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We investigate possible impacts of collective oscillasi@and MSW matter effects on neutrino
signals from core-collapse supernovae (CCSNe). Usindtsestispherically-symmetric and
three-dimensional radiation-hydrodynamics CCSN sinmuatfor multiple progenitors (11.2, 13,
15, 27 and 40M.,), we estimate the neutrino signals, in which both of theemiVe oscillations
and the MSW effects are taken into account. As previouslgtified, the collective oscillations
are unlikely to impact the revival of a stalled supernovackhfor most of the progenitors, while
we find that they could potentially affect the subsequentgian of the revived shock in a lighter
progenitor model (1.BM.,). Neutrinos emitted from a nascent proto-neutron star (Ri¥i&nge
its flavor typically twice in propagating out to the stellaantle due to the collective oscillations
and the MSW effects. As a result, the spectrum of anti-edectype neutrinos\) becomes
relatively close to those emitted from the PNS. For a vaéthe progenitor models, we estimate
the event numbers in Super-Kamiokande and discuss how tta&ioes of the signals are sensitive
to the employed progenitors.
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1. Introduction

There are a lot of unresolved problems regarding the mechanism otaollapse supernova
(CCSN) explosions and the neutrino signatures. Due to the developmauobwdrical schemes,
a number of neutrino-radiation hydrodynamics models have been repedextly [1, 2]. These
self-consistent models have revealed many interesting natures of the®@wgp@eutrinos, which
provides an important probe into the still uncertain explosion mechanism [&.for collective
references therein).

In addition to the currently running observatories suitable for detectingreopa neutrinos
(e.g., [4] for a review), the Megaton-class detectors are being peddd$ These next-generation
detectors are expected to permit observations of the CCSN neutrinos&arby galaxies in the
Mega-parsec distant scales on a yearly basis [6]. Important parawétee neutrino oscillations,
to which the behaviors of the flavor mixtures of the CCSN neutrinos aresengitive (e.g., [7]
for a review), have been determined by various neutrino experimenés¢&pt for\Am%l\. Due to
such rapid progress both in theory and observation, neutrino astroofotfmy CCSNe is expected
to become a reality in the coming decade.

In order to quantitatively evaluate the supernova neutrino signals, it igEssable to include
the effect of the collective neutrino oscillation (e.g., [9, 10, 11], se¢ fd2a review) and the
MSW matter effect [13, 14, 15] inside the star. The collective oscillatioroimes important in
the vicinity of the PNS 4 10%g/cnt), whereas the MSW effects occur far outside the iron core
(~ 10%g/cnT). As pointed out by (e.g., [16, 17]), both of these effects should bleded in a
reliable modeling of the supernova neutrino signals.

Joining in these efforts, we explore in this contribution the effects of theataéeneutrino
oscillations and the MSW matter effects on the supernova neutrino signats theimesults of
spherically-symmetric (1D) and three-dimensional (3D) CCSN simulations dtipteuprogen-
itor models. For a variety of the progenitor models, we estimate the event nsiimb8uper-
Kamiokande and discuss how the behaviors of the signals are sensitivedamtiloyed progeni-
tors.

2. Supernova Mode and Numerical Method

We use several supernova models based on new sets of radiatiataydmics simulations
for 11.2, 13, 15, 27 and 4B, progenitor stars using the IDSA transport scheme [18]. In these
simulations, three flavor neutrinos are taken into account. Left and ragtelp of Fig.1 show the
time evolutions of the average energy and the luminosity of each flavor nesiobtained through
these simulations.. In Fig.1, the progenitor mass is 13, 15 and2%om top to bottom. The
time evolution of the average energy and the luminosity is quantitatively differesach models,
however these qualitative behaviours are rather similar to previous siedges[19]). For each
of the models, we calculate the neutrino spectra at the neutrino spherg (BiN& these average
energies and luminosities (e.qg., [14, 15]).

The neutrinos are influenced by two effects in the star, one is the collesti#ation, and the
other is MSW matter effects. Following the method proposed by [20], we leddcthe neutrino
survival probability considering the two effects, in which a single-angf@aximation is taken for
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Figure 1: Time evolutions of the luminosity and the average energyit &ed right panels show the time
evolutions of the average energy, and the luminosity of dagbr neutrinos. The progenitor mass is 13, 15,
and 27M, from top to bottom.

the collective oscillations of (three-species) neutrinos. We use the reasaillation parameters as
follows; sirf26,3 = 0.84, sif20;, = 1.0, sirf26;3 = 0.098,Am3, = 7.6 x10~°, |]Am 3| = 2.5x 103
[8]. We assume the inverted mass hierarchy.

3. Resaults

Fig. 2 shows comparison of the collective oscillation radius to shock raditreinase of 13
M., model computed either in 1D (left panel) or 3D (right panel) hydrodynafdi@s In both of
the panels, the shock radius is shown by red line, and the radii wherelbetive oscillations
begin {syng and end (end are represented by green and blue line, respectively.

In 1D, our results are in agreement with the work by [9] who showed thikgative oscillations
do not affect the revival of the stalled shock because the collectini#ad®n starts and ends far
outside the shock. But in the corresponding 3D model in which the shexékat is obtained
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Figure 2: Comparison of the collective oscillation radius to shoatiua in the case of 1Bl;, model. Left
figure shows the 1D simulation result, and right shows theigiikation result.
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Figure 3: The event rate of. Top panels are the event rate of 11.2, 13 and15from left to right, and
bottom panels are of 27 and &0.. Red line shows the event rate taking account of the colieciscillation
and the MSW effect. Green and blue lines show the event rkitggtaccount of only MSW effect, and the
event of original neutrinos (at PNS).

(after~ 250 ms postbounce, see red line in the right panel), the collective oscillattumsoinside
the expanding shock (same as for the 1.2 model). We point out that this might affect the
subsequent evolution of the shock and also nucleosynthetic yields in thetmigpy hot bubbles
in the neutrino-driven wind phase. We plan to study this in more detail usingr@8D models
that are trending toward an explosion.

Fig. 3 shows the event rate of detected by Super-Kamiokande from a source at the distance
of 10 kpc. Top panels of Fig.3 are the event rate of 11.2, 13 anlld%rom left to right, and
bottom panels are of 27 and #0.. Red line shows the event rate taking account of the collective
oscillation and the MSW effect. Green line shows the event rate taking mcobwnly MSW
effect, and blue line shows the event of original neutrinos (at PNSkhasvn in Fig. 3, these
signals become relatively close to those emitted from the PNS. This is becaugectmange its
flavor typically twice under the influence of the collective oscillations and tis¥\Meffect.
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Table 1: The total event number af by Super-Kamiokande for a Galactic CCSN event.
progenitor massMl] | 11.2 | 13 15 27 40

collective+MSW | 3600 | 4120| 5400 | 6740 | 8340
MSW 4400 | 4200| 5360 | 6320 | 7000

Tablel shows the (extrapolated) total event number.pfn which we assume that neutrino
emission continues for the next 10 s after the simulation time (e.g., [14]). demean the pro-
genitor mass, the effect of the collective oscillations on the event numbiesyae., the event
numbers decrease and increase for lighter (11.2 afd-16odels) and heavier progenitor models
(15, 27 and 4MM.,), respectively. It is recently demonstrated that the compactness drtors
is a key to characterise the neutrino signatures [21]. Using such reslylisgron hundreds of
multi-D models for multiple progenitors, we plan to perform the more systematieguiming to
clarify the connection between the progenitor structures and the nedgiraires in the presence
of both the collective oscillations and the MSW effects.

4. Summary

We explored the effect of the collective neutrino oscillations and the MSW mettiects
on the neutrino signals using the results of 1D and 3D CCSN simulations of multigemtor
model. Using the 3D model of a B, star that is trending towards explosion, we pointed out that
the collective oscillations could influence the subsequent evolution of thek sifter the shock-
revival. Assuming the inverted mass hierarchy and using the neutrino tiscilfzarameters that
are consistent with experiments, our results show that the neutrinosectisifigvor typically twice
under the influence of the collective oscillations and the MSW effects. W get the information
of the anti-electron type neutrinos which would be helpful in extracting ttenmétion of the long-
veiled explosion mechanism via the next nearby CCSN event.
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