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Transverse-spin gluon distribution function
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We introduce the spin-operator representation for the gluon as well as quark distribution functions

as nucleon matrix element of the gauge-invariant bilocal light-cone operators in QCD. To identify

the relevant spin operators for quarks and gluons in a unified manner, we rely on the transfor-

mation properties of the quark and gluon fields in the coordinate space under the action of the

generator of the Lorentz group. In particular, this approach allows us to define the transverse-spin

gluon distribution functionGT(x), which is the genuine counterpart of the transverse-spin quark

distribution functiongT(x) relevant to the transverse-spin structure functiong2(x,Q2) in the deep

inelastic scattering. We show thatGT(x) is given by the sum of the chromoelectric and chro-

momagnetic correlators associated with helicity-flip by one unit, and the treatment of the latter

correlator completes the classification of the collinear parton distribution functions up to twist

three. We show thatGT(x) receives the three-gluon and quark-gluon correlation effects and dis-

cuss the operator product expansion forGT(x). We also discuss the relevance of the first moment

of GT(x) for the partonic decomposition of the transverse nucleon spin.
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In hard processes like deep inelastic scattering (DIS), Drell-Yan process, etc., the cross sec-
tions are given by the hard partonic scattering combined with the parton distribution functions
(PDFs), as the factorization formulas. The PDFs are given by the Fourier transformation of the
bilocal operators instantaneous for a relevant light-cone direction, e.g.,z+. For the hard processes
with one hard scale, the transverse degrees of freedom can be also integrated out in the factor-
ization formulas, leaving the collinear PDFs as the one-dimensional light-cone Fourier transform;
e.g.,∼

∫
dz−ei(xP+)z− ⟨PS|ψ†(0)ψ(z−) |PS⟩ for the quark distributions in the nucleon with momen-

tum P and spinS (P2 = −S2 = M2); here and in the following, we omit the Wilson line operator
in-between the constituent fields. Inserting the various gamma matrices in-between the quark and
antiquark fields gives a complete set of the quark distribution functions [1, 2, 3] (see also [4]):∫

dλ
2π

eiλx⟨PS|ψ̄β (0)ψα(λn)|PS⟩= 1
2
[q(x) /P+∆q(x)(S·n)γ5 /P+gT(x)γ5 /S⊥]αβ , (1)

with a light-like vectornµ = gµ
−/P+. Here and in the following, we treat the distribution functions

up to twist three: the twist-two density and helicity quark distributions,q(x) and∆q(x), and the
twist-three transverse-spin quark distributiongT(x). These chiral-even distributions are relevant in
the following discussions; in (1), we omitted the terms associated with chiral-odd distributions.

The gluon distribution functions may be introduced [1, 2, 5, 7] by replacing the quark fieldsψ
with the gluon fieldsAµ , in particular, by the formal replacementψ → n−F+ν ≡ Fnν with Fµν the
gluon field strength tensor, as motivated byF+ν = ∂+Aν in theA+ = 0 gauge:

−1
x

∫
dλ
2π

eiλx⟨PS|Fnν(0)Fnσ (λn)|PS⟩= 1
2

[
G(x)gνσ

⊥ +∆G(x)iενσPn(S·n)+2G3E(x)iενσαnS⊥α
]
,

(2)
wheregνσ

⊥ = gνσ −Pνnσ −Pσ nν , andενσPn≡ ενσαβ Pαnβ with the Levi-Civita tensor ofε0123= 1.
The RHS is analogous to (1), with the twist-two density and helicity distributions,G(x) and∆G(x),
and the twist-three gluon distributionG3E(x), which was denoted asG3(x) (G3T(x)) in [5] ([4, 7]).

Now, in order to go beyond the conventional treatment (2), we consider the Lorentz tensor
decomposition of the most general gluonic correlator and find, to the twist-three accuracy,

−1
x

∫
dλ
2π

eiλx⟨PS|Fµν(0)Fξ σ (λn)|PS⟩

=
1
2

G(x)
(

PµPξ gνσ
⊥ −PνPξ gµσ

⊥ −PµPσ gνξ
⊥ +PνPσ gµξ

⊥

)
+

1
2

∆G(x)i (S·n)Pα

(
Pµενξ σα −Pνεµξ σα

)
+G3E(x)iS⊥α

(
Pµενξ σα −Pνεµξ σα

)
+G3H(x)iPα

(
Sµ
⊥ενξ σα −Sν

⊥εµξ σα
)
, (3)

consistent with PT-invariance and hermiticity [6]. When contracted withnµnξ , the tensor struc-
ture withG3H(x) vanishes, while the other terms reproduce the formula (2). The new distribution
G3H(x) is of twist three and is associated with the transverse spin of the nucleon. This new contri-
bution seems to violate the correspondence between the quark and gluon cases, as suggested in (1)
and (2), and thus it is desirable to clarify the physical meaning ofG3H(x) as well as ofG3E(x).

For this purpose, we first note that (1) with P= (P0,0,0,P3), P± = P0±P3
√

2
can be recast as∫

dλ
2π

eiλx⟨PS|ψ†
β (0)ψα(λn)|PS⟩ = 1√

2

[
q(x)P+P(+)+2∆q(x)(S·n)P+P(+)ŝ

3

2
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+
√

2 gT(x)
(
P(−)SSS⊥ · ŝssP(+)+P(+)SSS⊥ · ŝssP(−)

)]
αβ

, (4)

whereP(±) =
1
2γ∓γ± are the projection operators withP(+)P(−) = 0, P(+)+P(−) = 1, such

that P(+)ψ andP(−)ψ are the “good” and “bad” components of the quark fields in the light-
cone quantization formalism, and ˆsi = 1

4η i jkσ jk are the quark spin operators.1 From (4), we find
(n−/

√
2)

∫ dλ
2π eiλx⟨P|ψ†(0)ψ(λn)|P⟩=q(x),

√
2n−

∫ dλ
2π eiλx⟨PS∥|ψ†(0)ŝ3ψ(λn)|PS∥⟩=∆q(x), and

(1/M)
∫ dλ

2π eiλx⟨PS⊥|ψ†(0)ŝ⊥ψ(λn)|PS⊥⟩= gT(x), up to the twist-four corrections suppressed for
the fast-moving nucleon by powers ofM/P+. These representations demonstrate that the “quantum
mechanical” expectation values in the spin space,ψ†ψ, ψ†ŝiψ, are relevant for the quark distribu-
tions of low twist. We note that the twist-three distributiongT(x) is a complicated object, because
P(−)ψ =−(2n·∂ )−1 /n /D⊥P(+)ψ, using the QCD equations of motion withA+ = 0, and the good
componentsP(+)ψ are the independent degrees of freedom in the light-cone quantization:q(x),
∆q(x) are literally the distributions, whilegT(x) represents the quark-gluon three-body correlations.

The spin operator for a particle can be identified in thex→ 0 limit of the transformation law
of the corresponding fieldΦ(x) under the action of the generatorM µν of the Lorentz group:

[M µν ,Φ(x)] =−(i (xµ∂ ν −xν∂ µ)+Σµν)Φ(x) , (5)

and this guarantees the usualSU(2) algebra,
[
ŝi , ŝj

]
= iη i jk ŝk, obeyed by ˆsi ≡ 1

2η i jkΣ jk. Indeed, we
obtainΣµν = 1

2σ µν for Φ = ψ. Similarly, manifestly gauge-covariant form of the transformation
law for the gluon is given by (5) with Φ(x) = Fαβ (x), ΣµνFαβ = i(gµαFνβ −gναFµβ +gµβ Fαν −
gνβ Fαµ), so that ˆsi ≡ 1

2η i jkΣ jk give the spin operators for a spin-1 particle. This fact allows us
to extend the above spin-operator representation of the PDFs to the gluon case. The correspond-
ing “quantum mechanical” expectation values in the spin space should be given by(Fαβ )†Fαβ ,
(Fαβ )†ŝiFαβ ; note,(Fαβ )†Fαβ ̸= (Fαβ )†Fαβ , where(Fαβ )†Fαβ = Fαβ Fαβ is a Lorentz invariant
contraction. We find,(Fαβ )†Fαβ = −2F+β F+

β + · · ·, and(Fαβ )†ŝ3Fαβ = 2iF+β F̃+
β + · · ·, so

that

(n−)2

2x

∫
dλ
2π

eiλx⟨P|
(

Fαβ (0)
)†

Fαβ (λn)|P⟩ = G(x) , (6)

(n−)2

2x

∫
dλ
2π

eiλx⟨PS∥|
(

Fαβ (0)
)†

ŝ3Fαβ (λn)|PS∥⟩ = ∆G(x) , (7)

up to twist-four corrections, suppressed as∼ (M/P+)2 for the fast-moving nucleon, and similarly,

n−

2
√

2Mx

∫
dλ
2π

eiλx⟨PS⊥|
(

Fαβ (0)
)†

ŝ⊥Fαβ (λn)|PS⊥⟩=
−n−

2Mx

∫
dλ
2π

eiλx⟨PS⊥|iF̃+⊥(0)F+−(λn)

+iF+⊥(0)F12(λn)+h.c.|PS⊥⟩= G3E(x)+G3H(x)≡ GT(x) ,(8)

with “h.c.” denoting the hermitian conjugate of the preceding terms, where the contributions of
operators involvingF+− can be expressed byG3E using (2), while those involvingF12 require the
new distributionG3H of (3). We denote the resulting sumG3E(x)+G3H(x) asGT(x). The QCD
equations of motion in theA+ = 0 gauge giveF+− = 1

n·∂
(
D⊥ jF jn +gψ̄ta /nψta

)
, which shows

1The repeated indices should be understood as summed over. We use Latin lettersi, j = 1,2,3 for three-dimensional
space indices and also use the three-dimensional totally antisymmetric tensorη i jk ≡ ε i jk0, η123=+1.
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thatG3E(x) is related to the three-gluon correlations and the quark-gluon correlations. Similarly,
F12 = ∂ 1A2− ∂ 2A1− ig[A1,A2] shows thatG3H(x) is also related to the three-gluon correlations.
Therefore,GT(x) is a complicated three-body object in contrast toG(x), ∆G(x). In particular,
comparing (6)-(8) with (4), GT(x) is the genuine gluonic analogue of the twist-three transverse-
spin quark distributiongT(x), so that be identified as the transverse-spin gluon distribution.

As is well-known, the helicity structures in (1) can be revealed by decomposing the quark field
ψ into the helicity-up and -down components,ψ = ψ↑+ψ↓ with ψ↑ =

1
2(1+σ12)ψ, ψ↓ =

1
2(1−

σ12)ψ: q(x) and∆q(x) pick up the combinations,ψ†
↑ψ↑+ψ†

↓ψ↓ andψ†
↑ψ↑−ψ†

↓ψ↓, respectively, in
the bilinear operator in the LHS of (4), corresponding to the density and helicity distributions; on
the other hand, the operatorSSS⊥ · ŝss for gT(x) picks up the combinations,ψ†

↑ψ↓, ψ†
↓ψ↑, demonstrating

that the transverse-spin distribution corresponds to helicity-flip by one unit.
To show the helicity structures of the gluon distributions, we introduce the right- and left-

handed circular polarization vectors,εµ
R = (0,−1,−i,0)/

√
2, εµ

L = (0,+1,−i,0)/
√

2, so that the
contraction with these vectors represents the helicity±1 states. The unit matrix in-between the
gluon field strength tensors in the LHS of (6) picks up the combination,(F+R)†F+R+(F+L)†F+L,
and the operator ˆs3 of (7) picks up,(F+R)†F+R− (F+L)†F+L, clarifying thatG(x) and∆G(x) are
indeed the density and helicity distributions [2]. For (8), the bilocal operator̃F+⊥F+− relevant
to G3E(x) is expressed by(F+R)†E3, (F+L)†E3 with E3 = F30 = F+− being the third component
of the chromoelectric field; becauseE3 has the helicity zero,(F+R)†E3 and(F+L)†E3 represent
the helicity-flip by±1. Similarly, the bilocal operatorF+⊥F12 relevant toG3H(x) is expressed by
(F+R)†H3, (F+L)†H3 with H3 = −F12 being the third component of the chromomagnetic field;
becauseH3 has the helicity zero,(F+R)†H3 and(F+L)†H3 also represent the helicity-flip by one
unit. With manifest gauge invariance, we have the chromoelectric and chromomagnetic helicity-
zero contributions,E3 andH3, for the gluon, so that we have the two types of contributions,G3E

andG3H , for the helicity-flip by one unit relevant to the transverse-spin distribution. This explains
why the transverse-spin gluon distributionGT is given as the sum of the two distributions as in (8).

We discuss the nucleon spin sum rules using our results. The usual spin sum rule expresses the
total angular momentum for the longitudinally-polarized nucleon,J∥ =

1
2, as the sum of the orbital

angular momentum contributionL, the quark spin contribution∆Σ, and the gluon spin contribution
∆G, and reads, using the above-mentioned helicity PDFs,

1
2
= L+

1
2

∆Σ+∆G , ∆Σ ≡
∫

dx∆q(x) , ∆G≡
∫

dx∆G(x) . (9)

Here and below, the summation over all quark and antiquark flavors for the quark spin contribution
is implicit. Using (4), ∆Σ is given as matrix element of local operator:∆Σ=(

√
2/P+)⟨PS∥|ψ†(0)ŝ3

ψ(0)|PS∥⟩. Substitution of (7) into (9) gives,

∆G=
(n−)2

2

∫
dx

1
x

∫
dλ
2π

eiλx⟨PS∥|
(

Fαβ (0)
)†

ŝ3Fαβ (λn)|PS∥⟩ , (10)

where the factor 1/x in the integrand prevents from obtaining the local operator. The similar sum
rule for the total angular momentum of the transversely-polarized nucleon,JT = 1

2, should read,

1
2
= LT +

1
2

∆TΣ+∆TG , ∆TΣ ≡
∫

dxgT(x) , ∆TG≡
∫

dxGT(x) . (11)

4
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and, substituting (4) and (7), we find,∆TΣ = (1/M)⟨PS⊥|ψ†(0)ŝ⊥ψ(0)|PS⊥⟩, and

∆TG=
n−

2
√

2M

∫
dx

1
x

∫
dλ
2π

eiλx⟨PS⊥|
(

Fαβ (0)
)†

ŝ⊥Fαβ (λn)|PS⊥⟩ , (12)

i.e., the result for the gluon spin contribution is again given by the integral of the bilocal oper-
ator. Apparently, the two matrix elements of the local operators for∆Σ and∆TΣ are related by
the space rotation in the nucleon rest frame. We note that the above formulas are obtained for
the fast-moving nucleon. For the quark spin contributions, we can immediately derive the sim-
ilar formulas in the rest frame withPPP = 0: ∆TΣ is given by the same formula as above, while
∆Σ = (1/M)⟨PS∥|ψ†(0)ŝ3ψ(0)|PS∥⟩. Thus, rotation symmetry allows us to conclude∆Σ = ∆TΣ.
Now, the remaining question is whether∆G and∆TG are equal or not. This is a nontrivial ques-
tion, because both∆G and∆TG are given as matrix elements of the nonlocal operators depending
explicitly on a fixed light-like vectornµ , as in (10), (12).

To analyze this problem, we treat the bilocal operators in (8), corresponding toG3E(x) and
G3H(x), based on the operator product expansion, which manifestly satisfies Lorentz as well as
rotation symmetry. The operator product expansion forG3E(x) is obtained in [7] recently, and
allows us to obtain the formula,G3E(x) =

∫ 1
x dy∆G(y)

y + [genuine twist-three]; here, the first term
corresponds to the Wandzura-Wilczek contribution as an integral of the gluon helicity distribu-
tion ∆G(x), and the second term denotes the genuine twist-three contributions which are expressed
by certain integrals of the three-gluon correlations∼ ⟨PS⊥|F+⊥F+⊥F+⊥|PS⊥⟩ and the quark-
gluon three-body correlations∼ ⟨PS⊥|ψ̄F+⊥ψ|PS⊥⟩. On the other hand, the bilocal operators
for G3H(x) in (8) prove to have appeared in the intermediate stage of the operator product ex-
pansion (of the flavor-singlet part) of the structure functiong2(x,Q2), which is the twist-three
structure function in the DIS of the transversely-polarized nucleon off the longitudinally-polarized
lepton. Using the results in [8, 4, 9] for the operator product expansion of the corresponding flavor-
singlet part, we find thatG3H(x) is given solely by the genuine twist-three contributions in terms of
⟨PS⊥|F+⊥F+⊥F+⊥|PS⊥⟩, ⟨PS⊥|ψ̄F+⊥ψ|PS⊥⟩. It is straightforward to see that the first moment
of those genuine twist-three contributions vanishes, so that we obtain,

∫
dxG3E(x) = ∆G [7], and∫

dxG3H(x) = 0 [6]. As a result, we find,∆TG = ∆G, similarly as the quark spin contributions.
This result coincides with the gluon spin contributions calculated in [7] using gauge-invariant de-
composition of the QCD angular momentum tensor into the quark/gluon contributions (see [10]).

We finally mention about the orbital angular momentum contribution to the spin sum rules.
For the longitudinally-polarized case (9), the orbital angular momentum contribution can be fur-
ther decomposed into the well-defined quark and gluon contributions in a frame- and model-
independent way asL = Lq+ Lg, but in many ways as discussed by many authors [10, 11]. On
the other hand, for the transversely-polarized case (11), the corresponding quark/gluon contribu-
tions (LT)q,g, such thatLT = (LT)q +(LT)g, receive the terms̄Cq,gP3/[2(P0 +M)], respectively,
which are frame dependent [7]; hereC̄q,g arise in matrix element of the QCD angular momentum
tensorM λ µν = xµTλν −xνTλ µ , using the well-known parameterization of the off-forward matrix
element of the (Belinfante-improved) energy-momentum tensor of quarks/gluons,

⟨P′S′|Tµν
q,g |PS⟩= ū(P′,S′)

[
Aq,gγ(µ P̄ν)+Bq,g

P̄(µ iσν)α∆α

2M
+Cq,g

∆µ∆ν −gµν ∆2

M
+C̄q,gMgµν

]
u(P,S) ,

(13)

5
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with P̄µ = 1
2(P

µ +P′µ), ∆µ = P′µ −Pµ . The frame-dependent terms disappear inLT because
C̄q+C̄g = 0. Thus, we do not have a well-defined decomposition of the orbital angular momentum
contributionLT into the quark and gluon contributions for the transversely-polarized case (11).

To summarize, we have given a QCD definition of the transverse-spin gluon distribution
function based on the spin-operator representation for bilocal operator definitions of the PDFs.
This definition has the structure of the quantum mechanical expectation value in the spin space,∫ dλ

2π eiλx⟨PS|Φ†(0)ÔΦ(λn)|PS⟩ with Ô= 1, ŝss, in a unified form for the quark (Φ = ψ) and gluon
(Φ = Fµν ) distribution functions. For both quark and gluon cases,Ô= 1 leads to the density PDFs,
Ô = ŝ3 leads to the helicity PDFs, and̂O = ŝ⊥ leads to the transverse-spin PDFs associated with
helicity-flip by one unit. We have shown that the new transverse-spin distribution function,GT(x),
is given as the sum of the two twist-three gluon distribution functions,G3E(x) andG3H(x), which
arise in the most general decomposition of the gluonic correlator, (3). The operator product ex-
pansions relevant to these new gluon distributions are available, and allow us to show that the first
moments of∆G(x) andGT(x), which respectively represent the gluon spin contributions to the nu-
cleon spin for the longitudinally- and transversely-polarized cases, are equal. The operator product
expansion can be exploited also to analyze the higher moments,

∫
dxxn−1GT(x) [6]. Finally, to seek

hard processes which allow direct access toGT(x) is an interesting future problem.
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