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ABSTRACT: We present analytical exact 2D and 3D MHD computations for the layers of an AGB
star known to be affected by deep mixing phenomena, in order to verify previous suggestions that
magnetic buoyancy may provide a sound explaination for the isotopic changes observed in AGB
stars and in presolar grains. The structure of the relevant layers is similar to a polytrope of index
3 (a bubble of radiation), containing little mass. Due to this, the material is close to be unstable
for expansion. Addition of any extra engine under the form of a magnetic dynamo generating
toroidal structures unstable for buoyancy yields plasma phenomena that closely resemble those of
the solar wind, in which almost ideal, non-resistive MHD allows for an easy analytical integration
of the model equations. The results show that a further expansion occurs for magnetized domains
(flux tubes). These last form close to thermonuclear shells and transport outward nucleosynthesis
products with a velocity v ~ 2, faster than for diffusion but slower than for convection, adequate
to give a physical interpretation to extra-mixing processes in evolved stars.
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1. Introduction

Deep mixing in evolved stars, sometimes also called cool bottom process[l] still challenges
modelers. The operation of extensive circulations with non-convective nature is known to be neces-
sary at least after the so-called Bump of the Luminosity Function of RGB stars [[]. Thermohaline
diffusion [B] was for a few years considered as the most appropriate candidate, but increasing
difficulties due to its low speed shed many doubts on its effectiveness [&, B].

Among alternative mechanisms, the transport of matter through buoyant magnetic structures
was suggested by [B] (hereafter BWNC) and then considered also by [[, B]. In order to verify quan-
titatively if this process is really as promising as claimed, here we abandoned parameterizations to
start a systematic work on first principles, looking for exact analytical solutions of the MHD equa-
tions, exempt from the simplifications usually adopted in numerical codes, which are rich in free
parameters.

From an analysis of various thermally-pulsing AGB models (where a knowledge of the men-
tioned elusive transport phenomena is most urgently needed) we recognized that the layers above
the H-burning shell invariably look like bubbles of radiation, i.e. politropes of index close to 3,
potentially subject to the Eddington instability, induced by the prevailing of the radiation pressure.

In such conditions we show, through 2D and 3D models, how addition of a dynamo mechanism
induces rather fast buoyancy of magnetized structures linking the H-burning shell and the envelope.
The necessary nature of buoyancy in stars with rotating cores suggests this to be probably the best
candidate mechanism to drive deep mixing in evolved stars.

2. The model

The equations of the problem, expressed in Eulerian form and adopting cgs units are:

dp

S +V-(pv) =0 (1)
p[‘Z+(v-v)v—cdv+V‘P —uAv+VP+$B><(V><B):O (2)
%l:_vX(va)—vaBzo (3)

V.B=0 ()
p[g«fﬂv_v)g]+PV,V_V.(KVT)+L’Z(VXB)220 (5)

In the above equations, € is the internal energy per unit mass. P, T, p are the pressure, temperature
and density of the plasma, k is the thermal conductivity. B is the magnetic induction field, v is
the plasma velocity, u is the dynamic viscosity (product of density and of the kinematic viscosity
1) and pAv is a simplified form often used for the viscous force per unit volume in stellar MHD
(it would formally hold for incompressible fluids with constant tt). ¥ is the gravitational potential
and v, is the magnetic dif fusivity. The term c,v represents the acrodynamic drag force per unit
mass.
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Figure 1: Left panel: the growth of the radial velocity v, (normalized to the value at the bottom) in the radia-
tive layers of our AGB star, where w(¢) is chosen as a linear function of 7. Right panel: a 3D representation

of the magnetic field, as a function of time and radius, for the same layers, choosing an oscillating form for
®(&(r,t)), i.e. a wave-like solution for B. Here @ = 27/80 yr ! = 1.6 1073 sec™! was taken from [@]. The
absolute value of the field at the level P is in this case a free paramter of the model.
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Figure 2: Illustrations of the velocity field over a stellar hemisphere for the 3D solutions discussed. The left
panel combines solutions (8) and (9), the right panel solutions (10) and (11). See text for explanations. The

axes show the equatorial and polar extension of the radiative layer, in units of the solar radius.
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TABLE I
Parameters of the AGB-Star Layers of Interest
M=1.5 Mg, Z=0.01

Parameter Value
rp 1.97-10°
pPpP 4.13
Tp 4.92-107
Pp 4.24-10'°
Feny 5.19-10'0
Peny 2.48-1074
krad -3
Ty 2.17-10°
Poo 1.29-101
kcon _3/2
Fsur 2.32-1013
Tsur 3 103
P ~5-1072
Psur ~ 1077

Notes: units are cgs. Concerning the subscripts, “P" refers to the maximum mixing penetration; “env" refers
to the border between the radiative layer and the convective envelope; “sur" indicates the surface values. The
physical parameters T, p, P, r are from BWNC.

Indicating with r the radial coordinate and with ¢ the azimuthal angle in the equatorial plane,
we assume that B = (B,(t,7,9),By(t,7,¢),0) is such that B, = 0. This describes an azimuthal
field as a function of r, ¢ and time ¢. We also consider pure circular symmetry in the equatorial
plane, so that the velocity components do not depend on the azimuthal angle; let also the velocity
field be parallel to the equator. Hence: v = (v,(t,7,9),v¢(t,7,9),0) is such that vy, = vy (z,r) and
v = V(t,r).

In several astrophysical dynamo scenarios, the third term of equation (3) is much smaller than
the second one, as the conductivity of a ionized medium is very large. Magnetic diffusivity is
actually negligible if we consider transport phenomena occurring through advection, by the fields
described in the second term of the equation. It is common to say that, in this situation, the field
and the transported fluid are mutually “frozen".

With the above assumption, we can solve the equations using, for the stellar structure, the
AGB model studied by BWNC, whose parameters are summarized in Table 1. That model shows
how the density distribution as a function of the radius is very close to a power law, p = po(r/ro)~,
with k ~ —3 in the radiative layers. In such conditions the solution of the MHD equations (1), (2),
(3) and (4) describes the equilibrium of the stellar plasma in an inertia frame. An outline of how
this solution is obtained is presented in [H].
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3. Results and discussion

The solution for the MHD equations in the above conditions, as computed in 2D (neglecting
latitude effects) is described in [B]. It is the following:
2
Vr ="Vrp (é) (6)
By(r,t) =By pcos(@t+rp/r) (F—P>2 (7)
’ r
where v, p = @rp, and By p = Ar;z. This solution satisfies dimensional constraints on v, and B if
A has the dimensions of a magnetic flux [units Mx] and @ is measured in sec™! (i.e. is a pulsation).
We can take this parameter from [@]. Figure 1 shows the ensuing behavior for v, and By. This
solution describes a magnetic field that oscillates in time and space and is spatially distorted by a
phase shift varying as 1/r.
In order to compute its equivalent in three dimensions, one can impose the validity of the
continuity equation in 3D spherical coordinates. Possible solutions with this property are:

1 VP

2 2 ‘2
v,(r,ﬁ)zir?r [2cos” ¥ —sin” ¥ (8)
1
ve () = —Zifz’ﬂ sin20 9)
rp

Notice that the third component v, enters the continuity equation only through the derivative of
(pve) with respect to ¢, which is zero in our hypotheses. It will depend on magnetic fields in
a complex way. However, the simple form of MHD holding in our case makes the behavior of
ve irrelevant for v, and vy, so that we can discuss our generalization that includes meridional
motions without the need of invoking the explicit form of the azimuthal velocity. What is important
for us is to verify if it is true that v, is proportional to 2. We can deduce this, in two or in
three dimensions, without referring directly to vy. This also tells that any form of differential
rotation possibly descending by an exact derivation of this last function would not alter our basic
conclusions for the expansion.

At the equator, where vy vanishes, the solution for v, reduces to the one derived in the 2D
case. Also its average over the latitude (from —m/2 to 7/2) differs from our solution (6) only
by a numerical factor o (with & = 0.25). This is obviously irrelevant: it can be included in the
multiplying coefficient of equation (6), which depends on the free parameter v, ,. Notice that vy
vanishes also at the poles.

Another, a bit more sophisticated, solution (describing in this case a double toroidal structure,
with a radial velocity that achieves its maxima at intermediate latitudes, north and south of the
equator, like for the Sun and many active stars) is for example provided by the following relation

for v,:

1
V= —vr—’zprz(zcosz%oshﬁ—|—sin19sinh19) (10)

2rp
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In order to satisfy the continuity equation this requires that:

Lvip o .
-5 h ¥ sin 11
2 r~cosh ¥ sin (11)

Vy =
Again, the above formulae fulfil the requirements at ¥ = 0, where they reduce to our 2D solution
found before, because there vy =0 and v, = (v;.,/ rf,) x r?, which is again formula (6). The velocity
v, is the product of two terms, depending one on r and the second on ¥; this second function (see
equation 10) does not diverge in the interval of interest (from —7/2 to +7/2, i.e. from the south to
the north pole). It is symmetric with respect to the equator and its average corresponds to the form
(6) multiplied by a factor & (which is, in this case, o = 1.198).

The two example solutions discussed above are represented in Figure 2.

When the above framework is applied to the study of real AGB stars, with model parameters
like those described in Table 1, one finds that the buoyancy velocity is always effective enough to
provide an efficient mixing mechanism, with velocities smaller than for convection, but much larger
than for thermohaline mixing and in general of the order of meters per second. This is sufficient to
account for essentially all the requirements of extra-mixing, including the most sophisticated ones,
accounting for the formation of a 13C reservoir in the He shell, suitable to activate the '*C(a,n)!60
reaction, thus inducing slow neutron capture nucleosynthesis [[[].

As a consequence we can state that, with a procedure based on simple, realistic hypotheses
in two/three-dimensions, the buoyancy of magnetized structures provides an exact solution to the
problem of extra-mixing in the radiative zones of AGB stars. In it, pure advection (on time scales
much faster than any diffusion process) can yield the rapid crossing of the layer up to the convective
envelope base, thanks to the fact that the radial velocity grows as the second power of the radius.

As the dependency of v, on the second power of the radius remains the same in 2D and 3D,
we believe this result to be quite robust.
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