

Rate Analysis or a Possible Interpretation of Abundances

Miklós Kiss¹

Berze High School/Gyöngyösi Berze Nagy János Gimnázium H-3200 Gyöngyös, Kossuth u. 33., Hungary E-mail: kiss-m@chello.hu

Heavy elements are formed in nucleosynthesis processes. Abundances of these elements can be classified as elemental abundance, isotopic abundance, and abundance of nuclei. In this work the nuclei are identified by (Z,N), which allows reading out *new information* from the measured abundances. We are interested in the neutron density required to reproduce the measured abundance of nuclei assuming equilibrium processes. This is only possible when two stable nuclei are separated by an unstable nucleus. At these places we investigated the neutron density required for equilibrium nucleosynthesis both isotopically and isotonically at temperatures of AGB interpulse and thermal pulse phases. We obtained an estimate for equilibrium nucleosynthesis neutron density in most of the cases. Next we investigated the possibility of partial formation for the unified interpretation of a branching point closed at isotonic case and open at isotopic case. We introduce a more expressive variant of branching ratio called partial formation rate. With these we are capable of determining the characteristic neutron density values. We found that all experienced isotope ratios can be obtained both at 10^8 K temperature and at intermediate neutron density ($\leq 2 \cdot 10^{12}$ cm⁻³).

XIII Nuclei in the Cosmos 7-11 July, 2014 Debrecen, Hungary

1

Speaker

1. Introduction

Nearly sixty years after BBFH [1], it is possible and necessary to review and rethink our knowledge about the neutron capture nucleosynthesis. The result of the formation of the nuclei is shown in the abundances. It is important to mention that the formed unstable nuclei have decayed into stable nuclei and we are only able to see the resulting stable nuclei.

"The success of any theory of nucleosynthesis has to be measured by comparison with the abundance patterns observed in nature." say Käppeler, Beer and Wisshak [2], that is, we need to create such model that gives back the observed abundance.

Because of the formation of nuclei takes place in a variety of conditions, the experienced abundance is a result of more processes. Therefore more models are necessary for the alternate conditions. According to the conditions of the models the nuclei are classified into categories as s-nuclei, r-nuclei etc.

It seems that the reverse approach is also useful: the abundance is the preserver of the nuclei's formation conditions. So instead investigating whether the theoretical model fits the observed abundance, we look for the circumstances when the observed abundance is available.

To do this we need suitable data: the half-life of unstable nuclei and the neutron capture cross section of nuclei. These data are not constant always. At some nuclei the half-lives depend on the temperature [2,3,4]. Fortunately, the reaction rate per particle pair $\langle \sigma v \rangle$ is constant between 10 and 100 keV because of the energy dependence of σ [2,3]. So we can use the σ values at 30 keV [5]. The possible resonances only improve the capture capabilities.

2. The required neutron density

Change the nucleon identification from the usual (Z,A) to (Z,N) and see the individual abundances as well. We took the abundance of nuclei from [6]. This will allow us to read new information from the various measured abundances.

We use the following rate equations according to the requirements of the individual nuclei formation:

$$\begin{aligned} \frac{dN_{Z,N}}{dt} &= N_n(t)N_{Z,N-1}(t) < \sigma v >_{Z,N-1} + \lambda_\beta N_{Z-1,N+1}(t) + \lambda_\alpha N_{Z+2,N+2}(t) - \\ &- N_n(t)N_{Z,N}(t) < \sigma v >_{Z,N} - \lambda_\beta N_{Z,N}(t) - \lambda_\alpha N_{Z,N}(t) + \dots \end{aligned}$$

We also assume the equilibrium formation of nuclei. From the corresponding rate equations we can get the neutron density as in isotopic as in isotonic cases.

2.1 Isotopic case

2.1.1 Two stable neighbor isotopes

First let us we consider two stable neighbor isotopes (see Fig. 1), applying the new identification.

$$\frac{\mathrm{dN}_2}{\mathrm{dt}} = n_n N_1 < \sigma v >_1 - n_n N_2 < \sigma v >_2$$

Fig. 1. Two stable neighbor isotopes

If we suppose the equilibrium that is $\frac{dN_2}{dt} = 0$, we got $N_1\sigma_1 = N_2\sigma_2$, what is well known in classical identification. So there is no information about the formation conditions. But it is important to mention that this relation is not true in general about the experienced abundances and neutron capture cross sections. The main cause is the existences of other rates from other channels through unstable nuclei.

2.1.2 Two stable isotopes are separated by an unstable isotope

A more interesting case is, when two stable isotopes are separated by an unstable isotope (see Fig. 2).

In this isotopic case the rate equations for the unstable nucleus:

1N T

$$\frac{dN_2}{dt} = n_n N_1 < \sigma v >_1 - n_n N_2 < \sigma v >_2 - \lambda_\beta N_2$$

About the equilibrium $\begin{aligned} \frac{dN_2}{dt} = 0, \text{ so} \\ 0 = n_n (N_1 < \sigma v >_1 - N_2 < \sigma v >_2) - \lambda_\beta N_2 \\ \lambda_\beta N_2 = n_n (N_1 < \sigma v >_1 - N_2 < \sigma v >_2) \end{aligned}$

Fig. 2. The isotopic channel

$$\lambda_{\beta}N_{2} = n_{n}v(N_{1}\sigma_{1} - N_{2}\sigma_{2})$$

$$\lambda_{\beta} = n_n v (\frac{N_1}{N_2} \sigma_1 - \sigma_2)$$

If the third nucleus can form only from the second nucleus

$$\frac{\mathrm{d}\mathbf{N}_{3}}{\mathrm{d}t} = \mathbf{n}_{n}\mathbf{N}_{2} < \sigma \mathbf{v} >_{2} - \mathbf{n}_{n}\mathbf{N}_{3} < \sigma \mathbf{v} >_{3}$$

About the equilibrium $\frac{dN_3}{dt} = 0$, so such as the previous case we have

$$N_{2}\sigma_{2} = N_{3}\sigma_{3}$$

$$N_{2} = N_{3}\frac{\sigma_{3}}{\sigma_{2}}$$

$$\lambda_{\beta} = n_{n}v(\sigma_{1}\frac{N_{1}\sigma_{2}}{N_{3}\sigma_{3}} - \sigma_{2})$$

$$\frac{\lambda_{\beta}}{n_{n}v} + \sigma_{2} = \frac{N_{1}\sigma_{1}\sigma_{2}}{N_{3}\sigma_{3}}$$

$$\frac{N_{3}}{N_{1}} = \frac{\sigma_{1}\sigma_{2}}{(\frac{\lambda_{\beta}}{n_{n}v} + \sigma_{2})\sigma_{3}}$$

$$\frac{N_{3}}{N_{1}} = \frac{\langle \sigma v \rangle_{1}}{\langle \sigma v \rangle_{2}} = \frac{\sigma_{1}}{\sigma_{3}}\frac{\sigma_{2}}{\frac{\lambda_{\beta}}{n_{n}v} + \sigma_{2}}$$

This expression contains the specific neutron density value. We must refer to $\langle \sigma v \rangle = \sigma \cdot v = constant$ at low and intermediat conditions, so it is enough to know the 30 keV neutron capture cross sections and average velocity.

From this formula, we can get the neutron density value. Of coure resonances may occure, but these only improve the capture capabilities

$$\mathbf{n}_{n} = \frac{\lambda_{\beta}}{\mathbf{v}(\sigma_{1}\frac{\mathbf{N}_{1}\sigma_{2}}{\mathbf{N}_{3}\sigma_{3}} - \sigma_{2})} \text{ or } \mathbf{n}_{n} = \frac{\lambda_{\beta}}{\mathbf{v}}\frac{\sigma_{3}}{\sigma_{2}}\frac{1}{(\sigma_{1}\frac{\mathbf{N}_{1}}{\mathbf{N}_{3}} - \sigma_{3})}$$

(See the required neutron densities at different stellar temperature in Appendix 1 and 2.) From the tables we can see that the isotopic equilibrium is not always possible. This means that the formation of third nuclei has at least another channel.

2.2 Isotonic case

In this isotopic case (see Fig. 3) the rate equations for the unstable nucleus:

$$\frac{dN_2}{dt} = n_n N_1 < \sigma v >_1 - n_n N_2 < \sigma v >_2 -\lambda_\beta N_2$$

ium, then $\frac{dN_2}{dt} = 0$, so

If there is equilibrium, then $\frac{dN_2}{dt} = 0$

$$n_n N_1 < \sigma v_1 >= n_n < \sigma v_2 N_2 + \lambda_\beta N_2$$

Fig. 3. The isotonic channel

If the third nucleus can form only from second nucleus

$$\frac{dN_3}{dt} = \lambda_\beta N_2 - n_n N_3 < \sigma v >_3$$

Beacause of the equilibrium $\frac{dN_3}{dt} = 0$ we get
 $\lambda_\beta N_2 = n_n N_3 < \sigma v >_3$

The two equations

$$\begin{split} n_n N_1 < \sigma v_1 > = n_n N_2 < \sigma v >_2 + \lambda_\beta N_2 \\ \lambda_\beta N_2 = n_n N_3 < \sigma v >_3 \end{split}$$

about these

$$\frac{N_1}{N_3} \frac{\langle \sigma v \rangle_1}{\langle \sigma v \rangle_3} = \frac{n_n \langle \sigma v \rangle_2 + \lambda_\beta}{\lambda_\beta}$$
$$\frac{N_1}{N_3} \frac{\langle \sigma v \rangle_1}{\langle \sigma v \rangle_3} \lambda_\beta - \lambda_\beta = n_n \langle \sigma v \rangle_2$$

From this formula, we can get the neutron density value for equilibrium nucleosynthesis.

$$n_{n} = \frac{\frac{N_{1}}{N_{3}} < \sigma v >_{1}}{< \sigma v >_{2}} \lambda_{\beta} - \lambda_{\beta}}{< \sigma v >_{2}} \text{ or } n_{n} = \frac{\frac{N_{1}}{N_{3}} \frac{\sigma_{1}}{\sigma_{3}} - 1}{\sigma_{2}} \frac{\lambda_{\beta}}{v}$$

Because of $\langle \sigma v \rangle = \sigma \cdot v = constant$ it is enough to take the neutron capture values at 30keV.

(See the required neutron densities at different stellar temperature in Appendix 3 and 4.)

2.3 The role of neutron density

We have the possible equilibrium neutron density at isotopic and isotonic cases as well. There is a big difference between the two cases. In isotopic case the increment of neutron density increases the amount of the third nuclei, but in isotonic case the increment of neutron density decreases the amount of the third nuclei. These result the shift of capture path (or capture band) toward neutron rich nuclei.

3. Partial formation of nuclei

We can see in the previous section that not all of the third nuclei can form from the first nuclei. But how much can be formed on this way?

Suppose that from the abundance of the first nuclei (N_1) the k-times the abundance of third nuclei $(k \cdot N_3)$ are formed (0 < k). What neutron density is required in this case? (Here k is the Partial Formation Ratio so PFR.) If k = 1 then all of the third nuclei are formed as in the previous section 3.

The required neutron density at the two channels in isotopic and in isotonic cases:

$$n_{n} = \frac{\lambda_{\beta}}{v} \frac{\sigma_{3}}{\sigma_{2}} \frac{1}{\left(\frac{N_{1}\sigma_{1}}{kN_{3}} - \sigma_{3}\right)} \qquad \qquad n_{n} = \frac{\lambda_{\beta}}{v\sigma_{2}} \left(\frac{N_{1}}{N_{3}} \frac{\sigma_{1}}{\sigma_{3}} \frac{1}{k} - 1\right)$$

4. Given neutron density

After this theoretic investigation it is necessary to take a realistic approach.

We can consider the inverse question: what part of third nuclei abundance is formed from the first nuclei abundance at given neutron density? (k = ?)

4.1 In isotopic case:

$$k_{Z} = R \frac{\lambda_{n}}{(\lambda_{n} + \lambda_{\beta})} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{\lambda_{n}}{(\lambda_{n} + \lambda_{\beta})} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{\frac{\lambda_{n}}{\lambda_{\beta}}}{\left(\frac{\lambda_{n}}{\lambda_{\beta}} + 1\right)}$$
$$g(x)_{Z} = R \frac{x}{(x+1)} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{x}{(x+1)} = R \cdot f_{n}(x) \qquad x = \frac{\lambda_{n}}{\lambda_{\beta}}$$

4.2 In isotonic case:

$$k_{N} = R \frac{\lambda_{\beta}}{(\lambda_{n} + \lambda_{\beta})} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{\lambda_{\beta}}{(\lambda_{n} + \lambda_{\beta})} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{1}{\left(\frac{\lambda_{n}}{\lambda_{\beta}} + 1\right)}$$
$$g(x)_{N} = R \frac{1}{(x+1)} = \frac{N_{1}\sigma_{1}}{N_{3}\sigma_{3}} \frac{1}{(x+1)} = R \cdot f_{\beta}(x) \qquad x = \frac{\lambda_{n}}{\lambda_{\beta}}$$

Where f_n and f_β are the classical branching factors for neutron capture and beta decay. So we have uniform functions in both isotopic and isotonic cases.

5. Mathematical analysis

It might be better to see these functions in logarithmic representation. On Fig. 4 the two branching functions are: $f_n(x)$ and $f_{\beta}(x)$, where $\xi = \lg x$:

The branching functions

In this logarithmic representation the two functions become symmetric. Then we take the two logarithmic tangents at $\xi = 0$ or x = 1.

Where these tangents take the value zero the isotopic formation of nuclei opens, and the isotonic formation of nuclei closes. Similarly, where the tangent takes value one, the isotopic formation is on and the isotonic formation is off. So we have got well-defined characteristics for both of the opening and closing cases.

We found a mathematical definition for the unified interpretation of a branching point closed at the isotonic case and open at the isotopic case.

6. The neutron density range

From the mathematical analysis we get the next values:

	-
Tah	1
I u v.	1.

۲		branchi	ng ratio	char	nnel
Ç	Х	f_n	f_{β}	isotopic	isotonic
-0.872	0,135	0.119	0.881	opening	closing
0,872	7,398	0.881	0.119	opened	closed

The isotopic channel is beginning to open and isotonic channel is beginning to close when $\lambda_n \approx 0.135 \cdot \lambda_\beta$. Isotonic channel is nearly closed and isotopic channel is almost fully opened when $\lambda_n \approx 7.39 \cdot \lambda_\beta$. We have reviewed the appropriate three nuclei cases and examined both of T_s and $3T_s$ cases.

At these cases we have got the maximum of all neutron density not more than $n_n = 10^{14} \text{ cm}^{-3}$. Some details are shown on the Fig. 5. Upper lines refer to isotonic cases; the bottom lines refer to isotonic cases. The temperature dependence of half-lives we took from [4].

The typical neutron density range at neutron capture nucleosynthesis

All nuclei formation is available at a neutron density range between s-process and r-process. This process is m-process (i-process) (medium or interMediate) [7,8,9,10,11].

7. Branching in a new point of view

Ru102 isotonic closing and isotopic opening

Fig. 6. Partial formation ratio from 102 Ru *as the function of neutron density. Here we can the temperature dependence of the formation ratio as well. At* 102 Ru *there is no isomer.*

The branching factor does not give the correct formation ratio. It gives the partial formation ratio: $k = R \cdot f$. (Data from KADoNiS [12], NNDC [13].) The k is determined by f

and R, where $R = \frac{N_1 \sigma_1}{N_3 \sigma_3}$. The PFR is changing the amount of formed nuclei. The graph on Fig. 6 shows the k as a function of neutron density in the cases of ${}^{102}Ru \rightarrow {}^{103}Rh$ and ${}^{102}Ru \rightarrow {}^{104}Ru$ as well. These are both simple cases with only one incoming channel.

8. Full network model

Fig. 7. The band of neutroncapture nucleosynthesis at AGP TP phase and at IP after TP

We can see in one unified model the entire possible neutron capture and decay processes [11,14]. Here we can change the neutron density and other parameters. But more data is required here [5]. The formation of nuclei rather occurs along a band than along a path (see Fig. 7). The neutron capture band is only visible in logarithmic representation. The structure of band at Z = 50, at tin isotopes is visible on Fig. 8.

Fig. 8. The profil of neutron capture band at tin isotopes. $(n8 = 10^8 \text{ cm}^{-3})$

9. What does path mean at arbitrary neutron density?

Fig. 9. The different paths at different neutron density. The maximum values we took from isotonically (p) or isotopically (n). Here p8 and n8 refer to the $n8 = 10^8 \text{ cm}^{-3}$ neutron density.

Instead of the classical paths the paths are more like the ridge of the σN value at given neutron density, in case of the neutron capture nucleosynthesis. There is s-path, r-path and between them are the m-paths on the Fig. 9 at different neutron density by the unified model [14]. The s-path is the theoretical edge of the paths at very low neutron density.

10. Experimental constraints: tellurium and technetium and iron

The isotope anomalies at tellurium [11] and xenon [15] or the presence or absence of the technetium in AGB stars [16,17] can be explained with m-process. These depend on where the "path" is. We have found that the two "r-only" isotopes of tellurium (128 Te , 130 Te) are formed mainly in the m-process at AGB conditions [11].

The existence of 60 Fe radioisotope is also important. The stable 58 Fe is separated from 60 Fe by the unstable isotope 59 Fe. The case is the same on the Fig. 2. The third nuclei are 60 Fe. The rate equation for the 59 Fe:

$$\frac{dN_2}{dt} = n_n N_1 < \sigma v >_1 - n_n N_2 < \sigma v >_2 - \lambda_{\beta 2} N_2$$
$$\frac{dN_3}{dt} = n_n N_2 < \sigma v >_2 - n_n N_3 < \sigma v >_3 - \lambda_{\beta 3} N_3$$

Fig. 10. The ⁵⁹Co and ⁶⁰Fe abundance at different neutrondensity. The figure shows the difference beetven PFR and the branchig factor

In the case of equilibrium comes:

$$N_{3} = \frac{N_{1}\sigma_{1}}{\sigma_{3} + \frac{\lambda_{\beta3}}{n_{n}v}} \frac{\lambda_{n2}}{\lambda_{n2} + \lambda_{\beta2}} = \frac{N_{1}\sigma_{1}}{\sigma_{3} + \frac{\lambda_{\beta3}}{n_{n}v}} f_{n2} \qquad \qquad N_{3} = \frac{N_{1}\sigma_{1}}{\sigma_{3} + \frac{\lambda_{\beta3}}{n_{n}v}} \frac{x_{2}}{1 + x_{2}}$$

Because of the half-life of ⁶⁰Fe (T = 1,5 · 10⁶ y) $\frac{\lambda_{\beta 3}}{n_n v} \ll \sigma_3$, so it is negligible [18,19].

$$N_{3} = \frac{N_{1}\sigma_{1}}{\sigma_{3} + \frac{\lambda_{\beta3}}{n_{v}}} \frac{X_{2}}{1 + X_{2}} \cong \frac{N_{1}\sigma_{1}}{\sigma_{3}} \frac{X_{2}}{1 + X_{2}} = \frac{N_{1}\sigma_{1}}{\sigma_{3}} f_{n2} = N_{1}\frac{\sigma_{1}}{\sigma_{3}} f_{n2} = N_{1}\frac{13.5}{5.15} f_{n2} = N_{1} \cdot 2.62 \cdot f_{n2}$$

At a given neutron density the amount of 60 Fe is nearly three times what we get from the simple branching ratio (see Fig. 10). We used data from KADoNiS 1.0 [19].

This explains the high abundance of 60 Ni, which is four times (4.34 times) the amount of 59 Co. The formation of 60 Ni nuclei occurs mainly through the 60 Fe channel.

11. Conclusion

All experienced isotope ratios can be obtained both at 10^8 K temperature and at $3 \cdot 10^8$ K temperature at intermediate neutron density ($10^{12} - 10^{14}$ cm⁻³), so the m-process and the AGB stars are probably one of the main places of nucleosynthesis. It seems that the so-called r-nuclei can form in intermediate processes as well.

References

E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics 29 (4): 547. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547.

- [2] F. Käppeler, H. Beer and K. Wisshak, s-process nucleosynthesis-nuclear physics and the classical model: Rep. Prog. Phys. 52 (1989) 945-1013.
- [3] C. E. Rolfs, W. S. Rodney: *Cauldrons in the Cosmos*, The Univ. of Chicago Press, 1988
- [4] K. Takahashi, K. Yokoi: BETA-DECAY RATES OF HIGHLY IONIZED HEAVY ATOMS IN STELLAR INTERIORS, ATOMIC DATA AND NUCLEAR DATA TABLES 36,375-409 (1987)]
- [5] M. Kiss and Z. Trócsányi, "Phenomenological Description of Neutron Capture Cross Sections at 30 keV," ISRN Astronomy and Astrophysics, vol. 2013, Article ID 170954, 8 pages, 2013. doi:10.1155/2013/170954
- [6] D Arnett: Supernovae and Nucleosynthesis, Princeton University Press, 1996
- [7] J. J. Cowan and W. K. Rose: PRODUCTION OF ¹⁴C AND NEUTRONS IN RED GIANTS, The Astrophysical Journal, 212:149-158, 1977 February 15
- [8] R. A. Malaney, Heavy -element synthesis in AGB and post-AGB stars of low mass, Mon. Not. R. astr. Soc. (1986) 223, 709-725
- [9] M. Lugaro, A. I. Karakas Sara Bisterzo Models and observations of the s process in AGB, PoS(NIC X)034, 2008:
- [10] P. Prado, L. Dardalet, E. Heringer, C. Higgs, C. Ritter, S. Jones, M. Pignatari, M. Bertolli, P. Woodward, Falk Herwig, *i process and CEMP-s+r stars* NIC XIII. 2014
- [11] M. Kiss, PhD Thesis/Egyetemi doktori (PhD) értekezés, Debreceni Egyetem Debrecen 2012
- [12] http://www.kadonis.org/
- [13] <u>http://www.nndc.bnl.gov/astro/</u>
- [14] Kiss M., Trócsányi Z. A unified model for nucleosynthesis of heavy elements in stars, Journal of Physics: Conference Series (2010) 012024 doi:10.1088/1742-6596/202/1/012024
- [15] J. D. Gilmour and G. Turner, CONSTRAINTS ON NUCLEOSYNTHESIS FROM XENON ISOTOPES IN PRESOLAR MATERIAL, The Astrophysical Journal, 657:600Y608, 2007 March 1
- [16] T. Lebzelter, J. Hron, Technetium and the third dredge up in AGB stars I. Field stars, A&A 411, 533-542 (2003) doi: 10.1051/0004-6361:20031458
- [17] R. A. MALANEY: Production of technetium in red giants by γ-ray-induced fission, Nature 337, 718 - 720 (23 February 1989); doi:10.1038/337718a0
- [18] http://www.nndc.bnl.gov/astro/calcmacs.jsp
- [19] Kadonis 1.0: http://exp-astro.physik.uni-frankfurt.de/kadonis1.0/

Appendix

log y₁ time log y₃ nuc₁ σ₁ (mb) nuc₂ T₂ σ₃ (mb) $n_n (cm^{-3})$ σ_2 (mb) nuc₃ lg n_n (Si=6) (Si=6) unit 1. 62Ni 3,255 22,2 63Ni 100,1 Υ 66,7 64Ni 8,4 2,726 2,2E+06 6,33 2. 68Zn 2,369 20,7 69Zn 56,4 m <u>75,4</u> 70Zn 10,9 0,893 1,8E+11 11,25 3. 2,369 20,7 69Zn^m 13,76 d* 110,9 70Zn 10,9 0,893 3,5E+08 68Zn 8,54 4. 69Ga 1,358 118,7 70Ga 21,14 d 301,5 71Ga 104,6 1,176 6,4E+09 9,81 5. 74Ge 1,638 37,6 75Ge 82,78 203,2 76Ge 24,4 0,965 4,0E+11 11,61 m 6. 78Se 1,164 61,1 79Se 2,95E+05 263 80Se 38 1,49 -4,3E+04 n/a y 7. 80Se 1,49 38 81Se 18,45 <u>82,3</u> 82Se 8,4 0,757 1,2E+12 12,08 m 8. 80Se 1,49 38 81Se^m 57,28 m* <u>82,3</u> 82Se 8,4 0,757 3,8E+11 11,59 9. 79Br 0,775 622 80Br 1,77E+01 790,0 81Br 239 0,766 1,8E+12 12,25 m 622 80Br^m 0,775 4,42E+00 239 10. 79Br h* 790,0 81Br 0,766 1,2E+11 11,08 11. 84Kr 1,408 32,6 85Kr 3916,8 D 73 86Kr 4,76 0,893 4,8E+06 6,68 12. 84Kr 1.408 32.6 85Kr^m 4.48 h 78.6% 73 86Kr 4,76 0,893 1,0E+11 11.01 85Rb 0,709 234 18,642 15,7 2,2E+08 13. 86Rb d 202 87Rb 0,316 8,34 14. 92Zr 0,209 37,8 93Zr 1,53E+06 Υ 96 94Zr 27,3 0,209 1,3E+03 3,12 15. 94Zr 0,297 27,3 95Zr 64,032 D 79 96Zr 10,3 -0,496 3,8E+08 8,58 98Mo 70,5 D 10,59 16. -0,218 99Mo 2,7489 240 100Mo 80,5 -0,609 3,9E+10 17. 102Ru -0,231 151 103Ru 29,26 D 343 104Ru 154 -0,461 9,5E+10 10,98 18. 106Pd -0,42 107Pd 6,50E+06 Υ 1302 108Pd 218 -0,431 7,4E+01 244 1,87 19. 108Pd -0,431 218 109Pd 13,70012 Н 236,3 110Pd 157 -0,785 1,0E+11 11,01 20. 107Ag -0,602 787 108Ag 2,37 m <u>1788,</u>0 109Ag 793 -0,627 2,0E+14 14,29 21. 107Ag -0,602 787 108Ag^m 438 1383,0 109Ag 793 -0,627 2,6E+06 6,42 y*ec 22. 114Cd -0,333 135,3 115Cd 53,46 н 290 116Cd 76,1 -0,914 7,9E+09 9,90 23. 114Cd 115Cd^m 44,56 d 116Cd -0,333 135,3 224 76,1 -0,914 5,1E+08 8,71 24 113ln -2,103 809 114In 71,9 1308,0 115In 776 -0,754 -2,8E+13 s n/a 114In^m d* 25. 113In -2,103 809 49,51 2595 776 -0,754 -2,4E+08 115ln n/a 27,03 26. 120Sn 0,097 36,3 121Sn Н 122Sn 22,6 -0,745 9,1E+09 167 9,96 122Sn 27. 120Sn 0,097 36,3 121Sn^m 43,9 y 22% 175,4 22,6 -0,745 6,1E+05 5,79 122Sn 15,7 28. -0,745 22,6 123Sn 129,2 D 361 124Sn -0,644 3,9E+11 11,59 29. 122Sn -0,745 22,6 123Sn^m 40,06 361 124Sn 15,7 -0,644 1,8E+15 15,26 m 30. 121Sb -0,752 532 122Sb 3 D 894 123Sb 303 -0,879 9,0E+09 9,95 126Te Н 3,9E+12 31. -0,046 81,3 127Te 9,35 256,8 128Te 44,4 0,185 12,59 32 126Te -0,046 81,3 127Te^m 109 d 2,4% 668,6 128Te 44,4 0,185 1,1E+11 11,05 33. 14,2 128Te 0,185 44,4 129Te 69,6 Μ 137,5 130Te 0,22 2,4E+12 12,37

1. Isotopic equilibrium neutron density at a temperature of 10^8 K

	nuc₁	log y₁ (Si=6)	σ _ι (mb)	nuc₂	T ₂	time unit	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y ₃ (Si=6)	n _n (cm ⁻³)	lg n _n
34.	128Te	0,185	44,4	129Te ^m	33,6	d*	493,6	130Te	14,2	0,22	9,5E+08	8,98
35.	132Xe	0,086	63,8	133Xe	5,243	D	127	134Xe	21,3	-0,321	7,2E+09	9,86
36.	134Xe	-0,321	21,3	135Xe	9,14	н	65,6	136Xe	0,98	-0,405	4,7E+10	10,67
37.	140Ce	0,004	11,73	141Ce	32,508	D	76	142Ce	29,9	-0,9	5,6E+09	9,75
38.	146Nd	-0,845	91,2	147Nd	10,98	D	544	148Nd	146,6	-1,324	5,7E+09	9,75
39.	148Nd	-1,324	146,6	149Nd	17,28	Н	513,2	150Nd	156,1	-1,333	-1,9E+12	n/a
40.	150Sm	-1,717	422,3	151Sm	90	Y	3040	152Sm	464,8	-1,161	-3,7E+05	n/a
41.	152Sm	-1,161	464,8	153Sm	46,284	Н	1095	154Sm	216,9	-1,232	1,0E+10	10,01
42.	158Gd	-1,086	323,6	159Gd	18,479	Н	455,2	160Gd	178	-1,141	7,6E+10	10,88
43.	168Er	-1,168	319	169Er	9,392	D	653,0	170Er	170,2	-1,428	2,2E+09	9,35
44.	174Yb	-1,103	150,5	175Yb	4,185	D	558	176Yb	115,9	-1,5	6,7E+09	9,83
45.	184W	-1,389	225	185W	75,1	D	633	186W	226	-1,423	8,8E+09	9,94
46.	185Re	-1,717	1438,5	186Re	3,7186	D	743	187Re	1184	-1,475	-3,5E+10	n/a
47.	185Re	-1,717	1438,5	186Re ^m	2,00E+05	у*	743	187Re	1184	-1,475	-1,8E+03	n/a
48.	190Os	-0,75	278	191Os	15,4	D	1290	192Os	160	-0,558	1,4E+10	10,16
49.	191Ir	-0,607	1350	192Ir	73,827	D	2080	193Ir	994	-0,383	-1,0E+09	n/a
50.	191Ir	-0,607	1350	1921r ^m	241	y*ec	2080	193Ir	994	-0,383	-8,6E+05	n/a
51.	196Pt	-0,47	167,4	197Pt	19,8915	Н	79,7	198Pt	94	-1,015	8,6E+10	10,93
52.	202Hg	-0,996	63,3	203Hg	46,594	D	98	204Hg	42	-1,633	5,7E+10	10,76
53.	203TI	-1,265	170,5	204TI	3,78	У	215	205TI	53	-0,866	3,4E+08	8,53

2. Isotopic equilibrium neutron density at a temperature of $3 \cdot 10^8 K$

	nuc₁	log y₁ (Si=6)	σı (mb)	nuc₂	T ₂	time unit	σ ₂ (mb)	nuc₃	σ ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
1.	62Ni	3,255	22,2	63Ni	100,1	Y	66,7	64Ni	8,4	2,726	1,2E+07	7,09
2.	68Zn	2,369	20,7	69Zn	56,4	m	<u>75,4</u>	70Zn	10,9	0,893	1,8E+11	11,25
3.	68Zn	2,369	20,7	69Zn ^m	13,76	d*	110,9	70Zn	10,9	0,893	3,5E+08	8,54
4.	69Ga	1,358	118,7	70Ga	21,14	d	<u>301,5</u>	71Ga	104,6	1,176	6,4E+09	9,81
5.	74Ge	1,638	37,6	75Ge	82,78	m	203,2	76Ge	24,4	0,965	4,0E+11	11,60
6.	78Se	1,164	61,1	79Se	2,95E+05	у	263	80Se	38	1,49	-7,6E+07	n/a
7.	80Se	1,49	38	81Se	18,45	m	<u>82,3</u>	82Se	8,4	0,757	1,1E+12	12,05
8.	80Se	1,49	38	81Se ^m	57,28	m*	82,3	82Se	8,4	0,757	3,6E+11	11,55
9.	79Br	0,775	622	80Br	1,77E+01	m	<u>790,0</u>	81Br	239	0,766	1,2E+12	12,08
10.	79Br	0,775	622	80Br ^m	4,42E+00	h*	<u>790,0</u>	81Br	239	0,766	7,9E+10	10,90
11.	84Kr	1,408	32,6	85Kr	3916,8	D	73	86Kr	4,76	0,893	4,9E+06	6,69

	nuc₁	log y₁ (Si=6)	σı (mb)	nuc₂	T ₂	time unit	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y ₃ (Si=6)	n _n (cm ⁻³)	lg n _n
12.	84Kr	1,408	32,6	85Kr ^m	4,48	h 78,6%	73	86Kr	4,76	0,893	1,0E+11	11,02
13.	85Rb	0,709	234	86Rb	18,642	d	202	87Rb	15,7	0,316	2,3E+11	11,36
14.	92Zr	0,209	37,8	93Zr	1,53E+06	Y	96	94Zr	27,3	0,209	4,8E+03	3,68
15.	94Zr	0,297	27,3	95Zr	64,032	D	79	96Zr	10,3	-0,496	3,8E+08	8,58
16.	98Mo	-0,218	70,5	99Mo	2,7489	D	240	100Mo	80,5	-0,609	5,8E+10	10,76
17.	102Ru	-0,231	151	103Ru	29,26	D	343	104Ru	154	-0,461	1,1E+11	11,03
18.	106Pd	-0,42	244	107Pd	6,50E+06	Y	1302	108Pd	218	-0,431	5,2E+05	5,72
19.	108Pd	-0,431	218	109Pd	13,70012	Н	236,3	110Pd	157	-0,785	1,0E+11	11,01
20.	107Ag	-0,602	787	108Ag	2,37	m	<u>1788,0</u>	109Ag	793	-0,627	1,7E+14	14,23
21.	107Ag	-0,602	787	108Ag ^m	438	y*ec	1383,0	109Ag	793	-0,627	2,3E+06	6,36
22.	114Cd	-0,333	135,3	115Cd	53,46	Н	290	116Cd	76,1	-0,914	7,9E+09	9,90
23.	114Cd	-0,333	135,3	115Cd ^m	44,56	d	224	116Cd	76,1	-0,914	5,1E+08	8,71
24.	113In	-2,103	809	114In	71,9	s	<u>1308,0</u>	115ln	776	-0,754	-2,8E+13	n/a
25.	113In	-2,103	809	114In ^m	49,51	d*	2595	115ln	776	-0,754	-2,4E+08	n/a
26.	120Sn	0,097	36,3	121Sn	27,03	Н	167	122Sn	22,6	-0,745	4,6E+09	9,66
27.	120Sn	0,097	36,3	121Sn ^m	43,9	y 22%	175,4	122Sn	22,6	-0,745	3,0E+05	5,48
28.	122Sn	-0,745	22,6	123Sn	129,2	D	361	124Sn	15,7	-0,644	2,4E+12	12,38
29.	122Sn	-0,745	22,6	123Sn ^m	40,06	m	361	124Sn	15,7	-0,644	1,1E+16	16,04
30.	121Sb	-0,752	532	122Sb	3	D	894	123Sb	303	-0,879	3,4E+10	10,53
31.	126Te	-0,046	81,3	127Te	9,35	Н	256,8	128Te	44,4	0,185	3,4E+12	12,53
32.	126Te	-0,046	81,3	127Te ^m	109	d 2,4%	668,6	128Te	44,4	0,185	9,6E+10	10,98
33.	128Te	0,185	44,4	129Te	69,6	М	<u>137,5</u>	130Te	14,2	0,22	2,2E+12	12,35
34.	128Te	0,185	44,4	129Te ^m	33,6	d*	493,6	130Te	14,2	0,22	9,0E+08	8,95
35.	132Xe	0,086	63,8	133Xe	5,243	D	127	134Xe	21,3	-0,321	9,4E+09	9,97
36.	134Xe	-0,321	21,3	135Xe	9,14	Н	65,6	136Xe	0,98	-0,405	4,7E+10	10,67
37.	140Ce	0,004	11,73	141Ce	32,508	D	76	142Ce	29,9	-0,9	5,6E+09	9,75
38.	146Nd	-0,845	91,2	147Nd	10,98	D	544	148Nd	146,6	-1,324	5,7E+09	9,75
39.	148Nd	-1,324	146,6	149Nd	17,28	Н	513,2	150Nd	156,1	-1,333	-1,9E+12	n/a
40.	150Sm	-1,717	422,3	151Sm	90	Y	3040	152Sm	464,8	-1,161	-9,8E+06	n/a
41.	152Sm	-1,161	464,8	153Sm	46,284	Н	1095	154Sm	216,9	-1,232	1,6E+10	10,20
42.	158Gd	-1,086	323,6	159Gd	18,479	Н	455,2	160Gd	178	-1,141	7,6E+10	10,88
43.	168Er	-1,168	319	169Er	9,392	D	653,0	170Er	170,2	-1,428	2,2E+09	9,33
44.	174Yb	-1,103	150,5	175Yb	4,185	D	558	176Yb	115,9	-1,5	1,0E+10	10,00
45.	184W	-1,389	225	185W	75,1	D	633	186W	226	-1,423	9,5E+09	9,98
46.	185Re	-1,717	1438,5	186Re	3,7186	D	743	187Re	1184	-1,475	-3,8E+10	n/a
47.	185Re	-1,717	1438,5	186Re ^m	2,00E+05	y*ec	743	187Re	1184	-1,475	-1,9E+03	n/a
48.	190Os	-0,75	278	191Os	15,4	D	1290	192Os	160	-0,558	2,6E+10	10,41

	nuc₁	log y ₁ (Si=6)	σ ₁ (mb)	nuc₂	T ₂	time unit	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
49.	191Ir	-0,607	1350	192lr	73,827	D	2080	193Ir	994	-0,383	-1,4E+09	n/a
50.	191Ir	-0,607	1350	1921r ^m	2,41E+02	у*	2080	193Ir	994	-0,383	-1,2E+06	n/a
51.	196Pt	-0,47	167,4	197Pt	19,8915	Н	79,7	198Pt	94	-1,015	9,9E+10	11,00
52.	202Hg	-0,996	63,3	203Hg	46,594	D	98	204Hg	42	-1,633	8,1E+10	10,91
53.	203TI	-1,265	170,5	204TI	3,78	у	215	205TI	53	-0,866	6,8E+10	10,83

3. Isotonic equilibrium neutron density at a temperature of $10^8 \mathrm{K}$

	nuc₁	log y ₁ (Si=6)	σı (mb)	nuc₂	T ₂	time unit	σ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
1.	58Fe	3,473	13,3	44,4495	d	59Fe	26,4	59Co	40,1	3,352	-1,4E+10	n/a
2.	59Co	3,352	40,1	1925,28	d	60Co	12,64	60Ni	29,9	4,11	-1,2E+09	n/a
3.	62Ni	3,255	22,2	100,1	у	63Ni	66,7	63Cu	53,7	2,558	1,8E+07	7,26
4.	64Ni	2,726	8	2,5172	h	65Ni	<u>21,2</u>	65Cu	29	2,207	-1,2E+12	n/a
5.	65Cu	2,207	29	5,12	т	66Cu	<u>126,6</u>	66Zn	36,4	2,544	-4,2E+13	n/a
6.	68Zn	2,369	20,7	56,4	m	69Zn	<u>75,4</u>	69Ga	118,7	1,358	7,9E+12	12,90
7.	68Zn	2,369	20,7	13,76	h*	69Zn ^m	110,9	69Ga	118,7	1,358	3,7E+11	11,56
8.	70Zn	0,893	10,9	2,45	m	71Zn	<u>48,26</u>	71Ga	106,4	1,176	-3,4E+14	n/a
9.	70Zn	0,893	10,9	3,96	h	71Zn ^m	<u>48,26</u>	71Ga	106,4	1,176	-3,5E+12	n/a
10.	69Ga	1,358	118,7	21,14	m	70Ga	<u>301,5</u>	70Ge	89,1	1,387	1,6E+12	12,22
11.	71Ga	1,176	106,4	14,095	h	72Ga	267,6	72Ge	53,1	1,513	-1,7E+10	n/a
12.	74Ge	1,638	37,4	82,78	m	75Ge	203, 1	75As	355	0,817	-7,7E+11	n/a
13.	75As	0,817	355	1,0942	d	76As	469,6	76Se	168	0,748	4,9E+11	11,69
14.	78Se	1,164	61,1	2,95E+05	у	79Se	263	79Br	622	0,775	-7,8E+03	n/a
15.	80Se	1,49	38	18,45	m	81Se	<u>229</u>	81Br	239	0,766	-1,6E+12	n/a
16.	80Se	1,49	38	57,28	m*	81Se ^m	<u>229</u>	81Br	239	0,766	-5,1E+11	n/a
17.	79Br	0,775	622	17,68	m	80Br	<u>790</u>	80Kr	274	0,009	3,6E+13	13,56
18.	79Br	0,775	622	4,4205	h*	80Br ^m	<u>790</u>	80Kr	90,4	0,009	7,8E+12	12,89
19.	81Br	0,766	239	35,282	h	82Br	390,5	82Kr	93	0,716	1,0E+11	11,00
20.	84Kr	1,408	32,6	3916,8	d	85Kr	73	85Rb	234	0,709	-3,1E+07	n/a
21.	84Kr	1,408	32,6	4,78	h79%	85Kr ^m	73	85Rb	234	0,709	-6,2E+11	n/a
22.	86Kr	0,893	4,76	76,3	m	87Kr	<u>18</u>	87Rb	15,7	0,316	4,5E+12	12,65
23.	85Rb	0,709	234	18,642	d	86Rb	202	86Sr	63,5	0,365	5,6E+10	10,75
24.	87Rb	0,316	15,7	17,773	m	88Rb	<u>110</u>	88Sr	6,16	1,288	-1,5E+13	n/a
25.	88Sr	1,288	6,16	50,57	d	89Sr	19	89Y	19,3	0,667	1,0E+10	10,01

	nuc₁	log y ₁ (Si=6)	σ ₁ (mb)	nuc₂	T2	time unit	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
26.	89Y	0,667	19,3	90	у	90Y	149,9	90Zr	19,3	0,769	-1,3E+06	n/a
27.	92Zr	0,299	37,8	1,53E+06	у	93Zr	96	93Nb	265,7	0,299	-4,4E+02	n/a
28.	93Nb	-0,156	265,7	2,03E+04	у	94Nb	482	94Mo	109,6	-0,636	2,0E+09	9,30
29.	102Ru	-0,231	151	39,26	d	103Ru	343	103Rh	810	-0,463	-3,2E+10	n/a
30.	103Rh	-0,463	810	42,3	s	104Rh	154	104Pd	274	-0,818	2,2E+15	15,35
31.	103Rh	-0,463	810	4,34	m*	104Rh ^m	154	104Pd	274	-0,818	3,6E+14	14,56
32.	106Pd	-0,42	244	6,60E+06	у	107Pd	1302	107Ag	787	-0,602	-5,7E+00	n/a
33.	108Pd	-0,431	218	13,7012	h	109Pd	236,3	109Ag	793	-0,627	-1,2E+11	n/a
34.	107Ag	-0,602	787	2,37	m	108Ag	1788	108Cd	202	-1,851	6,8E+14	14,84
35.	107Ag	-0,602	787	438	у*	108Ag ^m	1383,0	108Cd	202	-1,851	9,1E+06	6,96
36.	109Ag	-0,627	793	24,6	S	110Ag	1172	110Cd	229,9	-0,701	1,1E+14	14,05
37.	109Ag	-0,627	793	249,76	d	110Ag ^m	1172	110Cd	229,9	-0,701	1,3E+08	8,11
38.	114Cd	-0,333	135,3	53,46	h	115Cd	290	115ln	776	-0,754	-2,5E+10	n/a
39.	114Cd	-0,333	135,3	44,56	d*	115Cd ^m	224	115ln	776	-0,754	-1,6E+09	n/a
40.	113In	-2,103	229	71,9	s	114In	<u>1308</u>	114Sn	134,4	-1,599	-1,3E+13	n/a
41.	113In	-2,103	580	49,51	d*	114In ^m	2595	114Sn	134,4	-1,599	8,1E+07	7,91
42.	115In	-0,754	154	14,1	S	116In	<u>1377</u>	116Sn	92,3	-0,263	-6,1E+13	n/a
43.	115In	-0,754	622	54,29	m	116In ^m	<u>1377</u>	116Sn	92,3	-0,263	6,7E+11	11,83
44.	120Sn	0,097	36,3	27,03	h	121Sn	167	121Sb	532	-0,752	-3,3E+10	n/a
45.	120Sn	0,097	36,3	43,9	у*	121Sn ^m	175,4	121Sb	532	-0,752	-2,2E+06	n/a
46.	122Sn	-0,745	22,6	129,2	d	123Sn	361	123Sb	303	-0,879	-4,0E+10	n/a
47.	122Sn	-0,745	21,7	40,06	m	123Sn ^m	361	123Sb	303	-0,879	-1,9E+14	n/a
48.	121Sb	-0,752	532	2,7238	d	122Sb	894	122Te	295,4	-0,928	2,1E+10	10,31
49.	123Sb	-0,879	303	60,11	d	124Sb	924,0	124Te	155	-0,654	3,1E+11	11,49
50.	126Te	-0,046	81,3	9,35	h	127Te	256,8	1271	662	-0,046	-2,6E+11	n/a
51.	126Te	-0,046	81,3	109	d*	127Te ^m	668,6	1271	662	-0,046	-3,6E+08	n/a
52.	1271	-0,046	662	24,99	m	1281	679,5	128Xe	262,5	0,991	-1,8E+12	n/a
53.	132Xe	0,086	63,8	5,243	d	133Xe	127	133Cs	502	-0,429	-2,7E+10	n/a
54.	133Cs	-0,429	502	2,0652	у	134Cs	724	134Ba	176	-0,963	1,5E+09	9,17
55.	138Ba	0,508	4,13	83,06	m	139Ba	39,7	139La	32,4	-0,351	-1,0E+12	n/a
56.	139La	-0,351	32,4	1,67855	d	140La	117,8	140Ce	11,73	0,004	3,3E+10	10,52
57.	140Ce	0,004	11,73	32,508	d	141Ce	76	141Pr	111,4	-0,777	-4,4E+09	n/a
58.	141Pr	-0,777	111,4	19,12	h	142Pr	361,4	142Nd	35,1	-0,65	5,4E+10	10,73
59.	150Sm	-1,717	422,3	90	у	151Sm	3040	151Eu	3556	0,35	-2,8E+05	n/a
60.	152Sm	-1,161	464,8	46,284	h	153Sm	1095	153Eu	2567	-1,294	-1,2E+10	n/a
61.	153Eu	-1,294	2557	8,59	у	154Eu	4420	154Gd	1028	-2,149	8,8E+07	7,95
62.	158Gd	-1,086	323,6	18,479	h	159Gd	455,2	159Tb	1817	-1,22	-6,3E+10	n/a

	nuc₁	log y₁ (Si=6)	σı (mb)	nuc₂	T ₂	time unit	σ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
63.	159Tb	-1,22	1817	72,3	d	160Tb	3240	160Dy	890	-2,044	3,6E+09	9,55
64.	164Dy	-0,955	212	2,334	h	165Dy	284,5	165Ho	1237	-1,051	-8,4E+11	n/a
65.	165Ho	-1,051	1237	26,83	h	166Ho	1262,0	166Er	700	-1,077	2,1E+09	9,32
66.	165Ho	-1,051	1237	1,20E+03	У	166Ho ^m	1235,3	166Er	700	-1,077	5,4E+03	3,73
67.	168Er	-1,168	319	9,392	d	169Er	653	169Tm	1065	-1,423	-2,5E+09	n/a
68.	169Tm	-1,423	1065	128,6	d	170Tm	1870	170Yb	768,3	-2,124	7,2E+08	8,86
69.	174Yb	-1,103	150,5	4,158	d	175Yb	558	175Lu	1219	-1,449	-1,1E+10	n/a
70.	176Lu	-2,959	1639	6,6475	d	177Lu	794,9	177Hf	1544	-1,545	-5,8E+09	n/a
71.	176Lu	-2,959	1639	160,44	d	177Lu ^m	348,3	177Hf	1544	-1,545	-5,5E+08	n/a
72.	176Lu	-2,959	1639	6	m	177Lu ^m	348,3	177Hf	1544	-1,545	-2,1E+13	n/a
73.	180Hf	-1,265	156,6	42,39	d	181Hf	194	181Ta	766	-1,684	-2,2E+09	n/a
74.	181Ta	-1,684	766	114,43	d	182Ta	1120	182W	285	-1,455	3,0E+06	6,48
75.	184W	-1,389	225	75,4	d	185W	633	185Re	1438,5	-1,717	-4,5E+08	n/a
76.	186W	-1,423	226	23,72	h	187W	<u>183</u>	187Re	1184	-1,475	-1,3E+11	n/a
77.	185Re	-1,717	1420	3,7186	d	186Re	743	186Os	414	-2,06	7,0E+10	10,85
78.	185Re	-1,717	18,5	2,00E+05	у*	186Re ^m	743	186Os	414	-2,06	-4,9E+02	n/a
79.	187Re	-1,475	1187	17,003	h	188Re	<u>2343</u>	188Os	294	-1,047	9,0E+09	9,96
80.	190Os	-0,75	278	15,4	d	191Os	1290	191Ir	1350	-0,607	-1,4E+09	n/a
81.	192Os	-0,558	160	30,11	h	193Os	95,6	193Ir	994	-0,383	-2,2E+11	n/a
82.	191Ir	-0,607	1350	7,38E+01	d	192Ir	2080	192Pt	483	-1,979	1,3E+10	10,10
83.	191Ir	-0,607	1350	2,41E+02	у*	1921r ^m	2080	192Pt	483	-1,979	1,1E+07	7,02
84.	193lr	-0,383	994	19,28	h	194Ir	397,8	194Pt	283	-0,356	2,2E+11	11,34
85.	196Pt	-0,47	167,4	19,8915	h	197Pt	175,4	197Au	612,8	-0,728	-1,0E+11	n/a
86.	197Au	-0,728	612,8	2,70E+00	d	198Au	840	198Hg	173	-1,46	2,5E+11	11,39
87.	202Hg	-0,996	63,3	46,594	d	203Hg	98	203TI	170,5	-1,265	-9,8E+10	n/a
88.	204Hg	-1,633	42	5,14	m	205Hg	<u>12,7</u>	205TI	52,6	-0,886	-5,6E+14	n/a
89.	203TI	-1,265	170,5	3,78	У	204TI	215	204Pb	83,7	-1,207	7,8E+07	7,89
90.	205TI	-0,866	52,6	4,2	m	206TI	<u>34,1</u>	206Pb	14,7	-0,277	-2,3E+13	n/a
91.	208Pb	0,265	0,376	3,253	h	209Pb	3,6	209Bi	2,61	-0,842	5,1E+13	13,71

4. Isotonic equilibrium neutron density at a temperature of $3 \cdot 10^8 \mathrm{K}$

	nuc₁	log y₁ (Si=6)	σı (mb	T ₂	time unit	nuc₂	σ ₂ (mb)	nuc₃	σ ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
1.	58Fe	3,473	13,3	44,4495	d	59Fe	26,4	59Co	40,1	3,352	-1,41E+10	n/a
2.	59Co	3,352	40,1	1925,28	d	60Co	12,64	60Ni	29,9	4,11	-2,85E+10	n/a
3.	62Ni	3,255	22,2	100,1	у	63Ni	66,7	63Cu	53,7	2,558	9,50E+07	7,98

	nuc₁	log y₁ (Si=6)	σı (mb	T2	time unit	nuc₂	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
4.	64Ni	2,726	8	2,5172	h	65Ni	<u>21,2</u>	65Cu	29	2,207	-1,18E+12	n/a
5.	65Cu	2,207	29	5,12	т	66Cu	<u>126,6</u>	66Zn	36,4	2,544	-4,14E+13	n/a
6.	68Zn	2,369	20,7	56,4	m	69Zn	<u>75,4</u>	69Ga	118,7	1,358	7,89E+12	12,90
7.	68Zn	2,369	20,7	13,76	h*	69Zn ^m	110,9	69Ga	118,7	1,358	3,67E+11	11,56
8.	70Zn	0,893	10,9	2,45	т	71Zn	<u>48,26</u>	71Ga	106,4	1,176	-3,37E+14	n/a
9.	70Zn	0,893	10,9	3,96	h	71Zn ^m	<u>48,26</u>	71Ga	106,4	1,176	-3,48E+12	n/a
10.	69Ga	1,358	118,7	21,14	m	70Ga	<u>301,5</u>	70Ge	89,1	1,387	1,64E+12	12,22
11.	71Ga	1,176	106,4	14,095	h	72Ga	267,6	72Ge	53,1	1,513	-7,81E+10	n/a
12.	74Ge	1,638	37,4	82,78	m	75Ge	203,1	75As	355	0,817	-7,49E+11	n/a
13.	75As	0,817	355	1,0942	d	76As	469,6	76Se	168	0,748	1,40E+13	13,15
14.	78Se	1,164	61,1	2,95E+05	у	79Se	263	79Br	622	0,775	-1,39E+07	n/a
15.	80Se	1,49	38	18,45	m	81Se	<u>229</u>	81Br	239	0,766	-1,48E+12	n/a
16.	80Se	1,49	38	57,28	m*	81Se ^m	<u>229</u>	81Br	239	0,766	-4,78E+11	n/a
17.	79Br	0,775	622	17,68	m	80Br	<u>790</u>	80Kr	274	0,009	2,42E+13	13,38
18.	79Br	0,775	622	4,4205	h*	80Br ^m	<u>790</u>	80Kr	90,4	0,009	5,15E+12	12,71
19.	81Br	0,766	239	35,282	h	82Br	390,5	82Kr	93	0,716	1,05E+12	12,02
20.	84Kr	1,408	32,6	3916,8	d	85Kr	73	85Rb	234	0,709	-3,23E+07	n/a
21.	84Kr	1,408	32,6	4,78	h79%	85Kr ^m	73	85Rb	234	0,709	-6,35E+11	n/a
22.	86Kr	0,893	4,76	76,3	m	87Kr	<u>18</u>	87Rb	15,7	0,316	4,48E+12	12,65
23.	85Rb	0,709	234	18,642	d	86Rb	202	86Sr	63,5	0,365	5,60E+10	10,75
24.	87Rb	0,316	15,7	17,773	m	88Rb	<u>110</u>	88Sr	6,16	1,288	-1,14E+13	n/a
25.	88Sr	1,288	6,16	50,57	d	89Sr	19	89Y	19,3	0,667	1,03E+10	10,01
26.	89Y	0,667	19,3	90	у	90Y	149,9	90Zr	19,3	0,769	-1,26E+06	n/a
27.	92Zr	0,299	37,8	1,53E+06	у	93Zr	96	93Nb	265,7	0,299	-1,58E+03	n/a
28.	93Nb	-0,156	265,7	2,03E+04	у	94Nb	482	94Mo	109,6	-0,636	4,04E+10	10,61
29.	102Ru	-0,231	151	39,26	d	103Ru	343	103Rh	810	-0,463	-3,59E+10	n/a
30.	103Rh	-0,463	810	42,3	S	104Rh	154	104Pd	274	-0,818	1,73E+15	15,24
31.	103Rh	-0,463	810	4,34	m*	104Rh ^m	154	104Pd	274	-0,818	2,80E+14	14,45
32.	106Pd	-0,42	244	6,60E+06	у	107Pd	1302	107Ag	787	-0,602	-4,02E+04	n/a
33.	108Pd	-0,431	218	13,7012	h	109Pd	236,3	109Ag	793	-0,627	-1,24E+11	n/a
34.	107Ag	-0,602	787	2,37	m	108Ag	<u>1788</u>	108Cd	202	-1,851	5,96E+14	14,77
35.	107Ag	-0,602	787	438	у*	108Ag ^m	1383,0	108Cd	202	-1,851	7,92E+06	6,90
36.	109Ag	-0,627	793	24,6	s	110Ag	1172	110Cd	229,9	-0,701	1,03E+14	14,01
37.	109Ag	-0,627	793	249,76	d	110Ag ^m	1172	110Cd	229,9	-0,701	1,18E+08	8,07
38.	114Cd	-0,333	135,3	53,46	h	115Cd	290	115ln	776	-0,754	-2,47E+10	n/a

	nuc₁	log y₁ (Si=6)	σı (mb	T2	time unit	nuc₂	σ ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
39.	114Cd	-0,333	135,3	44,56	d*	115Cd ^m	224	115ln	776	-0,754	-1,60E+09	n/a
40.	113In	-2,103	229	71,9	s	114In	<u>1308</u>	114Sn	134,4	-1,599	-1,26E+13	n/a
41.	113In	-2,103	580	49,51	d*	114In ^m	2595	114Sn	134,4	-1,599	8,07E+07	7,91
42.	115In	-0,754	154	14,1	s	116ln	<u>1377</u>	116Sn	92,3	-0,263	-5,91E+13	n/a
43.	115In	-0,754	622	54,29	m	116In ^m	<u>1377</u>	116Sn	92,3	-0,263	6,51E+11	11,81
44.	120Sn	0,097	36,3	27,03	h	121Sn	167	121Sb	532	-0,752	-2,40E+10	n/a
45.	120Sn	0,097	36,3	43,9	у*	121Sn ^m	175,4	121Sb	532	-0,752	-1,60E+06	n/a
46.	122Sn	-0,745	22,6	129,2	d	123Sn	361	123Sb	303	-0,879	-3,00E+11	n/a
47.	122Sn	-0,745	21,7	40,06	m	123Sn ^m	361	123Sb	303	-0,879	-1,40E+15	n/a
48.	121Sb	-0,752	532	2,7238	d	122Sb	894	122Te	295,4	-0,928	7,76E+10	10,89
49.	123Sb	-0,879	303	60,11	d	124Sb	924,0	124Te	155	-0,654	5,00E+11	11,70
50.	126Te	-0,046	81,3	9,35	h	127Te	256,8	1271	662	-0,046	-2,23E+11	n/a
51.	126Te	-0,046	81,3	109	d*	127Te ^m	668,6	1271	662	-0,046	-3,06E+08	n/a
52.	1271	-0,046	662	24,99	m	1281	679,5	128Xe	262,5	0,991	-1,83E+12	n/a
53.	132Xe	0,086	63,8	5,243	d	133Xe	127	133Cs	502	-0,429	-3,64E+10	n/a
54.	133Cs	-0,429	502	2,0652	у	134Cs	724	134Ba	176	-0,963	9,52E+10	10,98
55.	138Ba	0,508	4,13	83,06	m	139Ba	39,7	139La	32,4	-0,351	-1,02E+12	n/a
56.	139La	-0,351	32,4	1,67855	d	140La	117,8	140Ce	11,73	0,004	4,11E+10	10,61
57.	140Ce	0,004	11,73	32,508	d	141Ce	76	141Pr	111,4	-0,777	-4,35E+09	n/a
58.	141Pr	-0,777	111,4	19,12	h	142Pr	361,4	142Nd	35,1	-0,65	3,60E+10	10,56
59.	150Sm	-1,717	422,3	90	у	151Sm	3040	151Eu	3556	0,35	-7,31E+06	n/a
60.	152Sm	-1,161	464,8	46,284	h	153Sm	1095	153Eu	2567	-1,294	-1,81E+10	n/a
61.	153Eu	-1,294	2557	8,59	у	154Eu	4420	154Gd	1028	-2,149	1,08E+10	10,03
62.	158Gd	-1,086	323,6	18,479	h	159Gd	455,2	159Tb	1817	-1,22	-6,09E+10	n/a
63.	159Tb	-1,22	1817	72,3	d	160Tb	3240	160Dy	890	-2,044	2,52E+11	11,40
64.	164Dy	-0,955	212	2,334	h	165Dy	284,5	165Ho	1237	-1,051	-8,43E+11	n/a
65.	165Ho	-1,051	1237	26,83	h	166Ho	1262,0	166Er	700	-1,077	1,16E+10	10,07
66.	165Ho	-1,051	1237	1,20E+03	у	166Ho ^m	1235,3	166Er	700	-1,077	3,03E+04	4,48
67.	168Er	-1,168	319	9,392	d	169Er	653	169Tm	1065	-1,423	-2,40E+09	n/a
68.	169Tm	-1,423	1065	128,6	d	170Tm	1870	170Yb	768,3	-2,124	7,95E+08	8,90
69.	174Yb	-1,103	150,5	4,158	d	175Yb	558	175Lu	1219	-1,449	-1,64E+10	n/a
70.	176Lu	-2,959	1639	6,6475	d	177Lu	794,9	177Hf	1544	-1,545	-8,18E+09	n/a
71.	176Lu	-2,959	1639	160,44	d	177Lu ^m	348,3	177Hf	1544	-1,545	-7,73E+08	n/a
72.	176Lu	-2,959	1639	6	m	177Lu ^m	348,3	177Hf	1544	-1,545	-2,98E+13	n/a
73.	180Hf	-1,265	156,6	42,39	d	181Hf	194	181Ta	766	-1,684	-5,63E+10	n/a
74.	181Ta	-1,684	766	114,43	d	182Ta	1120	182W	285	-1,455	5,21E+08	8,72
75.	184W	-1,389	225	75,4	d	185W	633	185Re	1438,5	-1,717	-4,83E+08	n/a

	nuc₁	log y₁ (Si=6)	σı (mb	T ₂	time unit	nuc₂	σ₂ (mb)	nuc₃	σ₃ (mb)	log y₃ (Si=6)	n _n (cm ⁻³)	lg n _n
76.	186W	-1,423	226	23,72	h	187W	<u>183</u>	187Re	1184	-1,475	-1,41E+11	n/a
77.	185Re	-1,717	1420	3,7186	d	186Re	743	186Os	414	-2,06	7,48E+10	10,87
78.	185Re	-1,717	18,5	2,00E+05	у*	186Re ^m	743	186Os	414	-2,06	-5,23E+02	n/a
79.	187Re	-1,475	1187	17,003	h	188Re	<u>2343</u>	188Os	294	-1,047	9,50E+09	9,98
80.	190Os	-0,75	278	15,4	d	191Os	1290	191Ir	1350	-0,607	-2,58E+09	n/a
81.	192Os	-0,558	160	30,11	h	193Os	95,6	193lr	994	-0,383	-2,05E+11	n/a
82.	191Ir	-0,607	1350	7,38E+01	d	192lr	2080	192Pt	483	-1,979	1,76E+10	10,24
83.	191Ir	-0,607	1350	2,41E+02	у*	1921r ^m	2080	192Pt	483	-1,979	1,47E+07	7,17
84.	193lr	-0,383	994	19,28	h	194Ir	397,8	194Pt	283	-0,356	3,47E+11	11,54
85.	196Pt	-0,47	167,4	19,8915	h	197Pt	175,4	197Au	612,8	-0,728	-1,19E+11	n/a
86.	197Au	-0,728	612,8	2,70E+00	d	198Au	840	198Hg	173	-1,46	9,52E+11	11,98
87.	202Hg	-0,996	63,3	46,594	d	203Hg	98	203TI	170,5	-1,265	-1,40E+11	n/a
88.	204Hg	-1,633	42	5,14	m	205Hg	<u>12,7</u>	205TI	52,6	-0,886	-5,59E+14	n/a
89.	203TI	-1,265	170,5	3,78	у	204TI	215	204Pb	83,7	-1,207	1,55E+10	10,19
90.	205TI	-0,866	52,6	4,2	m	206TI	34,1	206Pb	14,7	-0,277	-2,32E+13	n/a
91.	208Pb	0,265	0,376	3,253	h	209Pb	3,6	209Bi	2,61	-0,842	5,10E+13	13,71

Legend

n/a: not all third nuclei can be achieved in that process

log y_i: D. Arnett: Supernovae and Nucleosynthesis, Princeton University Press, 1996

at σ_i :

normal: KADoNiS 0.3 (MACS)

italic: B. Pritychenko,* S.F. Mughabghab: Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

underlined: http://adg.llnl.gov/Research/RRSN/aemr/30kev/rath00_7.4.30kev_calc