g2vδgZ

1 c2
θW

to remove this projection, is given
in Table 1.

To summarise the deviations from gauge coupling universality can be paremetrized by 7 de-
formations of Z-boson couplings that can be constrained by Z-pole measurements and one defor-
mation that can be constrained by the gZ

1 TGC. This parametrization is a generalisation of the S, T
parametrisation [6]. Our parametrization has the advantage of having a one to one correspondence
with all the Z decays as we have eliminated all propagator corrections by the use of equations of
motion.
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4. TGCs and other remaining deformations

There are two BSM primary effects corresponding to the two TGCs κγ and λγ shown in Table 1
(see Ref [1] for a derivation of these two primary effects). Apart from the 18 CP even deformations
in Table 1 there are also CP and minimal flavour violating deformations, a gluon self interaction
term (see Ref [1] for the BSM Primary effects corresponding to these deformations) and 25 four-
fermion deformations (whose relationship with experiments is straightforward) taking the total
number of independent dimension 6 BSM deformations 59.

5. Expectations in explicit models

The size of the BSM primary parameters can be estimated using Naive Dimensional Analysis
(NDA), assuming elementary gauge bosons but allowing for the possibility of the Higgs field and
fermions being composite [2],

δgh
f f

Yf
∼ δg3h

λhv
∼ δgh

VV
gmW

∼
δgZ,W

f,R

g
∼ δgZ

1 ∼
g2
∗v

2

Λ2 , (5.1)

where g∗ denotes a generic BSM coupling which can attain a maximum value of 4π in strongly
coupled theories. The BSM primaries δκi and λγ are estimated to be of the order of g2v2/Λ2, where
g is the corresponding SM gauge-coupling. Furthermore the couplings δκi and λγ are suppressed
by at least a loop factor [2] in renormalizable weakly coupled theories. For supersymmetric two
Higgs doublet models the BSM Primary effects can be evaluated by integrating out the heavier
Higgs bosons [7]. This generates the BSM Primary couplings δgh

uu, δgh
dd and δg3h while all other

BSM primary couplings are zero (this is ignoring the loop-effects of the superpartners). The max-
imum allowed values of the BSM primary couplings δgh

VV ,δgh
uu, δgh

dd and δg3h if no other BSM
state related to EWSB is accessible at the LHC, have been obtained for different well motivated
BSM models in Refs. [8, 9].

6. Conclusions

In summary, the Lagrangian up to dimension-6 operators can be written as L = LSM +

∆LBSM with,

∆LBSM = ∆L h
γγ +∆L h

Zγ +∆L h
GG +∆L h

f f +∆L3h +∆L h
VV +∆L V

ee +∆L V
qq

+∆LgZ
1
+∆Lκγ

+∆Lλγ
+∆L3G +∆L4f +∆L V

MFV +∆LCPV , (6.1)

where ∆L4f, ∆L3G, ∆L V
MFV and ∆LCPV represent the BSM primary effects due to four-fermions,

the three-gluon self-interaction term, MFV and CP violating terms, respectively. The amplitude for
any process (for instance those that probe the tensor structure of Higgs couplings like pp→Wh/Zh
or the vector boson fusion process WW → h) at the dimension 6 level, can now be written as a
function of the BSM primary parameters using the above Lagrangian. Thus all BSM processes
are already constrained, at the dimension 6 level, by the BSM primaries and the constraints can be
derived using the above Lagrangian.
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