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We introduce the spin-operator representation for the gluon as well as quark distribution functions
as nucleon matrix element of the gauge-invariant bilocal light-cone operators in QCD. To identify
the relevant spin operators for quarks and gluons in a unified manner, we rely on the transfor-
mation properties of the quark and gluon fields in the coordinate space under the action of the
generator of the Lorentz group. In particular, this approach allows us to define the transverse-spin
gluon distribution functiorGr (x), which is the genuine counterpart of the transverse-spin quark
distribution functiongr (x) relevant to the transverse-spin structure funcigix, Q%) in the deep
inelastic scattering. We show th@&(X) is given by the sum of the chromoelectric and chro-
momagnetic correlators associated with helicity-flip by one unit, and the treatment of the latter
correlator completes the classification of the collinear parton distribution functions up to twist
three. We show thabt (x) receives the three-gluon and quark-gluon correlation effects and dis-
cuss the operator product expansion®t(x). We also discuss the relevance of the first moment

of Gt (x) for the partonic decomposition of the transverse nucleon spin.
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In hard processes like deep inelastic scattering (DIS), Drell-Yan process, etc., the cross sec-
tions are given by the hard partonic scattering combined with the parton distribution functions
(PDFs), as the factorization formulas. The PDFs are given by the Fourier transformation of the
bilocal operators instantaneous for a relevant light-cone direction z&.gFor the hard processes
with one hard scale, the transverse degrees of freedom can be also integrated out in the factor-
ization formulas, leaving the collinear PDFs as the one-dimensional light-cone Fourier transform;
e.g.,~ [dz €0P)Z (P T (0)y(z ) |PS for the quark distributions in the nucleon with momen-
tum P and spinS (P? = —S = M?); here and in the following, we omit the Wilson line operator
in-between the constituent fields. Inserting the various gamma matrices in-between the quark and
antiquark fields gives a complete set of the quark distribution functiBiid [B] (see alsol]):

é“<PS4wﬁ %(An)\P&—% X)P+Aq(X) (S n) P +gr(X) B lgs , (1)

with a Iight—like vectom* = g /P*. Here and in the following, we treat the distribution functions
up to twist three: the twist-two density and helicity quark distributiar{s) andAq(x), and the
twist-three transverse-spin quark distributgpi(x). These chiral-even distributions are relevant in
the following discussions; ifflj, we omitted the terms associated with chiral-odd distributions.

The gluon distribution functions may be introducBtd B, [7] by replacing the quark fieldg
with the gluon fieldsA¥, in particular, by the formal replacemepit— n~F ™V = F" with F#¥ the
quon field strength tensor, as motlvatedeil" 0TAY inthe A" = 0 gauge:
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éAX<F’51F””( JFY(AMPS =3 [G(X)gL +AG(x)ig"""(S-n) +2Gze (X)ie”7"S 4] ,
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whereg!? =g"? —P'n? —PnY, andeVoPn= gvoafp, ng with the Levi-Civita tensor 0fp123= 1.

The RHS is analogous tdly, with the twist-two density and helicity distributior3(x) andAG(x),

and the twist-three gluon distributidBse (x), which was denoted &53(x) (4t (X)) in [B] ([4 ).
Now, in order to go beyond the conventional treatm@)f we consider the Lorentz tensor

decomposition of the most general gluonic correlator and find, to the twist-three accuracy,
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consistent with PT-invariance and hermiticil§].[ When contracted wittm,n;, the tensor struc-

ture with Ggy (x) vanishes, while the other terms reproduce the fornf@)aThe new distribution

Gs () is of twist three and is associated with the transverse spin of the nucleon. This new contri-
bution seems to violate the correspondence between the quark and gluon cases, as sudfested in (
and @), and thus it is desirable to clarify the physical meaninGgf (x) as well as 0fGzg (x).

For this purpose, we first note thg) (ith P = (P°,0,0,P8), P+ = PO\}P can be recast as

D S PSUO (AP =

7 [A(X)P* 2, +20q(x) (S n) P 2,,§°
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+\@gT(X) (:@(_)SJ_'§@(+)+:@<+)SL'§<@(_)):|GB , (4
where ) = %ﬁyi are the projection operators wit?, ) Z_y =0, £, + &Z_y = 1, such
that # ., and &,y are the “good” and “bad” components of the quark fields in the light-
cone quantlzatlon formallsm ars= n”kolk are the quark spin operatorsErom [ZI]) we find
(n/v2) | LM (PlYtO)w(An)P) =a(x), v2n~ [ Le™(PS |yt (0)Sy(An)[PS) =Aq(x), and
(1/M) [ LM (PS, |¢T(0)8 w(An)|PS.) = gr(x), up to the twist-four corrections suppressed for
the fast-moving nucleon by powersMdf/P*. These representations demonstrate that the “quantum
mechanical” expectation values in the spin spacey, y'sy, are relevant for the quark distribu-
tions of low twist. We note that the twist-three distributigin(x) is a complicated object, because
P yP=—(2n 9)~1hD | Z(+)W, using the QCD equations of motion wi = 0, and the good
components” ., are the independent degrees of freedom in the light-cone quantizgtion:
Aq(x) are literally the distributions, whilgr (x) represents the quark-gluon three-body correlations.

The spin operator for a particle can be identified inxhe 0 limit of the transformation law
of the corresponding field(x) under the action of the generataef*V of the Lorentz group:

[, ®(X)] = — (i (9" —x"9H) +2) @(x) , (5)

and this guarantees the us@l(2) algebra,[§,§'] = in'k&, obeyed bys"= 21!k, Indeed, we
obtainzV = %0“" for ® = . Similarly, manifestly gauge-covariant form of the transformation

law for the gluon is given byg) with ®(x) = F98(x), ZHYF 9B = j(gHOFVB — g"aFHB { gHBFaV

g"PFaH), so thats"= $n'ks) give the spin operators for a spin-1 particle. This fact allows us

to extend the above spin-operator representation of the PDFs to the gluon case. The correspond-
ing “quantum mechanical” expectation values in the spin space should be giv@fby'Fa?,
(FoP)TSF9P; note, (FOP)TFP £ (FOP)TF, 5, where(FF)TF, 5 = F9PF,p is a Lorentz invariant
contraction. We find(F?#)TFaf — —2F tBF 5 1 ..., and (FOF)T8F P = 2iF AF, + ..., so

that

—\2
O [ L epl (F2(0) FPan)p) = Gix) ®)
—\2 )
0L | nd s (F4(0) SE(AnPS) = 8G(X) @)

up to twist-four corrections, suppressedcagM /P*)? for the fast-moving nucleon, and similarly,
n- d/\ e' iAx

IAX s -
273N e' (PS,[iIF*(0)F T (An)

Ps.| (FP(0)) s FePanps,) = 0 [

+HIF T H(0)F2(An) +h.c.|PS;) = Gge(X) + Gan (X) = Gt (X) ,(8)

with “h.c.” denoting the hermitian conjugate of the preceding terms, where the contributions of
operators involving "~ can be expressed I8y using @), while those involving=1? require the
new distributionGzy of (3). We denote the resulting suBgge (x) + Gsn (X) asGr(x). The QCD
equations of motion in th&" = 0 gauge givem*~ = L (D jFI"+ git®hyt?), which shows

1The repeated indices should be understood as summed over. We use Latin lettet=2, 3 for three-dimensional
space indices and also use the three-dimensional totally antisymmetric tgisare'k0 n123 = 41,
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that Gz (x) is related to the three-gluon correlations and the quark-gluon correlations. Similarly,
F12 = 91A2 — 9?Al —ig[Al, A?] shows thatGsy (X) is also related to the three-gluon correlations.
Therefore,Gt(x) is a complicated three-body object in contrasiG(x), AG(x). In particular,
comparing [@)-@8) with (), Gt (x) is the genuine gluonic analogue of the twist-three transverse-
spin quark distributiomr (x), so that be identified as the transverse-spin gluon distribution.

As is well-known, the helicity structures ifi})can be revealed by decomposing the quark field
 into the helicity-up and -down components= ; + g, with Y = 3(1+ 02y, ¢, = 3(1-
o?)y: q(x) andAq(x) pick up the combinations//;LpT + L/JI% andtp;LﬂT — L/JIL[.Q, respectively, in
the bilinear operator in the LHS dfll{, corresponding to the density and helicity distributions; on
the other hand, the operat8r - §for gr (x) picks up the combinationql%rwi, LI’IWT- demonstrating
that the transverse-spin distribution corresponds to helicity-flip by one unit.

To show the helicity structures of the gluon distributions, we introduce the right- and left-
handed circular polarization vectoe, = (0, —1,—i,0)/v/2, &' = (0,+1,-i,0)/v/2, so that the
contraction with these vectors represents the helititystates. The unit matrix in-between the
gluon field strength tensors in the LHS B) picks up the combinatiorfF *R)TF+R 4 (F+L)TF+L,
and the operatcs®of (7) picks up,(F*R)TF+R— (FtL)TF+L, clarifying thatG(x) andAG(x) are
indeed the density and helicity distributiof.[ For @), the bilocal operatoF *-F*~ relevant
to Gse (x) is expressed byF *R)TES, (F1)TES with E3 = F30 = F+~ being the third component
of the chromoelectric field; becau& has the helicity zero(F *R)'E® and (F™)"E3 represent
the helicity-flip by+1. Similarly, the bilocal operatd? - F? relevant toGsy () is expressed by
(FHRYTHS, (F*L)TH3 with H3® = —F12 being the third component of the chromomagnetic field;
becauseH® has the helicity zero(F *R)TH3 and (F*-)TH? also represent the helicity-flip by one
unit. With manifest gauge invariance, we have the chromoelectric and chromomagnetic helicity-
zero contributionsE3 andH?3, for the gluon, so that we have the two types of contributids,
andGay, for the helicity-flip by one unit relevant to the transverse-spin distribution. This explains
why the transverse-spin gluon distributiGq is given as the sum of the two distributions a8 (

We discuss the nucleon spin sum rules using our results. The usual spin sum rule expresses the
total angular momentum for the longitudinally-polarized nuclehr= % as the sum of the orbital
angular momentum contributidn the quark spin contributiofAZ, and the gluon spin contribution
AG, and reads, using the above-mentioned helicity PDFs,

% L+ %Azwe , AS = /dqu(x) , AG = /dXAG(x) . )

Here and below, the summation over all quark and antiquark flavors for the quark spin contribution
is implicit. Using @), AZ is given as matrix element of local operatAg = (v/2/P) (P§ RO
W(0)|PS)). Substitution of[f) into (@ gives,

(n

—\2 .
A£G = 2) /dx>1< (Z\Té“@ﬁl(FGB(O)>T§3FGB()‘”)|P§>> (10)

where the factor Ax in the integrand prevents from obtaining the local operator. The similar sum

rule for the total angular momentum of the transversely-polarized nuclem,%, should read,
1 1
5 =Lr+501E+ A6, ATZE/dxgr(X), ATGE/dXGT(X). (11)
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and, substituting4) and [@), we find,ArZ = (1/M)(PS, |¢'(0)8' ¢(0)|PS, ), and

sz/ / &M (ps.| (FeP(0 >)T§LF“B<M>|PSL>, (12)

i.e., the result for the gluon spin contribution is again given by the integral of the bilocal oper-
ator. Apparently, the two matrix elements of the local operatordAbband At are related by
the space rotation in the nucleon rest frame. We note that the above formulas are obtained for
the fast-moving nucleon. For the quark spin contributions, we can immediately derive the sim-
iIar formulas in the rest frame witP = 0: ArZ is given by the same formula as above, while
= (1/M) Pﬁ”(lﬁ (0)|PS)). Thus, rotation symmetry allows us to conclutle = Ar3.

Now, the remaining questlon is wheth®G andA1G are equal or not. This is a nontrivial ques-
tion, because bothG andAtG are given as matrix elements of the nonlocal operators depending
explicitly on a fixed light-like vecton*, as in [[0), (12).

To analyze this problem, we treat the bilocal operator@)n orresponding td@se (x) and
GsH (x), based on the operator product expansion, which manifestly satisfies Lorentz as well as
rotation symmetry. The operator product expansionG@@( ) is obtained in[f] recently, and
allows us to obtain the formuldzze (x) = [, dyAG + [genuine twist-threle here, the first term
corresponds to the Wandzura—Wllczek contrlbutlon as an integral of the gluon helicity distribu-
tion AG(x), and the second term denotes the genuine twist-three contributions which are expressed
by certain integrals of the three-gluon correlationgPS, [F*+F+F*+|PS,) and the quark-
gluon three-body correlations (PS,|F " @|PS.). On the other hand, the bilocal operators
for Gay(x) in @) prove to have appeared in the intermediate stage of the operator product ex-
pansion (of the flavor-singlet part) of the structure functipiix,Q?), which is the twist-three
structure function in the DIS of the transversely-polarized nucleon off the longitudinally-polarized
lepton. Using the results if@[[4, @ for the operator product expansion of the corresponding flavor-
singlet part, we find thaBzy (X) is given solely by the genuine twist-three contributions in terms of
(PS,|FTLFHFHLPS), (PS, |gF L y|PS,). It is straightforward to see that the first moment
of those genuine twist-three contributions vanishes, so that we oljtdikGse (X) = AG [[{], and
[dXxGsn(x) =0 [G]. As a result, we findAtG = AG, similarly as the quark spin contributions.
This result coincides with the gluon spin contributions calculateim§ing gauge-invariant de-
composition of the QCD angular momentum tensor into the quark/gluon contributionEQpee [

We finally mention about the orbital angular momentum contribution to the spin sum rules.
For the longitudinally-polarized cads8)( the orbital angular momentum contribution can be fur-
ther decomposed into the well-defined quark and gluon contributions in a frame- and model-
independent way als = Lq+ Lg, but in many ways as discussed by many auti@@s[1]. On
the other hand, for the transversely-polarized cB3} the corresponding quark/gluon contribu-
tions (Lt)qq Such thatLt = (Lt),+ (Lt)g, receive the terme€, gP3/[2(P° + M)], respectively,
which are frame dependeif]{ hereCq 4 arise in matrix element of the QCD angular momentum
tensor.Z*HV = xHTAY — xYTAH using the well-known parameterization of the off-forward matrix
element of the (Belinfante-improved) energy-momentum tensor of quarks/gluons,

ArG =

PHigV)aA AHAY —gHVAZ -
M 2 +Cq$g Mg +Cq,gM9W U(RS) s

(13)

(P'S|T|PS = U(P,S) AqgVHPY) 4By g
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with PH = %(P“ +PH), AH = PH —PH. The frame-dependent terms disappeatinbecause
6q +C_g = 0. Thus, we do not have a well-defined decomposition of the orbital angular momentum
contributionLt into the quark and gluon contributions for the transversely-polarized Edke (

To summarize, we have given a QCD definition of the transverse-spin gluon distribution
function based on the spin-operator representation for bilocal operator definitions of the PDFs.
This definition has the structure of the quantum mechanical expectation value in the spin space,
[ LM (Ppgaf(0)0d(An)|PS with O = 1,3, in a unified form for the quarkd = ) and gluon
(® = FHV) distribution functions. For both quark and gluon cas®s; 1 leads to the density PDFs,

O = & leads to the helicity PDFs, arf@d = §- leads to the transverse-spin PDFs associated with
helicity-flip by one unit. We have shown that the new transverse-spin distribution funGtgr),

is given as the sum of the two twist-three gluon distribution functi@as,x) andGay (x), which

arise in the most general decomposition of the gluonic correldpr, The operator product ex-
pansions relevant to these new gluon distributions are available, and allow us to show that the first
moments ofAG(X) andGr (x), which respectively represent the gluon spin contributions to the nu-
cleon spin for the longitudinally- and transversely-polarized cases, are equal. The operator product
expansion can be exploited also to analyze the higher momjaiits!—1Gr (x) [@]. Finally, to seek

hard processes which allow direct acces&t@x) is an interesting future problem.
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