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We define in the framework of light-cone collinear factorization method, the chiral-odd general-
ized parton distributions (GPDs) of a pseudoscalar hadron (such as the π0) up to twist 6. For that,
we introduce the relevant matrix elements for 2-parton non-local operators, as well as matrix ele-
ments for 3-parton non-local correlators. Their detailed parametrization is fixed based on parity,
charge conjugation and time reversal invariance. This leads to the introduction of 28 real GPDs,
which are subject to constraints coming from the QCD equations of motion.
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We choose the symmetric kinematics for p1 and p2 as

p1 = (1 + ξ) p +
m2 − ∆2

⊥
4

2(1 + ξ)
n − ∆⊥

2
,

p2 = (1 − ξ) p +
m2 − ∆2

⊥
4

2(1 − ξ)
n +

∆⊥
2

, (2.4)

such that P is purely longitudinal, and reads

P = p + (P · p)n = p +
m2 − ∆2

⊥
4

1 − ξ2
n . (2.5)

From the point of view of twist counting, the Sudakov expansion in terms of p, ⊥, n

components is more appropriate, as we discuss in the next subsection. However, from the

point of view of constraints related to time invariance, we find the expansion in terms of

P, ⊥, n components more natural. Note that P · n = p · n = 1 .

2.2 LCCF factorization

Let us consider a hard exclusive process. For definiteness, we name as Q the involved hard

scale (e.g. the γ∗’s virtuality in the case of deeply virtual Compton scattering (DVCS)). We

here recall the basics of the LCCF in order to deal with amplitude of exclusive processes

beyond the leading Q power contribution. For definiteness, in view of the next sections, we

illustrate the key concepts for the hard process Aπ0 → B π0 (where A and B denote generic

initial and final states in kinematics where a hard scale allows for a partonic interpretation,

for example A = γ∗ and B = π ρT pair), written in the momentum representation and in

n · A = 0 axial gauge, as

A =

∫
d4% tr

[
H(%)Φ(%)

]
+

∫
d4%1 d4%2 tr

[
Hµ(%1, %2)Φµ(%1, %2)

]
+ . . . , (2.6)

where H and Hµ are the coefficient functions with two parton legs and three parton legs,

respectively, as illustrated in figure 1.

s

Hqq̄

Φqq̄

A B

π0(p1) π0(p2)

% +

s

A B

π0(p1) π0(p2)

%1 %2

Hqq̄g

Φqq̄g

+ · · ·

Figure 1: 2- and 3-parton correlators attached to a hard scattering amplitude in the process

Aπ0 → B π0 (for example γ∗ π0 → ρ π0 π0, i.e. B = ρ π0).

In (2.6), the soft parts are given by the Fourier-transformed two or three partons cor-

relators which are matrix elements of non-local operators. In the present paper, we restrict
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Figure 1: 2- and 3-parton correlators attached to a hard scattering amplitude in the process Aπ0→ Bπ0.

1. Introduction

The higher twist extension of the factorization properties of the leading twist amplitudes for
exclusive exclusive reactions in the generalized Bjorken regime [1, 2, 3] is a domain of intense
recent research [4, 5, 6, 7, 8, 9, 10, 11]. We report here on an on-going study [12] of pion GPDs
in the framework of the light-cone collinear factorization (LCCF), the generalization of the Ellis–
Furmanski–Petronzio (EFP) method [13, 14, 15] to the exclusive processes, which deals with the
factorization in the momentum space around the dominant light-cone direction. Our first step
is to provide a classification of chiral-odd π0 GPDs. We restrict ourselves to 2-parton and 3-
parton correlators. We include the whole tower of twist contributions from 2 to 6, but exclude any
inclusion of pion mass effects, a question which has been successfully addressed recently [16, 17].

2. Method

Let us consider a hard exclusive process. For definiteness, we name as Q the involved hard
scale (e.g. the γ∗’s virtuality in the case of deeply virtual Compton scattering (DVCS)). We here
recall the basics of the LCCF in order to deal with amplitude of exclusive processes beyond the
leading Q power contribution. For definiteness, in view of the next sections, we illustrate the key
concepts for the hard process Aπ0 → Bπ0 (where A and B denote generic initial and final states
in kinematics where a hard scale allows for a partonic interpretation, for example A = γ∗ and B
a particle with a scalar or a tensor coupling), written in the momentum representation and in the
n ·A = 0 light-like gauge (n2 = 0), as

A =
∫

d4` tr
[

H(`)Φ(`)

]
+
∫

d4`1 d4`2 tr
[

Hµ(`1, `2)Φ
µ(`1, `2)

]
+ . . . , (2.1)

where H and Hµ are the coefficient functions with two parton legs and three parton legs, respec-
tively, as illustrated in figure 1.

The major step out of the leading twist approximation is to expand the hard part H(`) around
the dominant p direction:

H(`) = H(yp)+
∂H(`)

∂`α

∣∣∣∣
`=yp

(`− y p)α + . . . , (2.2)

where (`− y p)α = `⊥α +(` · p)nα allows one to extract higher twist contributions. One can see
that this procedure introduces a `⊥ and a ` · p dependence inside the hard part which does not
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seem to fit with the standard collinear framework. To proceed toward a factorized amplitude, one
performs an integration by parts to replace `⊥α by ∂⊥α and ` · p by ∂ · p acting on the soft correlator
in coordinate space. This leads to new operators O⊥ and O− which contain transverse derivatives,
such as ψ̄ ∂⊥ψ and longitudinal derivatives1 along n denoted as ∂

γ
n ≡ (∂ · p)nγ such as ψ̄ ∂

γ
n ψ and

thus to the necessity of considering additional non-perturbative correlators Φ⊥ and Φ−.

After these two steps, the amplitude takes the simple factorized form

A =

1∫

−1

dy tr [Hqq̄(y)Γ] Φ
Γ
qq̄(y)+

1∫

−1

dy tr
[
H(⊥, p)µ

qq̄ (y)Γ

]
Φ

(⊥,−)Γ
qq̄ µ (y)

+

1∫

−1

dy1 dy2 tr
[
H(⊥, p)µ

qq̄g (y1,y2)Γ

]
Φ

(⊥,−)Γ
qq̄g µ (y1,y2)+ · · · , (2.3)

in which the two first terms in the r.h.s correspond to the 2-parton contribution and the last one to
the 3-parton contribution. As usual the antiquark contribution is interpreted as the [−1,0] part of
this integral.

3. Definitions

Let us now construct the chiral-odd π0 GPDs which parametrize the 2-parton and 3-parton
correlators, taking into account constraints based on charge invariance, time invariance and parity
invariance. The 2-partons correlators may be written as

〈π0(p2)|ψ̄(z)




σαβ

1

iγ5


ψ(−z)|π0(p2)〉=

1∫

−1

dxei(x−ξ )P·z+i(x+ξ )P·z× (3.1)



− i

mπ

(
Pα∆

β

⊥−Pβ ∆α

⊥

)
HT +imπ

(
Pαnβ −Pβ nα

)
HT 3 −imπ

(
∆α

⊥nβ −∆
β

⊥nα

)
HT 4

mπ HS

0




twist 2 & 4 twist 3 twist 4

where each (real) GPD depends on the arguments x,ξ , t , and we underlined their twist content. We
note that due to P−parity invariance, there is no twist 3 GPD associated with the γ5 structure for
the π meson. This constraint will not survive in the nucleon GPD sector.

We now consider correlators involving the 3-parton and 2-parton (with transverse derivative).

1This completes the analysis performed in ref. [12].
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For the σαβ structure, they read

〈π0(p2)|ψ̄(z)σ
αβ

{
i
←→
∂

γ

⊥
gAγ(y)

}
ψ(−z)|π0(p1)〉=





1∫
−1

dxei(x−ξ )P·z+i(x+ξ )P·z

∫
d3[x1,2,g]eiP·z(x1+ξ )−iP·yxg+iP·z(x2−ξ )





×
[

imπ

(
Pαgβγ

⊥ −Pβ gαγ

⊥

){ T T
1

T1

}
+

i
mπ

(
Pα

∆
β

⊥−Pβ
∆

α

⊥
)

∆
γ

⊥

{
T T

2
T2

}
(twist 3 & 5)

+imπ

(
∆

α

⊥gβγ

⊥ −∆
β

⊥gαγ

⊥

){ T T
3

T3

}
+ imπ

(
Pαnβ −Pβ nα

)
∆

γ

⊥

{
T T

4
T4

}
(twist 4)

+im3
π

(
nαgβγ

⊥ −nβ gαγ

⊥

){ T T
5

T5

}
+ imπ

(
nα

∆
β

⊥−nβ
∆

α

⊥
)

∆
γ

⊥

{
T T

6
T6

}]
, (twist 5) (3.2)

where

∫
d3[x1,2,g]≡

1+ξ∫

−1+ξ

dxg

1∫

−1

dx1

1∫

−1

dx2 δ (xg− x2 + x1) , (3.3)

and
←→
∂

γ

⊥≡ 1
2(
−→
∂

γ

⊥ −
←−
∂

γ

⊥) . The functions T T
i (i = 1, · · ·6) should be understood as T T

i (x,ξ , t) , while
Ti (i = 1, · · ·6) denotes Ti(x1,x2,ξ , t) .

For the 1 structure, the correlators are defined as

〈π0(p2)|ψ̄(z)1

{
i
←→
∂

γ

⊥
gAγ(y)

}
ψ(−z)|π0(p1)〉 =





1∫
−1

dxei(x−ξ )P·z+i(x+ξ )P·z

∫
d3[x1,2,g]eiP·z(x1+ξ )−iP·yxg+iP·z(x2−ξ )





× mπ ∆
γ

⊥

{
HT 4

S
TS

}
. (twist 4) (3.4)

For the iγ5 structure, the correlators read

〈π0(p2)|ψ̄(z) iγ5

{
i
←→
∂

γ

⊥
gAγ(y)

}
ψ(−z)|π0(p1)〉 =





1∫
−1

dxei(x−ξ )P·z+i(x+ξ )P·z

∫
d3[x1,2,g]eiP·z(x1+ξ )−iP·yxg+iP·z(x2−ξ )





× mπ ε
γ nP∆⊥

{
HT

P

TP

}
. (twist 4) (3.5)

We now consider correlators involving the 3-parton (with longitudinally polarized gluon) and
2-parton (with longitudinal derivative). We denote

∂
γ
n ≡ (∂ · p)nγ and Aγ

n ≡ (A · p)nγ . (3.6)
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For the σαβ structure, they read

〈π0(p2)|ψ̄(z)σ
αβ

{
i
←→
∂

γ
n

gAγ
n(y)

}
ψ(−z)|π0(p1)〉=





1∫
−1

dxei(x−ξ )P·z+i(x+ξ )P·z

∫
d3[x1,2,g]eiP·z(x1+ξ )−iP·yxg+iP·z(x2−ξ )





×
[

imπ

(
Pα

∆
β

⊥−Pβ
∆

α

⊥
)

nγ

{
M−1
M1

}
(twist 4 & 6) (3.7)

+ im3
π

(
Pαnβ −Pβ nα

)
nγ

{
M−2
M2

}
(twist 5) + im3

π

(
nα

∆
β

⊥−nβ
∆

α

⊥
)

nγ

{
M−3
M3

}
(twist 6)

]
.

For the 1 structure, the correlators are defined as

〈π0(p2)|ψ̄(z)1

{
i
←→
∂

γ
n

gAγ
n(y)

}
ψ(−z)|π0(p1)〉 =





1∫
−1

dxei(x−ξ )P·z+i(x+ξ )P·z

∫
d3[x1,2,g]eiP·z(x1+ξ )−iP·yxg+iP·z(x2−ξ )





× m3
π nγ

{
H−S
MS

}
(twist 5) . (3.8)

Altogether, the 2- and 3-parton correlators lead to the introduction of 28 different GPDs. They
are not independent, and the reduction to an independent set is not a simple task. The two basic
tools to implement this reduction is firstly the QCD equations of motion and secondly the con-
straints usually denoted as n−invariance [13].

4. Constraints from QCD equations of motion

We start with the Dirac equation for the quark field

0 = 〈π0(p2)|(i /Dψ)α(−z) ψ̄β (z) |π0(p1)〉
= 〈π0(p2)| [i(∂ ·n)( /pψ)α(−z) + i(∂ · p)( /nψ)α(−z) +(i /∂⊥ψ)α(−z)

+ g( /A⊥ψ)α(−z)+ g(A · p)( /nψ)α(−z)] ψ̄β (z) |π0(p1)〉 . (4.1)

After a tedious but straightforward calculation of these five terms and demanding the vanishing of
the contributions multiplying the four independent structures /Pαβ , /∆⊥αβ , /nαβ and
iε∆⊥Pn µ

(
γ5γµ

)
αβ

, we obtain the following four equations

(x+ξ )(mπ HT 3 +mπHS)+
∆2
⊥

2mπ

HT +2mπ T T
1 +

∆2
⊥

mπ

T T
2

+
1
2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg− x+ y)
(

2mπ T1(y,x)+
∆2
⊥

mπ

T2(y,x)
)
= 0 , (4.2)
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(x+ξ )

(
P2

mπ

HT −mπHT 4

)
+mπ

(
−1

2
HS +T T

3 +HT 4
S

)

+
mπ

2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg− x+ y)(T3(y,x)+TS(y,x))

− mπ

2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg− x+ y)M1(y,x)−
∆ · p
2mπ

HT (x)−mπ M−1 (x) = 0 , (4.3)

(x+ξ )mπ P2 HT 3(x)+
mπ ∆2

⊥
2

HT 4(x)−2m3
π T T

5 (x)−mπ ∆
2
⊥T T

6 (x)

−1
2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg + y− x)
(
2m3

πT5(y,x)+mπ ∆
2
⊥T6(y,x)

)

− m3
π

2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg− x+ y)MS(y,x)+
m3

π

2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg− x+ y)M2(y,x)

−∆ · p
2

mπHT 3(x)+
∆ · p

2
mπHS(x)+m3

π M−2 (x)−m3
π H−S (x) = 0 , (4.4)

and

(x+ξ )HT 4(x)−
1
2

HT 3(x)+T T
4 (x)+HT

P (x)

+
1
2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg + y− x)(T4(y,x)+TP(y,x))

−1
2

1+ξ∫

−1+ξ

dxg

1∫

−1

dyδ (xg + y− x)M1(y,x)−
∆ · p
2m2

π

HT (x)−M−1 (x) = 0 . (4.5)

A second set of four equations is obtained in an analogous way by considering the various correla-
tors involved in the following equation coming from the Dirac equation on the antiquark field

0 = 〈π0(p2)|ψα(−z)(i /Dψ̄)β (z) |π0(p1)〉 . (4.6)

This new set of equations is related by charge conjugation to the previous ones.

5. Constraints from the n-invariance

The physical amplitude for the process Aπ0→ Bπ0 should not depend on the arbitrary light-
like vector n, which is involved when defining the Fourier transform with respect to the light-cone
momentum direction p in order to define the various GPDs, as well as in the way one fixes the
gauge. The requirement that p ·n = 1 and n2 = 0 effectively reduces to an invariance with respect
to variations of n⊥, i.e.

dA

dn⊥
= 0 . (5.1)
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As shown in detail in refs. [7, 8], for the case of the γ∗→ ρ impact factor, such a requirement
can be reduced, at twist-3 level, to a set of equations relating the various distribution amplitudes
(DA) involved. Indeed, after proper use of Ward identities, one can effectively factorize out the hard
Born contribution from eq. (5.1), in such a way that this equation leads to a set of constraints among
the various non-perturbative correlators, i.e. in fine between the DAs themselves. Combining these
equations with the one based on the QCD equations of motion, one can thus reduce the set of DAs
to a minimal set, which are three independent DAs in the case of the twist 3 chiral-even ρ meson.

A similar analysis can be performed for any physical amplitude involving the chiral-odd π0

GPDs. The detailed study of the corresponding reduction to a minimal set of independent chiral-
odd GPDs for π0 is under study.

Acknowledgements

This work is partly supported by the Polish Grant NCN No. DEC-2011/01/B/ST2/03915, the
French-Polish collaboration agreement Polonium, the ANR “PARTONS”, the PEPS-PTI “PHENO-
DIFF”, the Joint Research Activity Study of Strongly Interacting Matter (acronym HadronPhysics3,
Grant Agreement n.283286) under the Seventh Framework Programme of the European Commu-
nity and by the COPIN-IN2P3 Agreement.

References

[1] X.-D. Ji and J. Osborne, One-loop corrections and all order factorization in deeply virtual Compton
scattering, Phys. Rev. D58 (1998) 094018, [hep-ph/9801260].

[2] J. C. Collins and A. Freund, Proof of factorization for deeply virtual Compton scattering in QCD,
Phys. Rev. D59 (1999) 074009, [hep-ph/9801262].

[3] J. C. Collins, L. Frankfurt, and M. Strikman, Factorization for hard exclusive electroproduction of
mesons in QCD, Phys. Rev. D56 (1997) 2982–3006, [hep-ph/9611433].

[4] I. V. Anikin, B. Pire, and O. V. Teryaev, On the gauge invariance of the DVCS amplitude, Phys. Rev.
D62 (2000) 071501, [hep-ph/0003203].

[5] I. V. Anikin and O. V. Teryaev, Wandzura-Wilczek approximation from generalized rotational
invariance, Phys. Lett. B509 (2001) 95–105, [hep-ph/0102209].

[6] I. V. Anikin and O. V. Teryaev, Genuine twist 3 in exclusive electroproduction of transversely
polarized vector mesons, Phys. Lett. B554 (2003) 51–63, [hep-ph/0211028].

[7] I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski, and S. Wallon, On the description of exclusive
processes beyond the leading twist approximation, Phys. Lett. B682 (2010) 413–418.

[8] I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski, and S. Wallon, QCD factorization of exclusive
processes beyond leading twist: γ∗T → ρT impact factor with twist three accuracy, Nucl. Phys. B828
(2010) 1–68, [arXiv:0909.4090].

[9] I. V. Anikin, A. Besse, D. Y. Ivanov, B. Pire, L. Szymanowski, and S. Wallon, A phenomenological
study of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson, Phys. Rev. D84
(2011) 054004, [arXiv:1105.1761].

[10] V. Braun and A. Manashov, Kinematic power corrections in off-forward hard reactions,
Phys.Rev.Lett. 107 (2011) 202001, [arXiv:1108.2394].

7

http://xxx.lanl.gov/abs/hep-ph/9801260
http://xxx.lanl.gov/abs/hep-ph/9801262
http://xxx.lanl.gov/abs/hep-ph/9611433
http://xxx.lanl.gov/abs/hep-ph/0003203
http://xxx.lanl.gov/abs/hep-ph/0102209
http://xxx.lanl.gov/abs/hep-ph/0211028
http://xxx.lanl.gov/abs/0909.4090
http://xxx.lanl.gov/abs/1105.1761
http://xxx.lanl.gov/abs/1108.2394


P
o
S
(
D
I
S
2
0
1
4
)
2
3
2

Higher twist chiral-odd pion GPDs S. Wallon

[11] V. Braun and A. Manashov, Operator product expansion in QCD in off-forward kinematics:
Separation of kinematic and dynamical contributions, JHEP 1201 (2012) 085.

[12] B. Pire, L. Szymanowski and S. Wallon, arXiv:1309.0083 [hep-ph].

[13] R. K. Ellis, W. Furmanski, and R. Petronzio, Unraveling Higher Twists, Nucl. Phys. B212 (1983) 29.

[14] A. V. Efremov and O. V. Teryaev, The transversal polarization in Quantum Chromodynamics, Sov. J.
Nucl. Phys. 39 (1984) 962.

[15] O. V. Teryaev, Twist - three in proton nucleon single spin asymmetries, hep-ph/0102296.

[16] V. Braun, A. Manashov, and B. Pirnay, Finite-t and target mass corrections to DVCS on a scalar
target, Phys.Rev. D86 (2012) 014003, [arXiv:1205.3332].

[17] V. Braun, A. Manashov, and B. Pirnay, Finite-t and target mass corrections to deeply virtual Compton
scattering, Phys.Rev.Lett. 109 (2012) 242001, [arXiv:1209.2559].

8

http://xxx.lanl.gov/abs/hep-ph/0102296
http://xxx.lanl.gov/abs/1205.3332
http://xxx.lanl.gov/abs/1209.2559

