Nuclear reactions in astrophysics
Pierre Descouvemont Université Libre de Bruxelles Brussels, Belgium

Content of the lectures

1. Introduction
2. Reaction networks
3. Needs for astrophysics
4. Specificities of nuclear astrophysics
5. Low-energy cross sections
6. Definitions
7. General properties
8. S-factor
9. Reaction rates
10. Definitions
11. Gamow peak
12. Resonant and non-resonant rates
13. General scattering theory (simple case: spins 0 , no charge, single channel)
14. Different models
15. Optical model
16. Scattering amplitude and cross sections
17. Phase-shift method
18. Resonances
19. Generalizations: Coulomb interaction, absorption, non-zero spins

5. Models used in nuclear astrophysics

1. Brief overview
2. The potential model : Radiative-capture reactions
3. The R-matrix method
4. Microscopic models

1. Introduction

1. Introduction

Goal of nuclear astrophysics: understand the abundances of the elements

- Iron peak (very stable)

1. Introduction

- Years ~ 1940-50: Hoyle, Gamow

Role of nuclear reactions in stars

- Energy production
- Nucleosynthesis (Hoyle state in ${ }^{12} \mathrm{C}$)
- 1957: B2FH: Burbidge, Burbidge, Fowler, Hoyle (Rev. Mod. Phys. 29 (1957) 547) Wikipedia site: http://en.wikipedia.org/wiki/B\�\�FH

Cycles: pp chain: converts $4 p \rightarrow{ }^{4} \mathrm{He}$
CNO cycle: converts $4 p \rightarrow{ }^{4} \mathrm{He}$ (via ${ }^{12} \mathrm{C}$)
s (slow) process: (n, γ) capture followed by β decay
r (rapid) process: several (n, γ) captures
p (proton) process: (p, γ) capture

- Nucleosynthesis:

Primordial (Bigbang): 3 first minutes of the Universe Stellar: star evolution, energy production

- Essentially two (experimental) problems in nuclear astrophysics Low energies \rightarrow very low cross sections (Coulomb barrier) Need for radioactive beams
\rightarrow in most cases a theoretical support is necessary (data extrapolation)

1. Introduction

Reaction networks: set of equations with abundances of nucleus m: Y_{m}

$$
\begin{aligned}
\frac{d Y_{m}}{d t}= & -\lambda_{m} Y_{m} & & \text { Destruction of } \mathrm{m} \text { by } \beta \text { decay: } \lambda_{\mathrm{m}}=1 / \tau_{\mathrm{m}} \\
& +\sum_{k} \lambda_{k}^{(m)} Y_{k} & & \rightarrow \text { Production of } \mathrm{m} \text { by } \beta \text { decay from elements } \mathrm{k} \\
& -\sum_{k} Y_{m} Y_{k}[m k]^{(m+k)} & & \rightarrow \text { Destruction of } \mathrm{m} \text { by reaction with } \mathrm{k} \\
& +\sum_{k, l} Y_{k} Y_{l}[k l]^{(m)} & & \rightarrow \text { Production of } \mathrm{m} \text { by reaction } \mathrm{k}+1 \rightarrow \mathrm{~m}
\end{aligned}
$$

In practice:

- Many reactions are involved (no systematics)
- σ must be known at very low energies \rightarrow very low cross sections
- Reactions with radioactive elements are needed
- At high temperatures: high level densities \rightarrow properties of many resonances needed

1. Introduction

Specificities of nuclear astrophysics

- low energies (far below the Coulomb barrier)
\rightarrow small cross sections
(in general not accessible in laboratories at stellar energies)
\rightarrow low angular momenta (selection of resonances)
- radioactive nuclei
\rightarrow need for radioactive beams (${ }^{7} \mathrm{Be},{ }^{13} \mathrm{~N},{ }^{18} \mathrm{~F}, \ldots$)
- different types of reactions:
- transfer (α, n), (α, p), (p, α), etc...
- radiative-capture: $(p, \gamma),(\alpha, \gamma),(n, \gamma)$, etc...
- weak processes: $p+p \rightarrow d+e^{+}+v$
- fusion: ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$, etc.
- different situations
- capture, transfer
- resonant, non resonant
- low level density (light nuclei), high level density (heavy nuclei)
- peripheral, internal processes
\rightarrow different approaches, for theory and for experiment

1. Introduction

Some key reactions

- $\mathrm{d}(\alpha, \gamma)^{6} \mathrm{Li},{ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$: Big-Bang
- Triple $\alpha,{ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$: He burning
- ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$: solar neutrino problems
- ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$: nova nucleosynthesis
- Etc...

2. Low-energy cross sections

- Definitions
- General properties
- S-factor

2. Low-energy cross sections

Types of reactions: general definitions valid for all models

Type	Example	Origin
Transfer	${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 \mathrm{p}\right) \alpha$	Strong
Radiative capture	${ }^{2} \mathrm{H}(\mathrm{p}, \gamma)^{3} \mathrm{He}$	Electromagnetic
Weak capture	$\mathrm{p}+\mathrm{p} \rightarrow \mathrm{d}+\mathrm{e}^{+}+\mathrm{v}$	Weak

2. Low-energy cross sections

- Transfer: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}\left(\sigma_{\mathrm{t}}\right.$, strong interaction, example: $\left.{ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}\right)$

$$
\sigma_{t, c \rightarrow c^{\prime}}(E)=\frac{\pi}{k^{2}} \sum_{J \pi} \frac{2 J+1}{\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)}\left|U_{c c^{\prime}}^{J \pi}(E)\right|^{2}
$$

$U_{c c^{\prime}}^{J \pi}(E)=$ collision (scattering) matrix (obtained from scattering theory \rightarrow various models) $c, c^{\prime}=$ entrance and exit channels

Transfer reaction:

Nucleons are transfered

Compound nucleus, ex: ${ }^{5} \mathrm{Li}$

2. Low-energy cross sections

- Radiative capture : $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\gamma\left(\sigma_{\mathrm{C}}\right.$, electromagnetic interaction, example: $\left.{ }^{12} \mathrm{C}(\mathrm{p}, \gamma){ }^{13} \mathrm{~N}\right)$

$$
\sigma_{C}^{J_{f} \pi_{f}}(E) \sim \sum_{\lambda} \sum_{J_{i} \pi_{i}} k_{\gamma}^{2 \lambda+1}\left|<\Psi_{f}^{J^{\pi} \pi_{f}}\left\|\mathcal{M}_{\lambda}\right\| \Psi^{J_{i} \pi_{i}}(E)>\right|^{2}
$$

$J_{f} \pi_{f}=$ final state of the compound nucleus C $\Psi^{J_{i} \pi_{i}}(E)=$ initial scattering state of the system (A+B)
$\mathcal{M}_{\lambda \mu}=$ electromagnetic operator (electric or magnetic): $\mathcal{M}_{\lambda \mu} \sim \operatorname{er} r^{\lambda} Y_{\lambda}^{\mu}\left(\Omega_{r}\right)$

Capture reaction:
A photon is emitted

Long wavelength approximation:
Wave number $k_{\gamma}=E_{\gamma} / \hbar c$, wavelength: $\lambda_{\gamma}=2 \pi / k_{\gamma}$
Typical value: $E_{\gamma}=1 \mathrm{MeV}, \lambda_{\gamma} \approx 1200 \mathrm{fm} \gg$ typical dimensions of the system (R)
$\rightarrow k_{\gamma} R \ll 1=$ Long wavelength approximation

2. Low-energy cross sections

A +B threshold, ex: ${ }^{12} \mathrm{C}+\mathrm{p}$
final states $E_{f}<0$, specific $J_{f} \pi_{f}$

$$
\sigma_{C}^{J_{f} \pi_{f}}(E) \sim \sum_{J_{i} \pi_{i}} \sum_{\lambda} k_{\gamma}^{2 \lambda+1}\left|<\Psi^{J_{f} \pi_{f}}\left\|\mathcal{M}_{\lambda}\right\| \Psi^{J_{i} \pi_{i}}(E)>\right|^{2}
$$

- $k_{\gamma}=\left(E-E_{f}\right) / \hbar c=$ photon wave number
- In practice
- Summation over λ limited to 1 term (often E1, or E2/M1 if E1 is forbidden)

$$
\frac{E 2}{E 1} \sim\left(k_{\gamma} R\right)^{2} \ll 1 \text { (from the long wavelength approximation) }
$$

- Summation over $J_{i} \pi_{i}$ limited by selection rules

$$
\begin{aligned}
& \left|J_{i}-J_{f}\right| \leq \lambda \leq J_{i}+J_{f} \\
& \pi_{i} \pi_{f}=(-1)^{\lambda} \text { for electric, } \pi_{i} \pi_{f}=(-1)^{\lambda+1} \text { for magnetic }
\end{aligned}
$$

2. Low-energy cross sections

Example 1: ${ }^{8} \mathrm{Be}(\alpha, \gamma){ }^{12} \mathrm{C}$

- Initial partial wave $J_{i}=0^{+}$(includes the Hoyle state.
- E2 dominant (E1 forbidden in $\mathrm{N}=\mathrm{Z}$)
- \rightarrow essentially the $J_{f}=2^{+}$state is populated.

2. Low-energy cross sections

Example 2: ${ }^{14} \mathrm{~N}(\mathrm{p}, \gamma)^{15} \mathrm{O}$

E (all J_{i} values)

- Spin of ${ }^{14} \mathrm{~N}: I_{1}=1^{+}$, proton $I_{2}=1 / 2^{+}$
- Channel spin I:

$$
\begin{aligned}
& \quad\left|I_{1}-I_{2}\right| \leq I \leq I_{1}+I_{2} \\
& \rightarrow I=1 / 2,3 / 2
\end{aligned}
$$

- Orbital momentum ℓ

$$
|I-\ell| \leq J_{i} \leq I+\ell
$$

- At low energies, $\ell=0$ is dominant $\rightarrow J_{i}=$ $1 / 2^{+}, 3 / 2^{+}$
- multipolarity E1 \rightarrow transitions to $J_{f}=$ $1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}$
- Resonance $1 / 2^{+}$determines the cross section

2. Low-energy cross sections

Example $3:{ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O},{ }^{15} \mathrm{~N}(\mathrm{p}, \gamma)^{16} \mathrm{O},{ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)^{12} \mathrm{C}$

2. Low-energy cross sections

- Weak capture $\left(p+p \rightarrow d+v+e^{-}\right)$: tiny cross section
\rightarrow no measurement (only calculations)

$$
\sigma_{W}^{J_{f} \pi_{f}}(E) \sim \sum_{J_{i} \pi_{i}}\left|<\Psi^{J_{f} \pi_{f}}\left\|O_{\beta}\right\| \Psi_{i}^{J_{i} \pi_{i}}(E)>\right|^{2}
$$

- Calculations similar to radiative capture
- $O_{\beta}=$ Fermi $\left(\sum_{i} t_{i \pm}\right)$ and Gamow-Teller $\left(\sum_{i} t_{i \pm} \sigma_{i}\right)$ operators
- ${ }^{3} \mathrm{He}+\mathrm{p} \rightarrow{ }^{4} \mathrm{He}+\mathrm{v}+\mathrm{e}^{-}$: produces high-energy neutrinos (more than tiny!)

2. Low-energy cross sections

- Fusion: similar to transfer, but with many output channels
\rightarrow statistical treatment
\rightarrow optical potentials

experimental cross section
Satkowiak et al. PRC 26 (1982) 2027

2. Low-energy cross sections

General properties (common to all reactions)

Scattering energy E: wave function $\Psi_{i}(E)$ common to all processes

Reaction threshold

- Cross sections dominated by Coulomb effects Sommerfeld parameter $\eta=Z_{1} Z_{2} e^{2} / \hbar v$
- Coulomb functions at low energies

$$
\begin{aligned}
& F_{\ell}(\eta, x) \rightarrow \exp (-\pi \eta) \mathcal{F}_{\ell}(x), \\
& G_{\ell}(\eta, x) \rightarrow \exp (\pi \eta) \mathcal{G}_{\ell}(x)
\end{aligned}
$$

- Coulomb effect: strong E dependence : $\exp (2 \pi \eta)$ neutrons: $\sigma(E) \sim 1 / v$
- Strong ℓ dependence

Centrifugal term: $\sim \frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{r^{2}}$
\rightarrow stronger for nucleons $(\mu \approx 1)$ than for $\alpha(\mu \approx 4)$

2. Low-energy cross sections

General properties: specificities of the entrance channel \rightarrow common to all reactions

- All cross sections (capture, transfer) involve a summation over $\ell: \sigma(E)=\sum_{\ell} \sigma_{\ell}(E)$
- The partial cross sections $\sigma_{\ell}(E)$ are proportional to the penetration factor

$$
P_{\ell}(E)=\frac{k a}{F_{\ell}(k a)^{2}+G_{\ell}(k a)^{2}}(a=\text { typical radius })
$$

Consequences

- $\ell>0$ are often negligible at low energies
- $\ell=\ell_{\text {min }}$ is dominant (often $\ell_{\text {min }}=0$)
- For $\ell=0, P_{0}(E) \sim \exp (-2 \pi \eta)$

Astrophysical S factor: $S(E)=\sigma(E) E \exp (2 \pi \eta)$ (Units: $\left.\mathrm{E}^{*} \mathrm{~L}^{2}: \mathrm{MeV}-\mathrm{barn}\right)$

- removes the coulomb dependence \rightarrow only nuclear effects
- weakly depends on energy $\rightarrow \sigma(E) \approx S_{0} \exp (-2 \pi \eta) / E$ (any reaction at low E)

2. Low-energy cross sections

$$
\text { non resonant: } S(E)=\sigma(E) E \exp (2 \pi \eta)
$$

Example: ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7}$ Be reaction

- Cross section $\sigma(\mathrm{E})$ Strongly depends on energy
- Logarithmic scale
S factor
- Coulomb effects removed
- Weak energy dependence
- Linear scale

2. Low-energy cross sections

Resonant cross sections: Breit-Wigner form

$$
\sigma_{R}(E) \approx \frac{\pi}{k^{2}} \frac{\left(2 J_{R}+1\right)}{\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)} \frac{\Gamma_{1}(E) \Gamma_{2}(E)}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4}
$$

- $J_{R}, E_{R}=s p i n$, energy of the resonance
- Valid for any process (capture, transfer)
- Valid for a single resonance \rightarrow several resonances need to be added (if necessary)
- $\Gamma_{1}=$ Partial width in the entrance channel (strongly depends on E, ℓ)
$\Gamma_{1}(E)=2 \gamma_{1}^{2} P_{\ell}(E)$ with $\gamma_{1}^{2}=$ reduced width (does not depend on E)

$$
P_{\ell}(E) \sim \exp (-2 \pi \eta)
$$

A resonance at low energies is always narrow (role of $P_{\ell}(E)$)

- $\Gamma_{2}=$ Partial width in the exit channel (weakly depends on E, ℓ)
- Transfer: $\Gamma_{2}(E)=2 \gamma_{2}^{2} P_{\ell_{f}}(E+Q)$ (in general $Q \gg E \rightarrow P_{\ell_{f}}(E+Q)$ almost constant)
- Capture: $\Gamma_{2}(E) \sim\left(E-E_{f}\right)^{2 \lambda+1} B(E \lambda) \rightarrow$ weak energy dependence
- $\quad \mathrm{S}$ factor near a resonance $S(E)=\sigma(E) E \exp (2 \pi \eta)$

$$
S_{R}(E) \sim \frac{\gamma_{1}^{2} \Gamma_{2}}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4} P_{\ell}(E) \exp (2 \pi \eta) \text { Almost constant }
$$

2. Low-energy cross sections

Note: BW is an approximation

- Neglects background, external capture
- Assumes an isolated resonance
- Is more accurate near the resonance energy

2. Low-energy cross sections

${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}$: isolated resonance in a transfer reaction

3/2+ resonance:

- Entrance channel: spin $S=1 / 2,3 / 2$, parity $+\rightarrow \ell=0,2$
- Exit channel: spin $\mathrm{S}=1 / 2$, parity $+\rightarrow \ell=1$

2. Low-energy cross sections

Breit Wigner approximation

$$
\sigma_{d p}(E) \approx \frac{\pi}{k^{2}} \frac{\left(2 J_{R}+1\right)}{\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)} \frac{\Gamma_{d}(E) \Gamma_{p}(E)}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4}
$$

2. Low-energy cross sections

Two comments: 1. Selection of the main resonances
2. Going beyond the Breit-Wigner approximation

1. Selection of the main resonances

$\left.{ }^{11} \mathrm{C}(\mathrm{p}, \gamma)\right)^{12 \mathrm{~N}}\left(\right.$ spin $\left.{ }^{11} \mathrm{C}=3 / 2^{-}\right)$

- Resonance 2: $\ell=0$, E1
- Resonance $2^{+}: \ell=1$, E2/M1 \rightarrow negligible

$$
{ }^{18} \mathrm{~F}(p, \alpha)^{15} \mathrm{O} \quad\left(\operatorname{spin}^{18} \mathrm{~F}=1^{+}\right)
$$

- Many resonances
- Only $\ell=0$ resonances are important $\rightarrow J=1 / 2^{+}, 3 / 2^{+}$only
\rightarrow In general a small number of resonances play a role

2. Low-energy cross sections

2. Going beyond the Breit-Wigner approximation

- How to go beyond the BW approximation?
- Problem of vocabulary
- Direct capture
- External capture
- Non-resonant capture = « direct » capture
\rightarrow confusion!
- External capture $\sigma(E)=\left|M_{i n t}+M_{\text {ext }}\right|^{2}$

With $\quad \sigma_{B W}(E)=\left|M_{\text {int }}\right|^{2}$
$M_{\text {ext }} \sim C$, with C=Asymptotic Normalization Constant (ANC) is needed

- Non resonant capture : $\sigma(E)=\sum_{\ell} \sigma_{\ell}(E)=\sigma_{R}(E)+\sum_{\ell \neq \ell_{R}} \sigma_{\ell}(E)$
\rightarrow scanning the resonance is necessary

2. Low-energy cross sections

Many different situations

- Transfer cross sections (strong interaction)
- Non resonant:
${ }^{6} \mathrm{Li}(\mathrm{p}, \alpha)^{3} \mathrm{He}$
- Resonant, with $\ell_{\mathrm{R}}=\ell_{\text {min }}$:
${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p}) \alpha$
- Resonant, with $\ell_{\mathrm{R}}>\ell_{\text {min }}$:
${ }^{11} \mathrm{~B}(\mathrm{p}, \alpha)^{8} \mathrm{Be}$
- Multiresonance:
${ }^{22} \mathrm{Ne}(\alpha, \mathrm{n}){ }^{25} \mathrm{Mg}$
- Capture cross sections (electromagnetic interaction)
- Non resonant:
${ }^{6} \mathrm{Li}(\mathrm{p}, \gamma)^{7} \mathrm{Be}$
- Resonant, with $\ell_{\mathrm{R}}=\ell_{\text {min }}$:
- Resonant, with $\ell_{\mathrm{R}}>\ell_{\text {min }}$:
- Multiresonance:
- Subthreshold state:
- Weak capture cross sections (weak interaction
- Non resonant

2. Low-energy cross sections

Subthreshlod states $2^{+}, 1^{-}$

3. Reaction rates

1. Definitions
2. Gamow peak
3. Non-resonant rates
4. Resonant rates

3. Reaction rates

1. Definition

Quantity used in astrophysics: reaction rate (integarl over the energy E)

$$
N_{A}<\sigma v>=N_{A} \int \sigma(E) v N(E, T) d E
$$

- Definition valid for resonant and non-resonant reactions
- $N_{A}=$ Avogadro number
- $T=$ temperature, $v=$ velocity, $k_{B}=$ Boltzmann constant $\left(k_{B} \sim \frac{1}{11.6} \mathrm{MeV} / 10^{9} \mathrm{~K}\right)$
- $N(E, T)=\left(\frac{8 E}{\pi \mu m_{N}\left(k_{B} T\right)^{3}}\right)^{1 / 2} \exp \left(-\frac{E}{k_{B} T}\right)=$ Maxwell-Boltzmann distribution
- $\frac{1}{N_{A}<\sigma v>}=$ typical reaction time
- 2 approaches
- numerical
- analytical: non-resonant and resonant reactions treated separately
\rightarrow essentially two energy dependences: $\quad \exp \left(-\frac{E}{k_{B} T}\right)$: decreases with E $\exp (-2 \pi \eta)$: increases with E

3. Reaction rates

2. The Gamow peak

Defines the energy range relevant for the reaction rate (non-resonant reactions)
Linear scale
Logarithmic scale

Ecm

Gamow peak (\sim Gaussian, depends on T)

Gamow peak: $\quad E_{0}=0.122 \mu^{1 / 3}\left(Z_{1} Z_{2} T_{9}\right)^{2 / 3} \mathrm{MeV}$: lower than the Coulomb barrier increases with T

$$
\Delta E_{0}=0.237 \mu^{1 / 6}\left(Z_{1} Z_{2}\right)^{1 / 3} T_{9}^{5 / 6} \mathrm{MeV}
$$

$=$ Energy range where $\sigma(E)$ must be known ($T_{9}=T$ in $\left.10^{9} \mathrm{~K}\right)$

3. Reaction rates

Examples

Reaction	$\mathrm{T}\left(10^{9} \mathrm{~K}\right)$	$\mathrm{E}_{0}(\mathrm{MeV})$	$\Delta \mathrm{E}_{0}(\mathrm{MeV})$	$\mathrm{E}_{\text {coul }}(\mathrm{MeV})$	$\sigma\left(\mathrm{E}_{0}\right) / \sigma\left(\mathrm{E}_{\text {coul }}\right)$
$\mathrm{d}+\mathrm{p}$	0.015	0.006	0.007	0.3	10^{-4}
${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He}$	0.015	0.021	0.012	1.2	10^{-13}
$\alpha+{ }^{12} \mathrm{C}$	0.2	0.3	0.17	3	10^{-11}
${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$	1	2.4	1.05	7	10^{-10}

- $E_{0} / E_{\text {coul }} \approx 0.3 T_{9}^{2 / 3}(\mathrm{p}$ and $\alpha)$
\square At low $T_{9}, E_{0} \ll E_{\text {coul }}$ (coulomb barrier)
\square Very low cross sections at stellar temperatures (different for neutrons: no barrier)

3. Reaction rates

3. Non-resonant reaction rates

- Approximation: Taylor expansion about the minimum $E=E_{0}: 2 \pi \eta+E / k_{B} T \approx c_{0}+\left(\frac{E-E_{0}}{2 \Delta E_{0}}\right)^{2}$

$$
\text { Then }<\sigma v>\approx\left(\frac{8}{\pi \mu m_{N}\left(k_{B} T\right)^{3}}\right)^{1 / 2} \exp \left(-3 \frac{E_{0}}{k_{B} T}\right) \int S(E) \exp \left(-\left(\frac{E-E_{0}}{2 \Delta E_{0}}\right)^{2}\right) d E
$$

- $S(E)$ is assumed constant $\left(=S\left(E_{0}\right)\right)$ in the Gamow peak

$$
\rightarrow\langle\sigma v\rangle \sim S\left(E_{0}\right) \exp \left(-3 \frac{E_{0}}{k_{B} T}\right) / T^{2 / 3} \text {, with } \mathrm{E}_{0}=0.122 \mu^{1 / 3}\left(Z_{1} Z_{2} T_{9}\right)^{2 / 3} \mathrm{MeV}
$$

3. Reaction rates

4. Resonant reaction rates

- General definition: $N_{A}\langle\sigma v\rangle=N_{A} \int \sigma(E) v N(E, T) d E$
here $\sigma(E)$ is given by the Breit-Wigner approximation

$$
\sigma(E) \approx \frac{\pi}{k^{2}} \frac{\left(2 J_{R}+1\right)}{\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)} \frac{\Gamma_{1}(E) \Gamma_{2}(E)}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4}
$$

- This provides

$$
\begin{aligned}
& <\sigma v>_{R}=\left(\frac{2 \pi}{\mu m_{N} k_{B} T}\right)^{3 / 2} \hbar^{2} \omega \gamma \exp \left(-\frac{E_{R}}{k_{B} T}\right) \\
& \omega \gamma=\frac{2 J_{R}+1}{\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)} \frac{\Gamma_{1} \Gamma_{2}}{\Gamma_{1}+\Gamma_{2}}
\end{aligned}
$$

- $\omega \gamma=$ resonance « strength »
- $\Gamma_{1}, \Gamma_{2}=$ partial widths in the entrance and exit channels
- For a reaction $(\mathrm{p}, \gamma): \Gamma_{\gamma} \ll \Gamma_{\mathrm{p}} \rightarrow \omega \gamma \sim \Gamma_{\gamma}$
- Valid for capture and transfer
- Rate strongly depends on the resonance enrgy
\rightarrow In general: competition between resonant and non-resonant contributions

3. Reaction rates

Tail contribution: for a given resonance

For a resonance: $\langle\sigma v\rangle \sim \int S(E) \exp \left(-2 \pi \eta-E / k_{B} T\right) d E$

- Non resonant: $S(E) \approx S_{0}$: 1 maximum at $E=E_{0}$
- Resonant: $S(E)=\mathrm{BW}: 2$ maxima at $E=E_{R}$ does not depend on T $E=E_{0}$: depends on T
$\rightarrow 2$ contributions to the rate : $N_{A}\langle\sigma v\rangle \approx N_{A}\langle\sigma v\rangle_{R}+N_{A}\langle\sigma v\rangle_{T}$

- $<\sigma v>_{R}=\left(\frac{2 \pi}{\mu m_{N} k_{B} T}\right)^{3 / 2} \hbar^{2} \omega \gamma \exp \left(-\frac{E_{R}}{k_{B} T}\right)$
$\cdot<\sigma v>_{T} \sim S\left(E_{0}\right) \exp \left(-3 \frac{E_{0}}{k_{B} T}\right) / T^{2 / 3}$, with $S\left(E_{0}\right) \sim \frac{\Gamma_{1}\left(E_{0}\right) \Gamma_{2}\left(E_{0}\right)}{\left(E_{R}-E_{0}\right)^{2}+\Gamma^{2} / 4}$
- Both contributions depend on temperature: in most cases one term is dominant
- «Critical temperature »: when $E_{0}=E_{R} \rightarrow$ separation not valid

3. Reaction rates

Example ${ }^{12} \mathrm{C}(\mathrm{p}, \gamma)^{13} \mathrm{~N}: E_{R}=0.42 \mathrm{MeV}$
Integrant $S(E) \exp \left(-2 \pi \eta-E / k_{B} T\right)$

$$
{ }^{12} C(p, \gamma){ }^{13} N
$$

Above $T_{9} \approx 0.3$: «resonant » contribution is dominant requires $E_{R}, \omega \gamma$ only (no individual partial widths)
strongly depends on $E_{R}: \exp \left(-E_{R} / k_{B} T\right)$
Below $T_{9} \approx 0.2: \quad E_{0} \ll E_{R}:$ « tail » contribution is dominant requires both widths
weakly depends on $E_{R}: 1 /\left(\left(E_{R}-E_{0}\right)^{2}+\Gamma^{2} / 4\right)$
4. General scattering theory

1. Different models
2. Potential/optical model
3. Scattering amplitude and cross section (elastic scattering)

4. General scattering theory

Scheme of the collision (elastic scattering)

Before collision
After collision

4. General scattering theory

1. Different models

Schrödinger equation: $H \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{A}\right)=E \Psi\left(\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{A}\right)$ with $E>0$: scattering states

- A-body equation (microscopic models) $\quad H=\sum_{i} t_{i}+\frac{1}{2} \sum_{i, j} v_{i j}\left(\boldsymbol{r}_{\boldsymbol{i}}-\boldsymbol{r}_{\boldsymbol{j}}\right)$ $v_{i j}=$ nucleon-nucleon interaction

- Optical model: internal structure of the nuclei is neglected the particles interact by a nucleus-nucleus potential absorption simulated by the imaginary part = optical potential

$$
H \Psi(\boldsymbol{r})=\left(-\frac{\hbar^{2}}{2 \mu} \Delta+V(\boldsymbol{r})\right) \Psi(\boldsymbol{r})=E \Psi(\boldsymbol{r})
$$

- Additional assumptions: elastic scattering no Coulomb interaction spins zero

4. General scattering theory

2. Potential/Optical model

Two contributions to the nucleus-nucleus potential: nuclear $V_{N}(r)$ and Coulomb $V_{C}(r)$

Typical nuclear potential: $V_{N}(r)$ (short range, attractive)

- examples: Gaussian

$$
\begin{aligned}
& V_{N}(r)=-V_{0} \exp \left(-\left(r / r_{0}\right)^{2}\right) \\
& V_{N}(r)=-\frac{V_{0}}{1+\exp \left(\frac{r-r_{0}}{a}\right)}
\end{aligned}
$$

- Real at low energies
- parameters are fitted to experiment
- no analytical solution of the Schrödinger equation

Woods-Saxon potential
$r_{0}=$ range (\sim sum of the radii)
$a=$ diffuseness ($\sim 0.5 \mathrm{fm}$)
Figure: $V_{0}=50 \mathrm{MeV}, r_{0}=5 \mathrm{fm}, a=0.5 \mathrm{fm}$

$$
r(f m)
$$

4. General scattering theory

Coulomb potential: long range, repulsive

- «point-point» potential : $V_{C}(r)=\frac{Z_{1} Z_{2} e^{2}}{r}$
- «point-sphere» potential : (radius R_{C})

$$
\begin{aligned}
& V_{C}(r)=\frac{Z_{1} Z_{2} e^{2}}{r} \text { for } r \geq R_{C} \\
& V_{C}(r)=\frac{Z_{1} Z_{2} e^{2}}{2 R_{C}}\left(3-\left(\frac{r}{R_{C}}\right)^{2}\right) \text { for } r \leq R_{C}
\end{aligned}
$$

Total potential : $V(r)=V_{N}(r)+V_{C}(r)$: presents a maxium at the Coulomb barrier

- radius $r=R_{B}$
- height $V\left(R_{B}\right)=E_{B}$

4. General scattering theory

3. Scattering amplitude and cross section

$$
H \Psi(\boldsymbol{r})=\left(-\frac{\hbar^{2}}{2 \mu} \Delta+V(\boldsymbol{r})\right) \Psi(\boldsymbol{r})=E \Psi(\boldsymbol{r})
$$

At large distances : $\Psi(\boldsymbol{r}) \rightarrow A\left(e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+f(\theta) \frac{e^{i k r}}{r}\right) \quad$ (with z along the beam axis)
where: $\quad k=$ wave number: $k^{2}=2 \mu E / \hbar^{2}$
$A=$ amplitude (scattering wave function is not normalized to unity)
$f(\theta)=$ scattering amplitude (length)

4. General scattering theory

- Cross section obtained from the asymptotic part of the wave function General problem for scattering states: the wave function must be known up to large distances
- "Direct" problem: determine σ from the potential
- "Inverse" problem : determine the potential V from σ
- Angular distribution: E fixed, θ variable
- Excitation function: θ variable, E fixed,

4. General scattering theory

Main issue: determining the scattering amplitude $f(\theta)$ (and wave function $\Psi(\boldsymbol{r})$)

At low energies: partial wave expansion: $\Psi(\boldsymbol{r})=\sum_{l m} \Psi_{l}(r) Y_{l}^{m}(\theta, \phi)$

- Scattering wave function necessary to compute cross sections
- Must be determined for each partial wave l
- Main interest: few partial waves at low energies

centrifugal term $: \frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{r^{2}}$
Partial-wave expansion
- Only a few partial waves contribute
- Effect more important for nucleonnucleus: $\mu \approx 1$
- Strongest for neutron: no barrier for $\ell=0$.

4. General scattering theory

4. Phase-shift method

- Goal: solving the Schrodinger equation

$$
\left(-\frac{\hbar^{2}}{2 \mu} \Delta+V(\boldsymbol{r})\right) \Psi(\boldsymbol{r})=E \Psi(\boldsymbol{r})
$$

with a partial-wave expansion

$$
\Psi(\boldsymbol{r})=\sum_{\ell, m} \frac{u_{\ell}(r)}{r} Y_{\ell}^{m}\left(\Omega_{r}\right) Y_{\ell}^{m *}\left(\Omega_{k}\right)
$$

- Simplifying assumtions
- neutral systems (no Coulomb interaction)
- spins zero
- single-channel calculations \rightarrow elastic scattering

4. General scattering theory

- The wave function is expanded as

$$
\Psi(\boldsymbol{r})=\sum_{\ell, m} \frac{u_{\ell}(r)}{r} Y_{\ell}^{m}\left(\Omega_{r}\right) Y_{\ell}^{m *}\left(\Omega_{k}\right)
$$

- This provides the Schrödinger equation for each partial wave ($\left.\Omega_{k}=0 \rightarrow m=0\right)$

$$
-\frac{\hbar^{2}}{2 \mu}\left(\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}\right) u_{\ell}+V(r) u_{\ell}=E u_{\ell}
$$

- Large distances : $r \rightarrow \infty, V(r) \rightarrow 0$
$u_{\ell}^{\prime \prime}-\frac{\ell(\ell+1)}{r^{2}} u_{\ell}+k^{2} u_{\ell}=0$ Bessel equation $\rightarrow u_{\ell}(r)=r j_{\ell}(k r), r n_{\ell}(k r)$
- Remarks
- must be solved for all ℓ values
- at low energies: few partial waves in the expansion
- at small $r: u_{\ell}(r) \rightarrow r^{\ell+1}$

4. General scattering theory

For small $\mathrm{x}: \quad j_{l}(x) \rightarrow \frac{x^{l}}{(2 l+1)!!}$

$$
n_{l}(x) \rightarrow-\frac{(2 l-1)!!}{x^{l+1}}
$$

For large $\mathrm{x}: \quad j_{l}(x) \rightarrow \frac{1}{x} \sin (x-l \pi / 2)$

$$
n_{l}(x) \rightarrow-\frac{1}{x} \cos (x-l \pi / 2)
$$

Examples: $j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}$

At large distances: $u_{\ell}(r)$ is a linear combination of $r j_{\ell}(k r)$ and $r n_{\ell}(k r)$

$$
u_{\ell}(r) \rightarrow C_{l} r\left(j_{\ell}(k r)-\tan \delta_{\ell} \times n_{\ell}(k r)\right)
$$

With $\delta_{\ell}=$ phase shift (provides information about the potential): If $\mathrm{V}=0 \rightarrow \delta_{\ell}=0$

4. General scattering theory

Derivation of the elastic cross section

- Identify the asymptotic behaviours

$$
\begin{aligned}
& \Psi(\boldsymbol{r}) \rightarrow A\left(e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+f(\theta) \frac{e^{i k r}}{r}\right) \\
& \Psi(\boldsymbol{r}) \rightarrow \sum_{\ell} C_{\ell}\left(j_{\ell}(k r)-\tan \delta_{\ell} \times n_{\ell}(k r)\right) Y_{\ell}^{0}\left(\Omega_{r}\right) \sqrt{\frac{2 \ell+1}{4 \pi}}
\end{aligned}
$$

- Provides coefficients C_{ℓ} and scattering amplitude $f(\theta)$ (elastic scattering)

$$
\begin{aligned}
& f(\theta, E)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(\exp \left(2 i \delta_{\ell}(E)\right)-1\right) P_{\ell}(\cos \theta) \\
& \frac{d \sigma(\theta, E)}{d \Omega}=|f(\theta, E)|^{2}
\end{aligned}
$$

- Integrated cross section (neutral systems only)

$$
\sigma=\frac{\pi}{k^{2}} \sum_{\ell=0}^{\infty}(2 \ell+1) \sin ^{2} \delta_{\ell}
$$

- In practice, the summation over ℓ is limited to some $\ell_{\max }$

4. General scattering theory

$\frac{d \sigma(\theta, E)}{d \Omega}=|f(\theta, E)|^{2}$ with $f(\theta, E)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(\exp \left(2 i \delta_{\ell}(E)\right)-1\right) P_{\ell}(\cos \theta)$
\rightarrow factorization of the dependences in E and θ
low energies: small number of ℓ values ($\delta_{\ell} \rightarrow 0$ when ℓ increases) high energies: large number (\rightarrow alternative methods)

General properties of the phase shifts

1. The phase shift (and all derivatives) are continuous functions of E
2. The phase shift is known within $n \pi: \exp 2 i \delta=\exp (2 i(\delta+n \pi))$
3. Levinson theorem

- $\quad \delta_{\ell}(E=0)$ is arbitrary
- $\delta_{\ell}(0)-\delta_{\ell}(\infty)=\mathrm{N} \pi$, where N is the number of bound states in partial wave ℓ
- Example: p+n,

$$
\begin{aligned}
& \ell=0: \delta_{0}(0)-\delta_{0}(\infty)=\pi \text { (bound deuteron) } \\
& \ell=1: \delta_{1}(0)-\delta_{1}(\infty)=0 \text { (no bound state for } \ell=1 \text {) }
\end{aligned}
$$

4. General scattering theory

- Example: hard sphere (radius a)
- continuity at $r=a \rightarrow j_{\ell}(k a)-\tan \delta_{\ell} \times n_{\ell}(k a)=0 \quad \rightarrow \tan \delta_{\ell}=\frac{j_{\ell}(k a)}{n_{\ell}(k a)}$
$\rightarrow \delta_{0}=-k a$

At low energies: $\quad \delta_{\ell}(E) \rightarrow-\frac{(k a)^{2 \ell+1}}{(2 \ell+1)!(2 l-1)!!}$, in general: $\delta_{\ell}(E) \sim k^{2 \ell+1}$
\rightarrow Strong difference between $\ell=0$ (no barrier) et $\ell \neq 0$ (centrifugal barrier)
(typical to neutron-induced reactions)

4. General scattering theory

example : $\alpha+n$ phase shift $\ell=0$
consistent with the hard sphere ($a \sim 2.2 \mathrm{fm}$)

4. General scattering theory

5. Resonances

Resonances: $\delta_{R}(E) \approx \operatorname{atan} \frac{\Gamma}{2\left(E_{R}-E\right)}=$ Breit-Wigner approximation
$\mathrm{E}_{\mathrm{R}}=$ resonance energy
$\Gamma=$ resonance width: related to the lifetime $\Gamma \tau=\hbar$

- Narrow resonance: Γ small, τ large
- Broad resonance: Γ large, τ small
- Bound states: $\Gamma=0, E_{R}<0$

4. General scattering theory

Cross section (for neutrons)
$\sigma(E)=\frac{\pi}{k^{2}} \sum_{\ell}(2 \ell+1)\left|\exp \left(2 i \delta_{\ell}\right)-1\right|^{2}$ maximum for $\delta=\frac{\pi}{2}$
Near the resonance: $\sigma(E) \approx \frac{4 \pi}{k^{2}}\left(2 \ell_{R}+1\right) \frac{\Gamma^{2} / 4}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4^{4}}$, where $\ell_{R}=$ resonant partial wave

$$
E_{R}
$$

In practice:

- Peak not symmetric (Γ depends on E)
- «Background » neglected (other ℓ values)
- Differences with respect to Breit-Wigner

4. General scattering theory

Example: $n+{ }^{12} \mathrm{C}$

Comparison of 2 typical times:
a. Lifetime of the resonance: $\tau_{R}=\hbar / \Gamma \approx \frac{197}{3.10^{23} \times 6.10^{-3}} \approx 1.1 \times 10^{-19} S$
b. Interaction time without resonance: $\tau_{N R}=d / v \approx 5.2 \times 10^{-22} s \rightarrow \tau_{N R} \ll \tau_{R}$

4. General scattering theory

Narrow resonances

- Small particle width
- long lifetime
- can be approximetly treated by neglecting the asymptotic behaviour of the wave function

4. General scattering theory

Broad resonances

- Large particle width
- Short lifetime
- asymptotic behaviour of the wave function is important
\rightarrow rigorous scattering theory
\rightarrow bound-state model complemented by other tools (complex scaling, etc.)

5. Generalizations

- Extension to charged systems
- Numerical calculation
- Optical model (high energies \rightarrow absorption)
- Extension to multichannel problems

5. Generalizations

Generalization 1: charged systems

$E \gg E_{B}$: weak coulomb effects (V negligible with respect to E) $E<E_{B}$: strong coulomb effects (ex: nuclear astrophysics)

4. Generalizations

A. Asymptotic behaviour

$$
\begin{gathered}
\text { Neutral systems } \\
\left(-\frac{\hbar^{2}}{2 \mu} \Delta+V_{N}(r)-E\right) \Psi(\boldsymbol{r})=0 \\
\Psi(\boldsymbol{r}) \rightarrow \exp (i \boldsymbol{k} \cdot \boldsymbol{r})+f(\theta) \frac{\exp (i k r)}{r}
\end{gathered}
$$

Charged systems

$$
\left(-\frac{\hbar^{2}}{2 \mu} \Delta+V_{N}(r)+\frac{Z_{1} Z_{2} e^{2}}{r}-E\right) \Psi(\boldsymbol{r})=0
$$

$$
\Psi(\boldsymbol{r})
$$

$$
\rightarrow \exp (i \boldsymbol{k} \cdot \boldsymbol{r}+i \eta \ln (\boldsymbol{k} \cdot \boldsymbol{r}-k r))
$$

$$
+f(\theta) \frac{\exp (i(k r-\eta \ln 2 k r))}{r}
$$

$$
\eta=\frac{Z_{1} Z_{2} e^{2}}{\hbar v}
$$

- Sommerfeld parameter
- «measurement» of coulomb effects
- Increases at low energies
- Decreases at high energies

5. Generalizations

B. Phase shifts with the coulomb potential

Neutral system: $\quad\left(\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}+k^{2}\right) R_{\ell}=0$
Bessel equation : solutions $j_{\ell}(k r), n_{\ell}(k r)$

Charged system: $\quad\left(\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}-2 \frac{\eta k}{r}+k^{2}\right) R_{\ell}=0$:
Coulomb equation: solutions $F_{\ell}(\eta, k r), G_{\ell}(\eta, k r)$

5. Generalizations

- Incoming and outgoing functions (complex)
$I_{\ell}(\eta, x)=G_{\ell}(\eta, x)-i F_{\ell}(\eta, x) \rightarrow e^{-i\left(x-\frac{\ell \pi}{2}-\eta \ln 2 x+\sigma_{\ell}\right)}$: incoming wave
$O_{\ell}(\eta, x)=G_{\ell}(\eta, x)+i F_{\ell}(\eta, x) \rightarrow e^{i\left(x-\frac{\ell \pi}{2}-\eta \ln 2 x+\sigma_{\ell}\right)}$: outgoing wave
- Phase-shift definition
- neutral systems : $R_{\ell}(r) \rightarrow r A\left(j_{\ell}(k r)-\tan \delta_{\ell} n_{\ell}(k r)\right)$
- charged systems: $R_{\ell}(r) \rightarrow A\left(F_{\ell}(\eta, k r)+\tan \delta_{\ell} G_{\ell}(\eta, k r)\right)$

$$
\begin{aligned}
& \rightarrow B\left(\cos \delta_{\ell} F_{\ell}(\eta, k r)+\sin \delta_{\ell} G_{\ell}(\eta, k r)\right. \\
& \rightarrow C\left(I_{\ell}(\eta, k r)-U_{\ell} O_{\ell}(\eta, k r)\right)
\end{aligned}
$$

3 equivalent definitions (amplitude is different)
Collision matrix (=scattering matrix)

$$
U_{\ell}=e^{2 i \delta_{\ell}}: \text { modulus }\left|U_{\ell}\right|=1
$$

5. Generalizations

Example: hard-sphere potential

$$
\begin{gathered}
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r} \text { for } r>a \\
\infty \text { for } r<a
\end{gathered}
$$

phase shift: $\tan \delta_{\ell}=-\frac{F_{\ell}(\eta, k a)}{G_{\ell}(\eta, k a)}$

5. Generalizations

C. Rutherford cross section

For a Coulomb potential ($V_{N}=0$):

- scattering amplitude : $f_{c}(\theta)=-\frac{\eta}{2 k \sin ^{2} \theta / 2} e^{2 i\left(\sigma_{0}-\eta \ln \sin \theta / 2\right)}$
- Coulomb phase shift for $\ell=0: \sigma_{0}=\arg \Gamma(1+i \eta)$

We get the Rutherford cross section:

$$
\frac{d \sigma_{C}}{d \Omega}=\left|f_{c}(\theta)\right|^{2}=\left(\frac{Z_{1} Z_{2} e^{2}}{4 E \sin ^{2} \theta / 2}\right)^{2}
$$

- Increases at low energies
- Diverges at $\theta=0 \rightarrow$ no integrated cross section

5. Generalizations

D. Cross sections with nuclear and Coulomb potentials

- The general defintions

$$
\begin{aligned}
& f(\theta)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(\exp \left(2 i \delta_{\ell}\right)-1\right) P_{\ell}(\cos \theta) \\
& \frac{d \sigma}{d \Omega}=|f(\theta)|^{2}
\end{aligned}
$$

are still valid

- Problem : very slow convergence with ℓ
\rightarrow separation of the nuclear and coulomb phase shifts

$$
\begin{aligned}
& \delta_{\ell}=\delta_{\ell}^{N}+\sigma_{\ell} \\
& \sigma_{\ell}=\arg \Gamma(1+\ell+i \eta)
\end{aligned}
$$

- Scattering amplitude $f(\theta)$ written as $f(\theta)=f^{C}(\theta)+f^{N}(\theta)$
- $f^{C}(\theta)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(\exp \left(2 i \sigma_{\ell}\right)-1\right) P_{\ell}(\cos \theta)=-\frac{\eta}{2 k \sin ^{2} \theta / 2} e^{2 i\left(\sigma_{0}-\eta \ln \sin \theta / 2\right)}$ \rightarrow analytical
- $f^{N}(\theta)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1) \exp \left(2 i \sigma_{\ell}\right)\left(\exp \left(2 i \delta_{\ell}^{N}\right)-1\right) P_{\ell}(\cos \theta)$ \rightarrow converges rapidly

5. Generalizations

Total cross section: $\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\left|f^{C}(\theta)+f^{N}(\theta)\right|^{2}$

- Nuclear term dominant at 180°
- Coulomb term coulombien dominant at small angles \rightarrow used to normalize experiments
- Coulomb amplitude strongly depends on the angle $\rightarrow \frac{d \sigma / d \Omega}{d \sigma_{C} / d \Omega}$
- Integrated cross section $\int \frac{d \sigma}{d \Omega} \mathrm{~d} \Omega$ is not defined

System ${ }^{6} \mathrm{Li}+{ }^{58} \mathrm{Ni}$

- $\quad E_{c m}=\frac{58}{64} E_{l a b}$
- Coulomb barrier

$$
E_{B} \sim \frac{3 * 28 * 1.44}{7} \sim 17 \mathrm{MeV}
$$

- Below the barrier: $\sigma \sim \sigma_{C}$
- Above $E_{B}: \sigma$ is different from σ_{C}

5. Generalizations

Generalization 2: numerical calculation

For some potentials: analytic solution of the Schrödinger equation In general: no analytical solution \rightarrow numerical approach

$$
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}} u_{\ell}(r)+(V(r)-E) u_{\ell}(r)=0
$$

with: $\quad V(r)=V_{N}(r)+\frac{Z_{1} Z_{2} e^{2}}{r}+\frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{r^{2}}$

$$
u_{\ell}(r) \rightarrow F_{\ell}(k r, \eta) \cos \delta_{\ell}+G_{\ell}(k r, \eta) \sin \delta_{\ell}
$$

Numerical solution : discretization N points, with mesh size h

- $u_{l}(0)=0$
- $u_{l}(h)=1$ (or any constant)
- $u_{l}(2 h)$ is determined numerically from $u_{l}(0)$ and $u_{l}(h)$ (Numerov algorithm)
- $u_{l}(3 h), \ldots u_{l}(N h)$
- for large r: matching to the asymptotic behaviour \rightarrow phase shift

Bound states: same idea (but energy is unknown)

5. Generalizations

Example: $\alpha+\alpha$

Experimental spectrum of ${ }^{8} \mathrm{Be}$

Experimental phase shifts

Potential: $\mathrm{V}_{\mathrm{N}}(\mathrm{r})=-122.3^{*} \exp \left(-(\mathrm{r} / 2.13)^{2}\right)$

5. Generalizations

$$
\alpha+\alpha \text { wave function for } \ell=0
$$

5. Generalizations

Generalization 3: complex potentials $V=V_{R}+i W$
Goal: to simulate absorption channels

High energies:

- many open channels
- strong absorption
- potential model extended to complex potentials (« optical »)

Phase shift is complex: $\delta=\delta_{R}+i \delta_{I}$ collision matrix: $U=\exp (2 i \delta)=\eta \exp \left(2 i \delta_{R}\right)$ where $\eta=\exp \left(-2 \delta_{I}\right)<1$

Elastic cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{4 k^{2}}\left|\sum_{\ell}(2 \ell+1)\left(\eta_{\ell} \exp \left(2 i \delta_{\ell}\right)-1\right) P_{\ell}(\cos \theta)\right|^{2}
$$

Reaction cross section:
$\sigma=\frac{\pi}{k^{2}} \sum_{\ell}(2 \ell+1)\left(1-\eta_{\ell}^{2}\right)$

5. Generalizations

In astrophysics, optical potentials are used to compute fusion cross sections
Fusion cross section: includes many channels
Example: ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$: Essentially ${ }^{20} \mathrm{Ne}+\alpha,{ }^{23} \mathrm{Na}+\mathrm{p},{ }^{23} \mathrm{Mg}+\mathrm{n}$ channels
\rightarrow absorption simulated by a complex potential $V=V_{R}+i W$

5. Generalizations

Typical potentials

A. Real part

- Woods-Saxon: $V_{R}(r)=-\frac{V_{0}}{1+\exp \left(\frac{r-r_{0}}{a}\right)}$ with parameters V_{0}, r_{0}, a adjusted to experiment
- Folding

$$
V_{R}(r)=\lambda \iint d r_{1} d r_{2} v_{N N}\left(r-r_{1}+r_{2}\right) \rho_{1}\left(r_{1}\right) \rho_{2}\left(r_{2}\right)
$$

Nucleus 1 density $\rho_{1}\left(r_{1}\right)$

Nucleus 2
density $\rho_{2}\left(r_{2}\right)$
$v_{N N}=$ nucleon-nucleon interaction
$\lambda=$ amplitude (~ 1), adjustable parameter
$\rho_{1}, \rho_{2}=$ nuclear densities (in general known experimentally)
Main advantage: only one parameter λ

5. Generalizations

B. Imaginary part

- Woods-Saxon:

Volume: $W(r)=-W_{0} f(r)=-\frac{W_{0}}{1+\exp \left(\frac{r-r_{0}}{a}\right)}$ Surface $W(r)=-W_{0} \frac{d f(r)}{d r}$

- Folding
$W(r)=N_{I} V_{R}(r)$

5. Generalizations

Example: $\alpha+{ }^{144}$ Sm
P. Mohr et al., Phys. Rev. C55 (1997) 1523

Measurement of elastic scattering \rightarrow optical potential \rightarrow used for astrophysics

> Elastic cross section at $E_{l a b}=20 \mathrm{MeV}$ $\left(\mathrm{E}_{\mathrm{cm}}=9.5 \mathrm{MeV}\right)$

$$
\alpha+{ }^{144} \text { Sm potential (folding) }
$$

6. Models used for nuclear reactions in astrophysics

6. Models used in nuclear astrophysics (for reactions)

Theoretical methods: Many different cases \rightarrow no "unique" model!

Model	Applicable to	Comments	
Potential/optical model	Capture Fusion	- Internal structure neglected - Antisymetrization approximated	
R-matrix	Capture Transfer	- No explicit wave functions - Physics simulated by some parameters	Light systems
DWBA	Transfer	- Perturbation method - Wave functions in the entrance and exit channels	Low level densities
Microscopic models	Capture Transfer	- Based on a nucleon-nucleon interaction - A-nucleon problems - Predictive power	
Hauser-Feshbach Shell model	Capture Transfer Capture	- Statistical model - Only gamma widths	Heavy systems

7. Radiative capture in the potential model

7. Radiative capture in the potential model

Potential model: two structureless particles (=optical model, without imaginary part)

- Calculations are simple
- Physics of the problem is identical in other methods
- Spins are neglected
- $\boldsymbol{R}_{\boldsymbol{c m}}=$ center of mass, $\boldsymbol{r}=$ relative coordinate

$$
\begin{aligned}
& \boldsymbol{r}_{\mathbf{1}}=\boldsymbol{R}_{\boldsymbol{c m}}-\frac{A_{2}}{A} \boldsymbol{r} \\
& \boldsymbol{r}_{2}=\boldsymbol{R}_{\boldsymbol{c m}}+\frac{A_{1}}{A} \boldsymbol{r}
\end{aligned}
$$

- Initial wave function: $\quad \Psi^{\ell_{i} m_{i}}(\boldsymbol{r})=\frac{1}{r} u_{\ell_{i}}(r) Y_{\ell_{i}}^{m_{i}}(\Omega)$, energy $E^{\ell_{i}}=$ scattering energy E

Final wave function: $\quad \Psi^{\ell_{f} m_{f}}(\boldsymbol{r})=\frac{1}{r} u_{\ell_{f}}(r) Y_{\ell_{f}}^{m_{f}}(\Omega)$, energy $E^{\ell_{f}}$
The radial wave functions are given by:

$$
-\frac{\hbar^{2}}{2 \mu}\left(\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}\right) u_{\ell}+V(r) u_{\ell}=E^{\ell} u_{\ell}
$$

7. Radiative capture in the potential model

- Schrödinger equation: $-\frac{\hbar^{2}}{2 \mu}\left(\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}\right) u_{\ell}+V(r) u_{\ell}=E^{\ell} u_{\ell}$
- Typical potentials:
- coulomb =point-sphere
- nuclear: Woods-Saxon, Gaussian
parameters adjusted on important properties (bound-state energy, phase shifts, etc.)
- Potentials can be different in the initial and final states
- Wave functions computed numerically (Numerov algorithm)
- Limitations
- initial (scattering state): must reproduce resonances (if any)
- final (bound) state: must have a $A+B$ structure

7. Radiative capture in the potential model

Some typical examples

${ }^{7} \mathrm{Li}$

Problem more and more important when the level density increases
\rightarrow in practice: limited to low-level densities (light nuclei or nuclei close to the drip lines)

7. Radiative capture in the potential model

- Electric operator for two particles:
$\mathcal{M}_{\mu}^{E \lambda}=e\left(Z_{1}\left|\boldsymbol{r}_{\mathbf{1}}-\boldsymbol{R}_{\boldsymbol{c m}}\right|^{\lambda} Y_{\lambda}^{\mu}\left(\Omega_{r_{1}-R_{c m}}\right)+Z_{2}\left|\boldsymbol{r}_{\mathbf{2}}-\boldsymbol{R}_{\boldsymbol{c m}}\right|^{\lambda} Y_{\lambda}^{\mu}\left(\Omega_{r_{2}-R_{c m}}\right)\right)$
which provides

$$
\mathcal{M}_{\mu}^{E \lambda}=e\left[Z_{1}\left(-\frac{A_{2}}{A}\right)^{\lambda}+Z_{2}\left(\frac{A_{1}}{A}\right)^{\lambda}\right] r^{\lambda} Y_{\lambda}^{\mu}\left(\Omega_{r}\right)=e Z_{e f f} r^{\lambda} Y_{\lambda}^{\mu}\left(\Omega_{r}\right)
$$

- Matrix elements needed for electromagnetic transitions

$$
<\Psi^{J_{f} m_{f}}\left|\mathcal{M}_{\mu}^{E \lambda}\right| \Psi \Psi_{i}^{J_{i} m_{i}}>=e Z_{e f f}<Y_{J_{f}}^{m_{f}}\left|Y_{\lambda}^{\mu}\right| Y_{J_{i}}^{m_{i}}>\int_{0}^{\infty} u_{J_{i}}(r) u_{J_{f}}(r) r^{\lambda} d r
$$

- Reduced matrix elements:

$$
\begin{aligned}
<\Psi^{J_{f}}\left\|\mathcal{M}^{E \lambda}\right\| \Psi \Psi_{i}> & =e Z_{e f f}<J_{f} 0 \lambda 0 \mid J_{i} 0> \\
& \times\left(\frac{\left(2 J_{i}+1\right)(2 \lambda+1)}{4 \pi\left(2 J_{f}+1\right)}\right)^{1 / 2} \int_{0}^{\infty} u_{J_{i}}(r) u_{J_{f}}(r) r^{\lambda} d r
\end{aligned}
$$

\rightarrow simple one-dimensional integrals

7. Radiative capture in the potential model

Assumptions:

- spins zero: $\ell_{i}=J_{i}, \ell_{f}=J_{f}$
- given values of J_{i}, J_{f}, λ
initial state E : all J_{i} are possible

photon with multipolarity λ

Final state E_{f}, J_{f}
wave function: $u_{J_{f}}(r)$
Integrated cross section

$$
\sigma_{\lambda}(E)=\frac{8 \pi}{k^{2}} \frac{e^{2}}{\hbar c} Z_{e f f}^{2} k_{\gamma}^{2 \lambda+1} F\left(\lambda, J_{i}, J_{f}\right)\left|\int_{0}^{\infty} u_{J_{i}}(r, E) u_{J_{f}}(r) r^{\lambda} d r\right|^{2}
$$

with

- $Z_{e f f}=Z_{1}\left(-\frac{A_{2}}{A}\right)^{\lambda}+Z_{2}\left(\frac{A_{1}}{A}\right)^{\lambda}$
- $F\left(\lambda, J_{i}, J_{f}\right)=<J_{i} \lambda 00 \left\lvert\, J_{f} 0>\left(2 J_{i}+1\right) \frac{(\lambda+1)(2 \lambda+1)}{\lambda(2 \lambda+1)!!^{2}}\right.$
- $k_{\gamma}=\frac{E-E_{f}}{\hbar c}$

Normalization

- final state (bound): normalized to unity $u_{J}(r) \rightarrow C W\left(2 k_{B} r\right) \rightarrow C \exp \left(-k_{B} r\right)$
- initial state (continuum): $u_{J}(r) \rightarrow F_{J}(k r) \cos \delta_{J}+G_{J}(k r) \sin \delta_{J}$

7. Radiative capture in the potential model

Integrated vs differential cross sections

- Total (integrated) cross section:

$$
\sigma(E)=\sum_{\lambda} \sigma_{\lambda}(E)
$$

\rightarrow no interference between the multipolarities

- Differential cross section:

$$
\frac{d \sigma}{d \theta}=\left|\sum_{\lambda} a_{\lambda}(E) P_{\lambda}(\theta)\right|^{2}
$$

- $P_{\lambda}(\theta)=$ Legendre polynomial
- $a_{\lambda}(E)$ are complex, $\sigma_{\lambda}(E) \sim\left|a_{\lambda}(E)\right|^{2}$
\rightarrow interference effects
\rightarrow angular distributions are necessary to separate the multipolarities
\rightarrow in general one multipolarity is dominant (not in ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$: E1 and E2)

7. Radiative capture in the potential model

Example: ${ }^{12} \mathrm{C}(\mathrm{p}, \gamma){ }^{13} \mathrm{~N}$

- First reaction of the CNO cycle
- Well known experimentally
- Presents a low energy resonance ($\ell=0 \rightarrow J=1 / 2^{+}$)

Potential : V=-55.3*exp(-(r/2.70) $\left.{ }^{2}\right) \quad$ (final state)
$-70.5^{*} \exp \left(-(\mathrm{r} / 2.70)^{2}\right) \quad$ (initial state)

7. Radiative capture in the potential model

Final state: $J_{f}=1 / 2^{-}$
Initial state: $\ell_{i}=0 \rightarrow J_{i}=1 / 2^{+}$
\rightarrow E1 transition $1 / 2^{+} \rightarrow 1 / 2^{-}$

7. Radiative capture in the potential model

The calculation is repeated at all energies

Necessity of a spectroscopic factor S
Assumption of the potential model: ${ }^{13} \mathrm{~N}={ }^{12} \mathrm{C}+\mathrm{p}$ In reality ${ }^{13} \mathrm{~N}={ }^{12} \mathrm{C}+\mathrm{p} \oplus{ }^{12} \mathrm{C}^{*}+\mathrm{p} \oplus{ }^{9} \mathrm{Be}+\alpha \oplus \ldots$
\rightarrow to simulate the missing channels: $u_{f}(r)$ is replaced by $S^{1 / 2} u_{f}(r)$ $S=$ spectroscopic factor Other applications: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B},{ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$, etc...
8. The R-matrix method

- General presentation
- Single resonance system
- Applications to elastic scattering ${ }^{12} \mathrm{C}+\mathrm{p}$
- Application to ${ }^{12} \mathrm{C}(\mathrm{p}, \gamma)^{13} \mathrm{~N}$ and ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$

8. The R-matrix method

- Introduced by Wigner (1937) to parametrize resonances (nuclear physics) In nuclear astrophysics: used to fit data
- Provides scattering properties at all energies (not only at resonances)
- Based on the existence of 2 regions (radius a):
- Internal: coulomb+nuclear
- external: coulomb

Exit channels

8. The R-matrix method

Main Goal: fit of experimental data

${ }^{18} \mathrm{Ne}+\mathrm{p}$ elastic scattering
\rightarrow resonance properties

8. The R-matrix method

- Internal region: The R matrix is given by a set of resonance parameters E_{i}, γ_{i}^{2}

$$
R(E)=\sum_{i} \frac{\gamma_{i}^{2}}{E_{i}-E}=a \frac{\Psi^{\prime}(a)}{\Psi(a)} \not \begin{aligned}
& \\
& \cline { 1 - 2 } \\
& \cline { 1 - 2 } \\
& \\
& \\
& \mathrm{i}=2, E_{2}, \gamma_{2}^{2} \\
& \mathrm{i}=1, E_{1}, \gamma_{1}^{2}
\end{aligned}
$$

- External region: Coulomb behaviour of the wave function

$$
\Psi(r)=I(r)-U O(r)
$$

\rightarrow the collision matrix U is deduced from the R-matrix (repeated for each spin/parity $J \pi$)

- Two types of applications:
- phenomenological R matrix: γ_{i}^{2} and E_{i} are fitted to the data (astrophysics)
- calculable R matrix: γ_{i}^{2} and E_{i} are computed from basis functions (scattering theory)
- R-matrix radius a is not a parameter: the cross sections must be insensitive to a
- Can be extended to multichannel calculations (transfer), capture, etc.
- Well adapted to nuclear astrophysics: low energies, low level densities

8. The R-matrix method

A simple case: elastic scattering with a single isolated resonance

\uparrow		
		resonance

threshold

- From the total width $\Gamma \rightarrow$ reduced width $\Gamma=2 \gamma^{2} P_{l}\left(E_{R}\right)$
$P_{l}\left(E_{R}\right)=$ penetration factor
- Link between $\left(E_{R}, \gamma^{2}\right) \leftrightarrow\left(E_{0}, \gamma_{0}^{2}\right)$
- Calculation of the R-matrix $R(E)=\frac{\gamma_{0}^{2}}{E_{0}-E}$
- Calculation of the scattering matrix: $U(E)=\frac{I(k a)}{O(k a)} \frac{1-L^{*} R(E)}{1-L R(E)}$ (must be done for each ℓ)
- Calculation of the cross section $\rightarrow E_{0}$ and/or γ_{0}^{2} can be fitted

8. The R-matrix method

Example: ${ }^{12} \mathrm{C}+\mathrm{p}: \mathrm{E}_{\mathrm{R}}=0.42 \mathrm{MeV}$

In the considered energy range: resonance $\mathrm{J}=1 / 2+(\ell=0)$
\rightarrow Phase shift for $\ell=0$ is treated by the R matrix
\rightarrow Other phase shifts $\ell>0$ are given by the hard-sphere approximation

8. The R-matrix method

First example: Elastic scattering ${ }^{12} \mathrm{C}+p$
Data from H.O. Meyer et al., Z. Phys. A279 (1976) 41

R matrix fits for different channel radii

a	E_{R}	Γ	E_{0}	$\gamma_{0} 2$	χ^{2}
4.5	0.4273	0.0341	-1.108	1.334	2.338
5	0.4272	0.0340	-0.586	1.068	2.325
5.5	0.4272	0.0338	-0.279	0.882	2.321
6	0.4271	0.0336	-0.085	0.745	2.346

$\rightarrow E_{R}, \Gamma$ very stable with a
\rightarrow global fit independent of a

8. The R-matrix method

Extension to transfer, example: ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$

\uparrow	resonance:energy E_{R}, partial widths $\Gamma_{1}, \Gamma_{2}\left(\right.$ or $\left.\gamma_{1}^{2}, \gamma_{2}^{2}\right)=$ "observed parameters" "calculated" parameters: $E_{0}, \gamma_{01}^{2}, \gamma_{02}^{2}$	
threshold $1\left(\mathrm{p}+{ }^{18} \mathrm{~F}\right)$		
		threshold $2\left(\alpha+{ }^{15} \mathrm{O}\right)$

- Link between $\left(E_{R}, \gamma_{1}^{2}, \gamma_{2}^{2}\right) \leftrightarrow E_{0}, \gamma_{01}^{2}, \gamma_{02}^{2}$ more complicated
- R-matrix: 2×2 matrix
$R_{i i}(E)=\frac{\gamma_{01}^{2}}{E_{0}-E} \quad$ associated with the entrance channel
$R_{f f}(E)=\frac{\gamma_{02}^{2}}{E_{0}-E} \quad$ associated with the exit channel
$R_{i f}(E)=\frac{\gamma_{01} \gamma_{02}}{E_{0}-E} \quad$ associated with the transfer
- Scattering matrix: $2 \times 2: \quad U_{11}, U_{22} \rightarrow$ elastic cross sections
U_{12}, \rightarrow transfer cross section
- More parameters, but some are common to elastic scattering (E_{0}, γ_{01}^{2})
\rightarrow constraints with elastic scattering

8. The R-matrix method

Recent application to ${ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{p})^{18} \mathrm{~F}$ and ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{15} \mathrm{O}$
D. Mountford et al, Phys. Rev. C 85 (2012) 022801

simultaneous fit of both cross sections angle: 176°
for each resonance: $J \pi, E_{R}, \Gamma_{p}, \Gamma_{\alpha}$ 8 resonances $\rightarrow 24$ parameters

8. The R-matrix methoo

Extension to radiative capture

Capture reaction= transition between an initial state at energy E to bound states
Cross section $\sigma_{C}(E) \sim\left|<\Psi_{f}\right| H_{\gamma}\left|\Psi_{i}(E)>\right|^{2}$
Additional pole parameter: gamma width $\Gamma_{\gamma i}$
$<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>=<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>_{i n t}+<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>_{\text {ext }}$
internal part: $<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>_{\text {int }} \sim \sum_{i=1}^{N} \frac{\gamma_{i} \sqrt{\Gamma_{\gamma i}}}{E_{i}-E}$
external part: $<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>_{e x t} \sim C_{f} \int_{a}^{\infty} W\left(2 k_{f} r\right) r^{\lambda}\left(I_{i}(k r)-U O_{i}(k r)\right) d r$

8. The R-matrix method

External part: $<\Psi_{f}\left|H_{\gamma}\right| \Psi_{i}(E)>_{e x t} \sim C_{f} \int_{a}^{\infty} W\left(2 k_{f} r\right) r^{\lambda}\left(I_{i}(k r)-U O_{i}(k r)\right) d r$
Essentially depends on k_{f}

Witthaker function $W\left(2 k_{f} r\right) \sim \exp \left(-k_{f} r\right)$

- k_{f} large: fast decrease
example ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}, E_{f}=7.16 \mathrm{MeV}, \mu=3 \quad \rightarrow$ external term negligible \rightarrow insensitive to C_{f}
- k_{f} small: slow decrease example: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}, E_{f}=0.137 \mathrm{MeV}, \mu=7 / 8 \rightarrow$ external term dominant \rightarrow mainly given by C_{f}
- Contribution of internal/external terms depends on energy (external larger at low energies)

8. The R-matrix method

Example 1: ${ }^{12} \mathrm{C}(\mathrm{p}, \gamma){ }^{13} \mathrm{~N}$: R-matrix calculation with a single pole

Experiment: $E_{R}=0.42 \mathrm{MeV}, \Gamma_{p}=31 \mathrm{keV}, \Gamma_{\gamma}=0.4 \mathrm{eV}$
Red line: internal contribution, pure Breit-Wigner approximation
Green lines: external contribution: important at low energies, sensitive to the ANC

8. The R-matrix method

Example 2: ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$

General presentation of ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$
-Determines the ${ }^{12} \mathrm{C} /{ }^{16} \mathrm{O}$ ratio

- Cross section needed near $\mathrm{E}_{\mathrm{cm}}=300 \mathrm{keV}$ (barrier ~2.5 MeV)
\rightarrow cannot be measured in the Gamow peak
-1- and 2^{+}subthreshold states
\rightarrow extrapolation difficult
-E1 and E2 important (E1 forbidden when $\mathrm{T}=0$)
- Interferences between $1_{1}^{-}, 1_{2}^{-}$and between $2^{+}, 2^{+}{ }_{2}$
- Capture to gs dominant but also cascade transitions

- 6.13 3^{-}
\qquad 0^{+}
${ }^{16} \mathrm{O}$

8. The R-matrix method

Many experiments

- Direct ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ (angular distributions are necessary: E1 and E2)
- Indirect: spectroscopy of $1^{-}{ }_{1}$ and $2^{+}{ }_{1}$ subthreshold states
- Constraints
- $\alpha+{ }^{12} \mathrm{C}$ phase shifts $\left(1^{-} \rightarrow \mathrm{E} 1,2^{+} \rightarrow \mathrm{E} 2\right)$
- E1: ${ }^{16} \mathrm{~N}$ beta decay
(Azuma et al, Phys. Rev. C50 (1994) 1194) probes J=1- \rightarrow E1
- E2: ???

8. The R-matrix method

Current situation

8. The R-matrix method

S(300 keV): current situation for E1

8. The R-matrix method

S(300 keV): current situation for E2

9. Microscopic models

9. Microscopic models

- Goal: solution of the Schrödinger equation $H \Psi=E \Psi$
- Hamiltonian: $H=\sum_{i} T_{i}+\sum_{j>i} V_{i j}$
$\mathrm{T}_{\mathrm{i}}=$ kinetic energy of nucleon i
$\mathrm{V}_{\mathrm{ij}}=$ nucleon-nucleon interaction
- Cluster approximation $\Psi=\mathcal{A} \phi_{1} \phi_{2} g(\rho)$
with $\phi_{1}, \phi_{2}=$ internal wave functions (input, shell-model)
$g(\rho)=$ relative wave function (output)
$\mathcal{A}=$ antisymmetrization operator

- Generator Coordinate Method (GCM): the radial function is expanded in Gaussians \rightarrow Slater determinants (well adapted to numerical calculations)
- Microscopic R-matrix: extension of the standard R-matrix \rightarrow reactions

9. Microscopic models

Many applications: not only nuclear astrophysics spectroscopy, exotic nuclei, elastic and inelastic scattering, etc.

Extensions:

- Multicluster calculations: \rightarrow deformed nuclei (example: ${ }^{7} \mathrm{Be}+\mathrm{p}$)

- Multichannel calculations: $\Psi=\mathcal{A} \phi_{1} \phi_{2} g(\rho)+\mathcal{A} \phi_{1}^{*} \phi_{2}^{*} g^{*}(\rho)+\cdots$
\rightarrow better wave functions
\rightarrow inelastic scattering, transfer
- Ab initio calculations: no cluster approximation
\rightarrow very large computer times
\rightarrow limited to light nuclei
\rightarrow difficult for scattering (essentially limited to nucleon-nucleus)

9. Microscopic models

Example: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$

- Important for the solar-neutrino problem
- Since 1995, many experiments:
- Direct (proton beam on a ${ }^{7}$ Be target)
- Indirect (Coulomb break-up)
- Extrapolation to zero energy needs a theoretical model (energy dependence)

9. Microscopic models

Example: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$

- Microscopic cluster calculations: 3-cluster calculations
- P. D. and D. Baye, Nucl. Phys. A567 (1994) 341
- P.D., Phys. Rev. C 70, 065802 (2004)
- Includes the deformation of ${ }^{7} \mathrm{Be}$: cluster structure $\mathrm{a}+{ }^{3} \mathrm{He}$
- Includes rearrangement channels ${ }^{5} \mathrm{Li}+{ }^{3} \mathrm{He}$
- Can be applied to ${ }^{8} \mathrm{~B} /{ }^{8} \mathrm{Li}$ spectroscopy
- Can be applied to ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$ and ${ }^{7} \mathrm{Li}(\mathrm{n}, \gamma)^{8} \mathrm{Li}$

${ }^{7} \mathrm{Be}=\alpha+{ }^{3} \mathrm{He}$

${ }^{5} \mathrm{Li}=\alpha+\mathrm{p}$

9. Microscopic models

Spectroscopy of ${ }^{8} B$

	experiment	Volkov	Minnesota
$\mu\left(2^{+}\right)\left(\mu_{N}\right)$	1.03	1.48	1.52
$\mathrm{Q}\left(2^{+}\right)\left(\mathrm{e} . \mathrm{fm}^{2}\right)$	6.83 ± 0.21	6.6	6.0
$\mathrm{~B}\left(\mathrm{M} 1,1^{+} \rightarrow 2^{+}\right)$(W.u.)	5.1 ± 2.5	3.4	3.8

Channel components in the ${ }^{8} B$ ground state

${ }^{7} \mathrm{Be}\left(3 / 2^{-}\right)+p$	47%
${ }^{7} \mathrm{Be}\left(1 / 2^{-}\right)+\mathrm{p}$	9%
${ }^{5} \mathrm{Li}\left(3 / 2^{-}\right)+{ }^{3} \mathrm{He}$	34%
${ }^{5} \mathrm{Li}\left(1 / 2^{-}\right)+{ }^{3} \mathrm{He}$	3%

\Rightarrow Important role of the 5+3 configuration

9. Microscopic models

${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$ S factor

- Low energies ($\mathrm{E}<100 \mathrm{keV}$): energy dependence given by the Coulomb functions
- 2 NN interactions (MN, V2): \rightarrow the sensitivity can be evaluated
- Overestimation: due to the ${ }^{8} \mathrm{~B}$ ground state (cluster approximation)

9. Microscopic models

Cluster models

- In general a good approximation, but do not allow the use of realistic NN interactions
- Example: α particle described by 40 s orbitals
\rightarrow intrinsic spin $=0$
\rightarrow no spin-orbit, no tensor force, no 3-body force
\rightarrow these terms are simulated by (central) NN interactions

Ab initio models

- No cluster approximation
- Use of realistic NN interactions (fitted on deuteron, NN phase shifts, etc.)
- Application: $d+d$ systems ${ }^{2} \mathrm{H}(\mathrm{d}, \gamma)^{4} \mathrm{He},{ }^{2} \mathrm{H}(\mathrm{d}, \mathrm{p})^{3} \mathrm{H},{ }^{2} \mathrm{H}(\mathrm{d}, \mathrm{n})^{3} \mathrm{He}$
two physics issues
- Analysis of the $d+d S$ factors (Big-Bang nucleosynthesis)
- Role of the tensor force in ${ }^{2} \mathrm{H}(\mathrm{d}, \gamma)^{4} \mathrm{He}$

9. Microscopic models

${ }^{2} \mathrm{H}(\mathrm{d}, \gamma){ }^{4} \mathrm{He} \mathrm{S}$ factor

- Ground state of ${ }^{4} \mathrm{He}=0+$
- E1 forbidden \rightarrow main multipole is E2 $\rightarrow 2^{+}$to 0^{+}transition \rightarrow d wave as initial state
- Experiment shows a plateau below 0.1 MeV : typical of an s wave
- Interpretation : the ${ }^{4} \mathrm{He}$ ground state contains an admixture of d wave final 0^{+}state: $\Psi^{0+}=\Psi^{0+}(L=0, S=0)+\Psi^{0+}(L=2, S=2)=\left|0^{+}, 0>+\right| 0^{+}, 2>$ initial 2^{+}state: $\Psi^{2+}=\Psi^{2+}(L=2, S=0)+\Psi^{2+}(L=0, S=2)=\left|2^{+}, 0>+\right| 2^{+}, 2>$

9. Microscopic models

Application: d+d systems

- Collaboration Niigata (K. Arai, S. Aoyama, Y. Suzuki)-Brussels (D. Baye, P.D.)

Phys. Rev. Lett. 107 (2011) 132502

- Mixing of $\mathrm{d}+\mathrm{d},{ }^{3} \mathrm{H}+\mathrm{p},{ }^{3} \mathrm{He}+\mathrm{n}$ configurations

$d+d$

$3 \mathrm{H}+\mathrm{p}, 3 \mathrm{He}+\mathrm{n}$
- The total wave function is written as an expansion over a gaussian basis
- Superposition of several angular momenta
- 4-body problem (in the cluster approximation we would have: $x_{1}=x_{2}=0$)

9. Microscopic models

We use 3 NN interactions:

- Realistic: Argonne AV8', G3RS
- Effective: Minnesota MN

- No parameter
- MN does not reproduce the plateau (no tensor force)
- D wave component in ${ }^{4} \mathrm{He}$: 13.8\% (AV8') 11.2\% (G3RS)

9. Microscopic models

Transfer reactions ${ }^{2} \mathrm{H}(\mathrm{d}, \mathrm{p})^{3} \mathrm{H},{ }^{2} \mathrm{H}(\mathrm{d}, \mathrm{n})^{3} \mathrm{He}$

10. Conclusions

Needs for nuclear astrophysics:

- low energy cross sections
- resonance parameters

Experiment: direct and indirect approaches

Theory: various techniques

- fitting procedures (R matrix) \rightarrow extrapolation
- non-microscopic models: potential, DWBA, etc.
- microscopic models:
> cluster: developed since 1960's, applied to NA since 1980's
$>$ ab initio: problems with scattering states, resonances \rightarrow limited at the moment
- Current challenges: new data on ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$, triple α process, ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$, etc. $\mathrm{D}(\mathrm{d}, \gamma)^{4} \mathrm{He}: 4$ nucleons $\rightarrow 4$ clusters

