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Considering both the special and general relativistic approximations, we analyze the gravitational
redshift in the Schwarzschild problem (i.e. the two body problem associated to a potential of
the form A/r+C/r3, where r is the distance between photon and the center of a star, and A,C

well-established positive constants). We present the difference between the redshift for Newton’s
potential and the one for Schwarzschild’s potential in the third order terms. In both cases (special
and general relativistic approximations) the difference value reaches the ratio γ/R3, where R is the
geometrical radius of the star and γ =C/c2, c being speed of the light). In the general relativistic
approximation, we show that a black hole effect appears at a ratio noted by us ρs which is larger
than Rs - Schwarzschild gravitational radius.
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1. Introduction

Taking into account a nonrelativistic law of gravitation, Mioc and Ureche have studied the
topic of post-Newtonian potentials and their implications in diverse astronomic experience (see
[5]). Roman and Mioc [4] developed the three-body problem study using the Schwarzschild grav-
itational field. Ureche [6] computed free fall collapse time and gravitational redshift (see [7]) for a
post-Newtonian potential, namely Maneff’s field. Recently, Lupu [2] extended the applications of
the Schwarzschild potential at the study of the satellite dynamics.

In the two body Schwarzschild problem, the force function is:

U(r) = m(
A
r
+

C
r3 ) = GM

m
r
(1+

L2

c2r2 ), (1.1)

where A = GM, C = GML2

c2 , and G is Newtonian gravitational constant; M,m are the masses of two
interacting bodies in the field (e.g. a massive cosmic object and a test particle); r is the distance
between M and m; c is the speed of light; L is constant angular momentum (see [3] for details).

In this paper, we extend Ureche’s work [7] and analyze the gravitational redshift in the two-
body problem using the Schwarzschild gravitational field. In this certain case the Φ potential which
describes the effects is:

Φ(r) =−GM
r

− GML2

c2r3 =−A
r
− C

r3 . (1.2)

We calculate the gravitational redshift computed in the field described by the potential in the
form (1.2) in two frameworks: (i) in a special relativistic approximation, (ii) in a general relativistic
approximation. We compare our results with the ones obtained for the Newtonian gravitational
field.

2. Special Relativistic Approximation (SRA)

In the framework of the two body problem using the Schwarzschild potential in the form (1.2),
we consider a celestial body with M mass and R radius, and a photon at the surface of the body
with m f relativistic mass, λ wavelength (or ν frequency). We use the index 0 for a distant observer.
Taking into account the conservation of energy law for the considered photon, we have:

m f c2 +m f Φ = m f0c2 +m f0Φ0. (2.1)

Also,

m f c2 = hν ,ν =
c
λ
, (2.2)

where h is the Planck’s constant.
We use the following notations: λ0 −λ = ∆λ , zg =

∆λ

λ
where zg is the gravitational redshift.

Neglecting Φ0 in the relation (2.1) and developing this equation until the third order term, we
obtain the gravitational redshift of SRA, as follows: Considering the Schwarzschild gravitational
field, we obtain:

zgSch =
α

R
+

α2

R2 +
(α3 + γ)

R3 (2.3)
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(where α = A
c2 ,γ = C

c2 ).
In the same time, considering the Newtonian gravitational field we obtain:

zgN =
α

R
+

α2

R2 +
α3

R3 . (2.4)

Therefore, computing the difference between zgSch and zgN in SRA, we obtain:

∆S = zgSch − zgN =
γ

R3 . (2.5)

3. General Relativistic Approximation (GRA)

We continue the previous analysis with the general relativistic approximation, where the metric
associated to the potential Φ is:[1]

ds2 = (1+
2Φ

c2 )c2dt2 − dr2

(1+ 2Φ

c2 )
− r2(dθ

2 + sin2
θdφ

2). (3.1)

The relation between the proper time τ and the time t of distant observer is:

τ =

√
1+

2Φ

c2 t (3.2)

and the relation between λ , λ0 corresponding wavelengths is:

λ =

√
1+

2Φ

c2 λ0 (3.3)

(λ0 is the wavelength measured by distant observer).
We have from the formulas (3.1), (3.2) the following existential condition:

1+
2Φ

c2 > 0. (3.4)

Also, from the form (1.2), we have this form:

2Φ(r)
c2 =−α

r
− γ

r3 . (3.5)

Hence, we must solve the inequality:

r3 −2αr2 −2γ > 0. (3.6)

According to Viete’s formulas for the solutions of this inequalities: ρs (the one which is real), x
and x, we obtain the relations:

2γ +ρs
2(2α −ρs) = 0. (3.7)

Because of γ,ρs
2 > 0, we obtain the condition for the real solution:

2α −ρs < 0. (3.8)
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Computing zg based on the relation (3.3) and developing until the third order term, we obtain
the gravitational redshift of GRA, as follows: In the frame of Schwarzschild gravitational field, we
obtain the Schwarzschild gravitational redshift:

zg
Sch =

α

R
+

3
2

α2

R2 +(
5
2

α
3 + γ)

1
R3 . (3.9)

Also, in the Newton gravitational field framework, we compute the Newton gravitational red-
shift :

zg
N =

α

R
+

3
2

α2

R2 +
5
2

α3

R3 . (3.10)

Then, if we compute the difference between the zg
Sch and zg

N in GRA, we obtain:

∆G = zg
Sch − zg

N =
γ

R3 . (3.11)

4. Results

After developing the gravitational redshift until the third order term, we obtain the following
computational results:

The differences are the same in both the SRA and GRA, namely:

∆G = ∆S =
γ

R3 .

(4.1)

Anew, if we take zg
N ∼ α

R , we obtain the relative difference:

∆G
(zg

N)3 =
γ

α3

(4.2)

In the general relativistic approximation case, we also obtain a qualitative result: Consider-
ing the existence condition (3.4),we obtain from the inequality (3.6) a Black hole effect in the
Schwarzschild gravitational field, namely:r > ρs. From the qualitative condition (3.8), this entity
ρs is the associated radius of Schwarzschild problem for which

ρs > 2α = Rs, (4.3)

Rs being the Schwarzschild gravitational radius in the Newton gravitational field.
Acknowledgements: We are deeply indebted to professor dr. V. Ureche. We would also like to
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