

Nuclear reactions in astrophysics

Pierre Descouvemont Université Libre de Bruxelles Brussels, Belgium

Content of the lectures

1. Introduction

- 1. Reaction networks
- 2. Needs for astrophysics
- 3. Specificities of nuclear astrophysics

2. Low-energy cross sections

- 1. Definitions
- 2. General properties
- 3. S-factor

3. Reaction rates

- 1. Definitions
- 2. Gamow peak
- 3. Resonant and non-resonant rates
- 4. General scattering theory (simple case: spins 0, no charge, single channel)
 - 1. Different models
 - 2. Optical model
 - 3. Scattering amplitude and cross sections
 - 4. Phase-shift method
 - 5. Resonances
 - 6. Generalizations: Coulomb interaction, absorption, non-zero spins

5. Models used in nuclear astrophysics

- 1. Brief overview
- 2. The potential model : Radiative-capture reactions
- 3. The R-matrix method
- 4. Microscopic models

Goal of nuclear astrophysics: understand the abundances of the elements

• Iron peak (very stable)

- Years ~ 1940-50: Hoyle, Gamow Role of nuclear reactions in stars
 - Energy production
 - Nucleosynthesis (Hoyle state in ¹²C)
- 1957: B₂FH: Burbidge, Burbidge, Fowler, Hoyle (Rev. Mod. Phys. 29 (1957) 547) Wikipedia site: <u>http://en.wikipedia.org/wiki/B%C2%B2FH</u>

Cycles: pp chain: converts $4p \rightarrow {}^{4}He$ CNO cycle: converts $4p \rightarrow {}^{4}He$ (via ${}^{12}C$) s (slow) process: (n, γ) capture followed by β decay r (rapid) process: several (n, γ) captures p (proton) process: (p, γ) capture

• Nucleosynthesis:

Primordial (Bigbang): 3 first minutes of the Universe Stellar: star evolution, energy production

- Essentially two (experimental) problems in nuclear astrophysics
 Low energies → very low cross sections (Coulomb barrier)
 Need for radioactive beams
 - → in most cases a theoretical support is necessary (data extrapolation)

Reaction networks: set of equations with abundances of nucleus m: Y_m

$$\frac{dY_m}{dt} = -\lambda_m Y_m \qquad \rightarrow \text{Destruction of m by } \beta \text{ decay: } \lambda_m = 1/\tau_m$$

$$+ \sum_k \lambda_k^{(m)} Y_k \qquad \rightarrow \text{Production of m by } \beta \text{ decay from elements k}$$

$$- \sum_k Y_m Y_k [mk]^{(m+k)} \rightarrow \text{Destruction of m by reaction with k}$$

$$+ \sum_{k,l} Y_k Y_l [kl]^{(m)} \qquad \rightarrow \text{Production of m by reaction k+l} \rightarrow m$$

with [kl]^{(m)~} < σ v>, < σ v>=reaction rate (strongly depends on temperature)

In practice:

- Many reactions are involved (no systematics)
- σ must be known at very low energies \rightarrow very low cross sections
- Reactions with radioactive elements are needed
- At high temperatures: high level densities \rightarrow properties of many resonances needed

Specificities of nuclear astrophysics

- low energies (far below the Coulomb barrier)
 - \rightarrow small cross sections
 - (in general not accessible in laboratories at stellar energies)
 - \rightarrow low angular momenta (selection of resonances)
- radioactive nuclei

 \rightarrow need for radioactive beams (⁷Be, ¹³N, ¹⁸F, ...)

- different types of reactions:
 - transfer (α,n), (α,p), (p,α), etc...
 - radiative-capture: (p, γ), (α , γ), (n, γ), etc...
 - weak processes: $p+p \rightarrow d+e^+ + v$
 - fusion: ¹²C+¹²C, ¹⁶O+¹⁶O, etc.
- different situations
 - capture, transfer
 - resonant, non resonant
 - low level density (light nuclei), high level density (heavy nuclei)
 - peripheral, internal processes

→ different approaches, for theory and for experiment

Some key reactions

- $d(\alpha,\gamma)^{6}$ Li, ³He $(\alpha,\gamma)^{7}$ Be: Big-Bang
- Triple α , ¹²C(α , γ)¹⁶O: He burning
- ⁷Be(p,γ)⁸B: solar neutrino problems
- ${}^{18}F(p,\alpha){}^{15}O$: nova nucleosynthesis
- Etc...

- Definitions
- General properties
- S-factor

Types of reactions: general definitions valid for all models

Туре	Example	Origin
Transfer	³ He(³ He,2p) α	Strong
Radiative capture	² H(p,γ) ³ He	Electromagnetic
Weak capture	$p+p \rightarrow d+e^+ + v$	Weak

• Transfer: A+B \rightarrow C+D (σ_t , strong interaction, example: ³He(d,p)⁴He)

$$\sigma_{t,c\to c'}(E) = \frac{\pi}{k^2} \sum_{J\pi} \frac{2J+1}{(2I_1+1)(2I_2+1)} \left| \frac{U_{cc'}^{J\pi}(E)}{U_{cc'}^{J\pi}(E)} \right|^2$$

 $U_{cc'}^{J\pi}(E)$ =collision (scattering) matrix (obtained from scattering theory \rightarrow various models) c, c' =entrance and exit channels

Compound nucleus, ex: ⁵Li

• Radiative capture : A+B \rightarrow C+ γ (σ_c , electromagnetic interaction, example: ¹²C(p, γ)¹³N)

$$\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{\lambda} \sum_{J_{i}\pi_{i}} k_{\gamma}^{2\lambda+1} \big| < \Psi^{J_{f}\pi_{f}} \|\mathcal{M}_{\lambda}\| \Psi^{J_{i}\pi_{i}}(E) > \big|^{2}$$

 $J_f \pi_f$ =final state of the compound nucleus C $\Psi^{J_i \pi_i}(E)$ =initial scattering state of the system (A+B) $\mathcal{M}_{\lambda\mu}$ =electromagnetic operator (electric or magnetic): $\mathcal{M}_{\lambda\mu} \sim e r^{\lambda} Y^{\mu}_{\lambda}(\Omega_r)$

Long wavelength approximation:

Wave number $k_{\gamma} = E_{\gamma}/\hbar c$, wavelength: $\lambda_{\gamma} = 2\pi/k_{\gamma}$ Typical value: $E_{\gamma} = 1 \text{ MeV}, \lambda_{\gamma} \approx 1200 \text{ fm} >> \text{ typical dimensions of the system (}R\text{)}$ $\rightarrow k_{\gamma}R \ll 1 = \text{Long wavelength approximation}$

final states $E_f < 0$, contains all $J_i \pi_i$, A+B threshold, ex: ¹²C+p

$$\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{J_{i}\pi_{i}} \sum_{\lambda} k_{\gamma}^{2\lambda+1} \left| < \Psi^{J_{f}\pi_{f}} \| \mathcal{M}_{\lambda} \| \Psi^{J_{i}\pi_{i}}(E) > \right|^{2}$$

•
$$k_{\gamma} = (E - E_f)/\hbar c$$
 = photon wave number

- In practice
 - Summation over λ limited to 1 term (often E1, or E2/M1 if E1 is forbidden)

$$\frac{E2}{E1} \sim (k_{\gamma}R)^2 \ll 1$$
 (from the long wavelength approximation)

 \circ Summation over $J_i \pi_i$ limited by selection rules

$$\left|J_i - J_f\right| \le \lambda \le J_i + J_f$$

$$\pi_i \pi_f = (-1)^{\lambda}$$
 for electric, $\pi_i \pi_f = (-1)^{\lambda+1}$ for magnetic

Example 1: ${}^{8}Be(\alpha,\gamma){}^{12}C$

- Initial partial wave $J_i = 0^+$ (includes the Hoyle state.
- E2 dominant (E1 forbidden in N=Z)
- \rightarrow essentially the $J_f = 2^+$ state is populated.

Example 2: ${}^{14}N(p,\gamma){}^{15}O$

Example 3: ${}^{12}C(\alpha,\gamma){}^{16}O, {}^{15}N(p,\gamma){}^{16}O, {}^{15}N(p,\alpha){}^{12}C$

¹⁵N+p threshold ¹⁵N(p, γ)¹⁶O and ¹⁵N(p, α)¹²C are open \rightarrow ¹⁵N(p, γ)¹⁶O negligible

¹²C+α threshold only possibility: ¹²C(α,γ)¹⁶O \rightarrow ¹²C(α,γ)¹⁶O (very) important

Weak capture (p+p→ d+v+e⁻): tiny cross section
 → no measurement (only calculations)

$$\sigma_W^{J_f \pi_f}(E) \sim \sum_{J_i \pi_i} \left| < \Psi^{J_f \pi_f} \right| \left| O_\beta \right| \left| \Psi^{J_i \pi_i}(E) > \right|^2$$

- Calculations similar to radiative capture
- O_{β} = Fermi ($\sum_{i} t_{i\pm}$) and Gamow-Teller ($\sum_{i} t_{i\pm} \sigma_i$) operators
- 3 He+p \rightarrow 4 He+v+e⁻: produces high-energy neutrinos (more than tiny!)

• Fusion: similar to transfer, but with many output channels

- \rightarrow statistical treatment
- \rightarrow optical potentials

General properties (common to all reactions)

- Coulomb functions at low energies $F_{\ell}(\eta, x) \to \exp(-\pi\eta) \mathcal{F}_{\ell}(x),$ $G_{\ell}(\eta, x) \to \exp(\pi \eta) G_{\ell}(x).$
- Coulomb effect: strong E dependence : $\exp(2\pi\eta)$ neutrons: $\sigma(E) \sim 1/v$
- Strong ℓ dependence Centrifugal term: $\sim \frac{\hbar^2}{2\mu} \frac{\ell(\ell+1)}{r^2}$ \rightarrow stronger for nucleons ($\mu \approx 1$) than for α ($\mu \approx 4$)

General properties: specificities of the entrance channel \rightarrow common to all reactions

- All cross sections (capture, transfer) involve a summation over ℓ : $\sigma(E) = \sum_{\ell} \sigma_{\ell}(E)$
- The partial cross sections $\sigma_{\ell}(E)$ are proportional to the penetration factor

$$P_{\ell}(E) = \frac{ka}{F_{\ell}(ka)^2 + G_{\ell}(ka)^2}$$
 (a =typical radius)

Astrophysical S factor: $S(E) = \sigma(E)E\exp(2\pi\eta)$ (Units: E*L²: MeV-barn)

- ullet removes the coulomb dependence igarcolumbda only nuclear effects
- weakly depends on energy $\rightarrow \sigma(E) \approx S_0 \exp(-2\pi\eta) / E$ (any reaction at low E)

non resonant: $S(E) = \sigma(E)E\exp(2\pi\eta)$

Example: ³He(α , γ)⁷Be reaction

- Cross section σ(E) Strongly depends on energy
- Logarithmic scale

S factor

- Coulomb effects removed
- Weak energy dependence
- Linear scale

Resonant cross sections: Breit-Wigner form

$$\sigma_R(E) \approx \frac{\pi}{k^2} \frac{(2J_R + 1)}{(2I_1 + 1)(2I_2 + 1)} \frac{\Gamma_1(E)\Gamma_2(E)}{(E_R - E)^2 + \Gamma^2/4}$$

- J_R , E_R =spin, energy of the resonance
- Valid for any process (capture, transfer)
- Valid for a single resonance \rightarrow several resonances need to be added (if necessary)
- Γ_1 =Partial width in the entrance channel (strongly depends on E, ℓ) $\Gamma_1(E) = 2\gamma_1^2 P_\ell(E)$ with γ_1^2 =reduced width (does not depend on E) $P_\ell(E) \sim \exp(-2\pi\eta)$

A resonance at low energies is always narrow (role of $P_{\ell}(E)$)

• Γ_2 =Partial width in the exit channel (weakly depends on E, ℓ)

- Transfer: $\Gamma_2(E) = 2\gamma_2^2 P_{\ell_f}(E+Q)$ (in general $Q \gg E \rightarrow P_{\ell_f}(E+Q)$ almost constant)
- Capture: $\Gamma_2(E) \sim (E E_f)^{2\lambda + 1} B(E\lambda) \rightarrow$ weak energy dependence
- S factor near a resonance $S(E) = \sigma(E)E\exp(2\pi\eta)$ $S_R(E) \sim \frac{\gamma_1^2\Gamma_2}{(E_R - E)^2 + \Gamma^2/4} P_\ell(E)\exp(2\pi\eta)$ Almost constant

 \rightarrow Simple estimate at low E (at the Breit-Wigner approximation)

$$S_R(E) \sim \frac{\gamma_1^2 \Gamma_2}{(E_R - E)^2 + \Gamma^2/4} P_\ell(E) \exp(2\pi\eta)$$

 $\sim \frac{\gamma_1^2 \Gamma_2}{(E_R - E)^2 + \Gamma^2/4}$

- For $\ell = 0 : P_0(E) \exp(2\pi\eta) \sim \text{constant}$
- For $\ell > 0$, $P_{\ell}(E) \ll P_0(E)$ $\rightarrow \ell > 0$ resonances are suppressed

In ${}^{12}C(p,\gamma){}^{13}N$:

- Resonance $1/2^+$: $\ell = 0$
- Resonances $3/2^{-}$, $5/2^{+} \ell = 1, 2 \rightarrow$ negligible

Note: BW is an approximation

- Neglects background, external capture
- Assumes an isolated resonance
- Is more accurate near the resonance energy

3/2+ resonance:

- Entrance channel: spin S=1/2,3/2, parity + $\rightarrow \ell = 0,2$
- Exit channel: spin S=1/2, parity + $\rightarrow \ell = 1$

Breit Wigner approximation

$$\sigma_{dp}(E) \approx \frac{\pi}{k^2} \frac{(2J_R + 1)}{(2I_1 + 1)(2I_2 + 1)} \frac{\Gamma_d(E)\Gamma_p(E)}{(E_R - E)^2 + \Gamma^2/4}$$

Two comments:1. Selection of the main resonances2. Going beyond the Breit-Wigner approximation

1. Selection of the main resonances

→ In general a small number of resonances play a role

2. Going beyond the Breit-Wigner approximation

- How to go beyond the BW approximation?
- Problem of vocabulary
 - Direct capture
 - External capture
 - Non-resonant capture = « direct » capture
- \rightarrow confusion!
- External capture $\sigma(E) = |M_{int} + M_{ext}|^2$ With $\sigma_{BW}(E) = |M_{int}|^2$ $M_{ext} \sim C$, with C=Asymptotic Normalization Constant (ANC) is needed
- Non resonant capture : $\sigma(E) = \sum_{\ell} \sigma_{\ell}(E) = \sigma_{R}(E) + \sum_{\ell \neq \ell_{R}} \sigma_{\ell}(E)$ \rightarrow scanning the resonance is necessary

Many different situations

- Transfer cross sections (strong interaction)
 - -Non resonant: ${}^{6}Li(p,\alpha)^{3}He$ -Resonant, with $\ell_{R} = \ell_{min}$: ${}^{3}He(d,p)\alpha$ -Resonant, with $\ell_{R} > \ell_{min}$: ${}^{11}B(p,\alpha)^{8}Be$ -Multiresonance: ${}^{22}Ne(\alpha,n)^{25}Mg$

• Capture cross sections (electromagnetic interaction)

- Non resonant:
- Resonant, with $\ell_{\rm R} = \ell_{\rm min}$:
- Resonant, with $\ell_{\rm R} > \ell_{\rm min}$:
- Multiresonance:
- Subthreshold state:
- Weak capture cross sections (weak interaction
 - Non resonant

- 1. Definitions
- 2. Gamow peak
- 3. Non-resonant rates
- 4. Resonant rates

1. Definition

Quantity used in astrophysics: reaction rate (integarl over the energy E)

 $N_A < \sigma v > = N_A \int \sigma(E) v N(E,T) dE$

- Definition valid for resonant and non-resonant reactions
- *N_A*=Avogadro number
- *T*=temperature, v = velocity, k_B = Boltzmann constant ($k_B \sim \frac{1}{11.6} \text{MeV}/10^9 K$)

•
$$N(E,T) = \left(\frac{8E}{\pi\mu m_N (k_B T)^3}\right)^{1/2} \exp\left(-\frac{E}{k_B T}\right) = Maxwell-Boltzmann distribution$$

- $\frac{1}{N_A < \sigma v >}$ =typical reaction time
- 2 approaches
 - numerical
 - analytical: non-resonant and resonant reactions treated separately

→ essentially two energy dependences:

 $\exp\left(-\frac{E}{k_BT}\right)$: decreases with E $\exp(-2\pi\eta)$: increases with E

2. The Gamow peak

Defines the energy range relevant for the reaction rate (non-resonant reactions) Linear scale

Gamow peak : $E_0 = 0.122 \mu^{1/3} (Z_1 Z_2 T_9)^{2/3}$ MeV: lower than the Coulomb barrier increases with T

$$\Delta E_0 = 0.237 \,\mu^{1/6} (Z_1 Z_2)^{1/3} \, T_9^{5/6} \,\, \text{MeV}$$

=Energy range where $\sigma(E)$ must be known ($T_9 = T$ in 10⁹K)

Examples

Reaction	T (10 ⁹ K)	E ₀ (MeV)	ΔE_0 (MeV)	E _{coul} (MeV)	$\sigma(E_0)/\sigma(E_{coul})$
d + p	0.015	0.006	0.007	0.3	10 ⁻⁴
³ He + ³ He	0.015	0.021	0.012	1.2	10 ⁻¹³
α + ¹² C	0.2	0.3	0.17	3	10 ⁻¹¹
¹² C + ¹² C	1	2.4	1.05	7	10 ⁻¹⁰

 $\Box \quad E_0/E_{coul} \approx 0.3 T_9^{2/3} \text{ (p and } \alpha\text{)}$

□ At low T_9 , $E_0 \ll E_{coul}$ (coulomb barrier)

 Very low cross sections at stellar temperatures (different for neutrons: no barrier)

3. Non-resonant reaction rates

• Approximation: Taylor expansion about the minimum $E = E_0: 2\pi\eta + E/k_BT \approx c_0 + \left(\frac{E-E_0}{2\Delta E_0}\right)^2$

Then
$$\langle \sigma v \rangle \approx \left(\frac{8}{\pi \mu m_N (k_B T)^3}\right)^{1/2} \exp\left(-3\frac{E_0}{k_B T}\right) \int S(E) \exp\left(-\left(\frac{E-E_0}{2\Delta E_0}\right)^2\right) dE$$

• S(E) is assumed constant (= $S(E_0)$) in the Gamow peak

$$\rightarrow < \sigma v > \sim S(E_0) \exp\left(-3\frac{E_0}{k_B T}\right) / T^{2/3}$$
, with $E_0 = 0.122 \mu^{1/3} (Z_1 Z_2 T_9)^{2/3}$ MeV

3. Reaction rates

4. Resonant reaction rates

• General definition: $N_A < \sigma v > = N_A \int \sigma(E) v N(E,T) dE$

here $\sigma(E)$ is given by the Breit-Wigner approximation $\sigma(E) \approx \frac{\pi}{k^2} \frac{(2J_R + 1)}{(2I_1 + 1)(2I_2 + 1)} \frac{\Gamma_1(E)\Gamma_2(E)}{(E_R - E)^2 + \Gamma^2/4}$

• This provides

$$<\sigma v>_{R} = \left(\frac{2\pi}{\mu m_{N} k_{B} T}\right)^{3/2} \hbar^{2} \omega \gamma \exp\left(-\frac{E_{R}}{k_{B} T}\right)$$
$$\omega \gamma = \frac{2J_{R} + 1}{(2I_{1} + 1)(2I_{2} + 1)} \frac{\Gamma_{1} \Gamma_{2}}{\Gamma_{1} + \Gamma_{2}}$$

- ωγ=resonance « strength »
- Γ_1, Γ_2 =partial widths in the entrance and exit channels
- For a reaction (p, γ) : $\Gamma_{\gamma} << \Gamma_{p} \rightarrow \omega \gamma^{\sim} \Gamma_{\gamma}$
- Valid for capture and transfer
- Rate strongly depends on the resonance enrgy
- → In general: competition between resonant and non-resonant contributions

3. Reaction rates

Tail contribution: for a given resonance

For a resonance: $\langle \sigma v \rangle \sim \int S(E) \exp(-2\pi\eta - E/k_B T) dE$

- Non resonant: $S(E) \approx S_0$: 1 maximum at $E = E_0$
- Resonant: S(E)=BW : 2 maxima at $E = E_R$ does not depend on T $E = E_0$: depends on T

•
$$\langle \sigma v \rangle_R = \left(\frac{2\pi}{\mu m_N k_B T}\right)^{3/2} \hbar^2 \omega \gamma \exp\left(-\frac{E_R}{k_B T}\right)$$

• $\langle \sigma v \rangle_T \sim S(E_0) \exp\left(-3\frac{E_0}{k_B T}\right) / T^{2/3}$, with $S(E_0) \sim \frac{\Gamma_1(E_0)\Gamma_2(E_0)}{(E_R - E_0)^2 + \Gamma^2/4}$

- $\circ~$ Both contributions depend on temperature: in most cases one term is dominant
- « Critical temperature »: when $E_0 = E_R →$ separation not valid

3. Reaction rates

Example ¹²C(p, γ)¹³N: $E_R = 0.42 MeV$ Integrant $S(E) \exp(-2\pi\eta - E/k_BT)$

Above $T_9 \approx 0.3$: « resonant » contribution is dominant requires E_R , $\omega\gamma$ only (no individual partial widths) strongly depends on E_R : exp $(-E_R/k_BT)$

Below $T_9 \approx 0.2$: $E_0 \ll E_R$: « tail » contribution is dominant requires both widths weakly depends on E_R : $1/((E_R - E_0)^2 + \Gamma^2/4)$

- 1. Different models
- 2. Potential/optical model
- Scattering amplitude and cross section (elastic scattering)

Scheme of the collision (elastic scattering)

Center-of-mass system

1. Different models

Schrödinger equation: $H\Psi(r_1, r_2, ..., r_A) = E\Psi(r_1, r_2, ..., r_A)$ with E > 0: scattering states

• A-body equation (microscopic models)

 $H = \sum_{i} t_{i} + \frac{1}{2} \sum_{i,j} v_{ij} (\boldsymbol{r_{i}} - \boldsymbol{r_{j}})$

 v_{ij} =nucleon-nucleon interaction

 Optical model: internal structure of the nuclei is neglected the particles interact by a nucleus-nucleus potential absorption simulated by the imaginary part = optical potential

$$H\Psi(\mathbf{r}) = \left(-\frac{\hbar^2}{2\mu}\Delta + \mathbf{V}(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Additional assumptions: elastic scattering

no Coulomb interaction spins zero

2. Potential/Optical model

Two contributions to the nucleus-nucleus potential: nuclear $V_N(r)$ and Coulomb $V_C(r)$

Typical nuclear potential: $V_N(r)$ (short range, attractive)

- examples: Gaussian $V_N(r) = -V_0 \exp(-(r/r_0)^2)$ Woods-Saxon: $V_N(r) = -\frac{V_0}{1 + \exp(\frac{r-r_0}{a})}$
- Real at low energies
- parameters are fitted to experiment
- no analytical solution of the Schrödinger equation

Woods-Saxon potential r_0 =range (~sum of the radii) a= diffuseness (~0.5 fm)

Figure: V_0 =50 MeV, r_0 =5 fm, a = 0.5 fm

Coulomb potential: long range, repulsive

• « point-point » potential :
$$V_C(r) = \frac{Z_1 Z_2 e^2}{r}$$

« point-sphere » potential : (radius
$$R_C$$
)
 $V_C(r) = \frac{Z_1 Z_2 e^2}{r}$ for $r \ge R_C$
 $V_C(r) = \frac{Z_1 Z_2 e^2}{2R_C} \left(3 - \left(\frac{r}{R_C}\right)^2\right)$ for $r \le R_C$

Total potential : $V(r) = V_N(r) + V_C(r)$: presents a maxium at the Coulomb barrier

• radius $r = R_B$

.

• height $V(R_B) = E_B$

3. Scattering amplitude and cross section

$$H\Psi(\mathbf{r}) = \left(-\frac{\hbar^2}{2\mu}\Delta + V(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

At large distances : $\Psi(\mathbf{r}) \to A\left(e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta)\frac{e^{ikr}}{r}\right)$ (with z along the beam axis)

where: k=wave number: $k^2 = 2\mu E/\hbar^2$ A =amplitude (scattering wave function is not normalized to unity) $f(\theta)$ =scattering amplitude (length)

- Cross section obtained from the asymptotic part of the wave function General problem for scattering states: the wave function must be known up to large distances
- "Direct" problem: determine σ from the potential
- "Inverse" problem : determine the potential V from σ
- Angular distribution: E fixed, θ variable
- Excitation function: θ variable, E fixed,

Main issue: determining the scattering amplitude $f(\theta)$ (and wave function $\Psi(r)$)

At low energies: partial wave expansion: $\Psi(\mathbf{r}) = \sum_{lm} \Psi_l(\mathbf{r}) Y_l^m(\theta, \phi)$

- Scattering wave function necessary to compute cross sections
- \circ Must be determined for each partial wave l
- Main interest: few partial waves at low energies

4. Phase-shift method

• Goal: solving the Schrodinger equation

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

with a partial-wave expansion

$$\Psi(\mathbf{r}) = \sum_{\ell,m} \frac{u_{\ell}(r)}{r} Y_{\ell}^{m}(\Omega_{r}) Y_{\ell}^{m*}(\Omega_{k})$$

- Simplifying assumtions
 - neutral systems (no Coulomb interaction)
 - spins zero
 - single-channel calculations → elastic scattering

- 4. General scattering theory
- The wave function is expanded as

$$\Psi(\mathbf{r}) = \sum_{\ell,m} \frac{u_{\ell}(\mathbf{r})}{r} Y_{\ell}^{m}(\Omega_{r}) Y_{\ell}^{m*}(\Omega_{k})$$

• This provides the Schrödinger equation for each partial wave ($\Omega_k = 0 \rightarrow m = 0$)

$$-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right)\boldsymbol{u}_{\boldsymbol{\ell}} + V(r)\boldsymbol{u}_{\boldsymbol{\ell}} = E\boldsymbol{u}_{\boldsymbol{\ell}}$$

• Large distances :
$$r \to \infty, V(r) \to 0$$

 $u_{\ell}'' - \frac{\ell(\ell+1)}{r^2} u_{\ell} + k^2 u_{\ell} = 0$ Bessel equation $\to u_{\ell}(r) = rj_{\ell}(kr), rn_{\ell}(kr)$

- Remarks
 - must be solved for all ℓ values
 - at low energies: few partial waves in the expansion
 - at small $r: u_{\ell}(r) \to r^{\ell+1}$

For small x:
$$j_l(x) \rightarrow \frac{x^l}{(2l+1)!!}$$

 $n_l(x) \rightarrow -\frac{(2l-1)!!}{x^{l+1}}$
For large x: $j_l(x) \rightarrow \frac{1}{x} \sin(x - l\pi/2)$
 $n_l(x) \rightarrow -\frac{1}{x} \cos(x - l\pi/2)$

At large distances: $u_{\ell}(r)$ is a linear combination of $rj_{\ell}(kr)$ and $rn_{\ell}(kr)$

$$u_{\ell}(r) \to C_l r \left(j_{\ell}(kr) - \tan \delta_{\ell} \times n_{\ell}(kr) \right)$$

With δ_{ℓ} = phase shift (provides information about the potential): If V=0 $\rightarrow \delta_{\ell} = 0$

Derivation of the elastic cross section

• Identify the asymptotic behaviours

$$\Psi(\mathbf{r}) \to A\left(e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta)\frac{e^{ikr}}{r}\right)$$
$$\Psi(\mathbf{r}) \to \sum_{\ell} C_{\ell} \left(j_{\ell}(kr) - \tan \delta_{\ell} \times n_{\ell}(kr)\right) Y_{\ell}^{0}(\Omega_{r}) \sqrt{\frac{2\ell+1}{4\pi}}$$

• Provides coefficients C_{ℓ} and scattering amplitude $f(\theta)$ (elastic scattering)

$$f(\theta, E) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1) (\exp(2i\delta_{\ell}(E)) - 1) P_{\ell}(\cos\theta)$$
$$\frac{d\sigma(\theta, E)}{d\Omega} = |f(\theta, E)|^2$$

Integrated cross section (neutral systems only)

$$\sigma = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell + 1) \sin^2 \delta_{\ell}$$

• In practice, the summation over ℓ is limited to some ℓ_{max}

$$\frac{d\sigma(\theta, E)}{d\Omega} = |f(\theta, E)|^2 \text{ with } f(\theta, E) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1)(\exp(2i\delta_{\ell}(E)) - 1) P_{\ell}(\cos\theta)$$

→ factorization of the dependences in *E* and θ low energies: small number of ℓ values ($\delta_{\ell} \rightarrow 0$ when ℓ increases) high energies: large number (→ alternative methods)

General properties of the phase shifts

- 1. The phase shift (and all derivatives) are continuous functions of E
- 2. The phase shift is known within $n\pi : \exp 2i\delta = \exp(2i(\delta + n\pi))$
- 3. Levinson theorem
 - $\delta_{\ell}(E=0)$ is arbitrary
 - $\delta_{\ell}(0) \delta_{\ell}(\infty) = N\pi$, where N is the number of bound states in partial wave ℓ
 - Example: p+n, $\ell = 0: \delta_0(0) \delta_0(\infty) = \pi$ (bound deuteron) $\ell = 1: \delta_1(0) - \delta_1(\infty) = 0$ (no bound state for $\ell = 1$)

• Example: hard sphere (radius a)

• continuity at
$$r = a \rightarrow j_{\ell}(ka) - \tan \delta_{\ell} \times n_{\ell}(ka) = 0$$
 $\rightarrow \tan \delta_{\ell} = \frac{j_{\ell}(ka)}{n_{\ell}(ka)}$
 $\rightarrow \delta_0 = -ka$

At low energies: $\delta_{\ell}(E) \rightarrow -\frac{(ka)^{2\ell+1}}{(2\ell+1)!!(2\ell-1)!!}$, in general: $\delta_{\ell}(E) \sim k^{2\ell+1}$

→ Strong difference between $\ell = 0$ (no barrier) et $\ell \neq 0$ (centrifugal barrier) (typical to neutron-induced reactions)

example : α +n phase shift $\ell = 0$

consistent with the hard sphere ($a \sim 2.2$ fm)

R. A. ARNDT AND L. D. ROPER

5. Resonances

Resonances: $\delta_R(E) \approx \operatorname{atan} \frac{\Gamma}{2(E_R - E)}$ = Breit-Wigner approximation

 E_R =resonance energy Γ =resonance width: related to the lifetime $\Gamma \tau = \hbar$

- Narrow resonance: Γ small, τ large
- Broad resonance: Γ large, τ small

• Bound states:
$$\Gamma = 0, E_R < 0$$

Cross section (for neutrons)

$$\sigma(E) = \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1) |\exp(2i\delta_{\ell}) - 1|^2 \text{ maximum for } \delta = \frac{\pi}{2}$$

Near the resonance: $\sigma(E) \approx \frac{4\pi}{k^2} (2\ell_R + 1) \frac{\Gamma^2/4}{(E_R - E)^2 + \Gamma^2/4}$, where ℓ_R =resonant partial wave

In practice:

- Peak not symmetric (Γ depends on E)
- « Background » neglected (other ℓ values)
- Differences with respect to Breit-Wigner

Comparison of 2 typical times:

a. Lifetime of the resonance: $\tau_R = \hbar/\Gamma \approx \frac{197}{3.10^{23} \times 6.10^{-3}} \approx 1.1 \times 10^{-19} s$ b. Interaction time without resonance: $\tau_{NR} = d/v \approx 5.2 \times 10^{-22} s \rightarrow \tau_{NR} << \tau_R$

Narrow resonances

- Small particle width
- long lifetime
- can be approximetly treated by *neglecting the asymptotic behaviour of the wave function*

Broad resonances

- Large particle width
- Short lifetime
- asymptotic behaviour of the wave function is important
 - ightarrow rigorous scattering theory
 - \rightarrow bound-state model complemented by other tools (complex scaling, etc.)

- Extension to charged systems
- Numerical calculation
- Optical model (high energies → absorption)
- Extension to multichannel problems

Generalization 1: charged systems

 $E \gg E_B$: weak coulomb effects (*V* negligible with respect to *E*) $E < E_B$: strong coulomb effects (ex: nuclear astrophysics)

A. Asymptotic behaviour

Neutral systems

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V_N(r) - E\right)\Psi(r) = 0$$

$$\Psi(r) \to \exp(i\mathbf{k} \cdot r) + f(\theta)\frac{\exp(ikr)}{r}$$

Charged systems

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V_N(r) + \frac{Z_1Z_2e^2}{r} - E\right)\Psi(r) = 0$$

$$\Psi(r)$$

$$\rightarrow \exp(i\mathbf{k}\cdot\mathbf{r} + i\eta\ln(\mathbf{k}\cdot\mathbf{r} - kr))$$

$$+ f(\theta)\frac{\exp(i(kr - \eta\ln 2kr))}{r}$$

$$\eta = \frac{Z_1Z_2e^2}{\hbar\nu}$$
• Sommerfeld parameter

- « measurement » of coulomb effects
- Increases at low energies
- Decreases at high energies

B. Phase shifts with the coulomb potential

Neutral system:

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} + k^2\right) R_{\ell} = 0$$

Bessel equation : solutions $j_{\ell}(kr), n_{\ell}(kr)$

Charged system:

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - 2\frac{\eta k}{r} + k^2\right) R_{\ell} = 0:$$

Coulomb equation: solutions $F_{\ell}(\eta, kr), G_{\ell}(\eta, kr)$

Incoming and outgoing functions (complex)

$$\begin{split} I_{\ell}(\eta, x) &= G_{\ell}(\eta, x) - iF_{\ell}(\eta, x) \to e^{-i(x - \frac{\ell\pi}{2} - \eta \ln 2x + \sigma_{\ell})}: \text{ incoming wave} \\ O_{\ell}(\eta, x) &= G_{\ell}(\eta, x) + iF_{\ell}(\eta, x) \to e^{i(x - \frac{\ell\pi}{2} - \eta \ln 2x + \sigma_{\ell})}: \text{ outgoing wave} \end{split}$$

- Phase-shift definition
 - neutral systems : $R_{\ell}(r) \rightarrow rA(j_{\ell}(kr) \tan \delta_{\ell} n_{\ell}(kr))$

○ charged systems:
$$R_{\ell}(r) \rightarrow A(F_{\ell}(\eta, kr) + \tan \delta_{\ell} G_{\ell}(\eta, kr))$$

 $\rightarrow B(\cos \delta_{\ell} F_{\ell}(\eta, kr) + \sin \delta_{\ell} G_{\ell}(\eta, kr))$
 $\rightarrow C(I_{\ell}(\eta, kr) - U_{\ell}O_{\ell}(\eta, kr))$

3 equivalent definitions (amplitude is different) Collision matrix (=scattering matrix)

$$U_{\ell} = e^{2i\delta_{\ell}}$$
: modulus $|U_{\ell}| = 1$

Example: hard-sphere potential

$$V(r) = \frac{Z_1 Z_2 e^2}{r} for r > a$$

$$\infty for r < a$$

phase shift: $\tan \delta_{\ell} = -\frac{F_{\ell}(\eta, ka)}{G_{\ell}(\eta, ka)}$

C. Rutherford cross section

For a Coulomb potential ($V_N = 0$):

- scattering amplitude : $f_c(\theta) = -\frac{\eta}{2k \sin^2 \theta/2} e^{2i(\sigma_0 \eta \ln \sin \theta/2)}$
- Coulomb phase shift for $\ell = 0$: $\sigma_0 = \arg \Gamma(1 + i\eta)$

We get the Rutherford cross section:

$$\frac{d\sigma_C}{d\Omega} = |f_c(\theta)|^2 = \left(\frac{Z_1 Z_2 e^2}{4E \sin^2 \theta/2}\right)^2$$

- Increases at low energies
- Diverges at $\theta = 0 \rightarrow$ no integrated cross section

D. Cross sections with nuclear and Coulomb potentials

The general definitions

$$f(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1) (\exp(2i\delta_{\ell}) - 1) P_{\ell}(\cos\theta)$$
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2$$

are still valid

Problem : very slow convergence with ℓ
 → separation of the nuclear and coulomb phase shifts

$$\delta_{\ell} = \delta_{\ell}^{N} + \sigma_{\ell}$$

$$\sigma_{\ell} = \arg \Gamma (1 + \ell + i\eta)$$

- Scattering amplitude $f(\theta)$ written as $f(\theta) = f^{C}(\theta) + f^{N}(\theta)$
 - $f^{C}(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell+1) (\exp(2i\sigma_{\ell}) 1) P_{\ell}(\cos\theta) = -\frac{\eta}{2k\sin^{2}\theta/2} e^{2i(\sigma_{0} \eta \ln \sin \theta/2)}$ \rightarrow analytical
 - $f^{N}(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell+1) \exp(2i\sigma_{\ell}) (\exp(2i\delta_{\ell}^{N}) 1) P_{\ell}(\cos\theta)$ \rightarrow converges rapidly

Total cross section:
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = |f^C(\theta) + f^N(\theta)|^2$$

- Nuclear term dominant at 180°
- Coulomb term coulombien dominant at small angles \rightarrow used to normalize experiments
- Coulomb term coulombler defined and the angle $\rightarrow \frac{d\sigma/d\Omega}{d\sigma_c/d\Omega}$
- Integrated cross section $\int \frac{d\sigma}{d\Omega} d\Omega$ is not defined

System ⁶Li+⁵⁸Ni

•
$$E_{cm} = \frac{58}{64} E_{lab}$$

• Coulomb barrier

$$E_B \sim \frac{3 * 28 * 1.44}{7} \sim 17 \text{ MeV}$$

- Below the barrier: $\sigma \sim \sigma_C$
- Above $E_B : \sigma$ is different from σ_C

Generalization 2: numerical calculation

For some potentials: analytic solution of the Schrödinger equation

In general: no analytical solution \rightarrow numerical approach

$$-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} u_{\ell}(r) + (V(r) - E) u_{\ell}(r) = 0$$

with: $V(r) = V_N(r) + \frac{Z_1 Z_2 e^2}{r} + \frac{\hbar^2}{2\mu} \frac{\ell(\ell+1)}{r^2}$ $u_{\ell}(r) \to F_{\ell}(kr,\eta) \cos \delta_{\ell} + G_{\ell}(kr,\eta) \sin \delta_{\ell}$

Numerical solution : discretization N points, with mesh size h

- $u_l(0) = 0$
- $u_l(h) = 1$ (or any constant)
- $u_l(2h)$ is determined numerically from $u_l(0)$ and $u_l(h)$ (Numerov algorithm)
- $\bullet \, u_l(3h), \ldots u_l(Nh)$
- for large r: matching to the asymptotic behaviour \rightarrow phase shift

Bound states: same idea (but energy is unknown)

Experimental phase shifts

Potential: $V_N(r) = -122.3 \exp(-(r/2.13)^2)$

 $\alpha + \alpha$ wave function for $\ell = 0$

Generalization 3: complex potentials $V = V_R + iW$

Goal: to simulate absorption channels

High energies:

- many open channels
- strong absorption
- potential model extended to complex potentials (« optical »)

Phase shift is complex: $\delta = \delta_R + i\delta_I$ collision matrix: $U = \exp(2i\delta) = \eta \exp(2i\delta_R)$ where $\eta = \exp(-2\delta_I) < 1$

Elastic cross section

$$\frac{d\sigma}{d\Omega} = \frac{1}{4k^2} \left| \sum_{\ell} (2\ell + 1)(\eta_{\ell} \exp(2i\delta_{\ell}) - 1) P_{\ell}(\cos\theta) \right|^2$$

Reaction cross section:

$$\sigma = \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1)(1 - \eta_{\ell}^2)$$
In astrophysics, optical potentials are used to compute fusion cross sections

Fusion cross section: includes many channels

Example: ¹²C+¹²C: Essentially ²⁰Ne+ α , ²³Na+p, ²³Mg+n channels \rightarrow absorption simulated by a complex potential $V = V_R + iW$

Typical potentials

A. Real part

• Woods-Saxon: $V_R(r) = -\frac{V_0}{1 + \exp(\frac{r-r_0}{a})}$ with parameters V_0 , r_0 , a adjusted to experiment

Folding

$$V_R(r) = \lambda \iint dr_1 dr_2 v_{NN} (r - r_1 + r_2) \rho_1(r_1) \rho_2(r_2)$$

 v_{NN} =nucleon-nucleon interaction λ =amplitude (~1), adjustable parameter ρ_1 , ρ_2 =nuclear densities (in general known experimentally)

Main advantage: only one parameter λ

B. Imaginary part

٠

Woods-Saxon:
Volume:
$$W(r) = -W_0 f(r) = -\frac{W_0}{1 + \exp(\frac{r - r_0}{a})}$$

Surface $W(r) = -W_0 \frac{df(r)}{dr}$

• Folding $W(r) = N_I V_R(r)$

Example: α +¹⁴⁴Sm P. Mohr et al., Phys. Rev. C55 (1997) 1523 Measurement of elastic scattering \rightarrow optical potential \rightarrow used for astrophysics

6. Models used for nuclear reactions in astrophysics

6. Models used in nuclear astrophysics (for reactions)

Theoretical methods: Many different cases \rightarrow no "unique" model!

Model	Applicable to	Comments	
Potential/optical model	Capture Fusion	Internal structure neglectedAntisymetrization approximated	
<i>R</i> -matrix	Capture Transfer	No explicit wave functionsPhysics simulated by some parameters	Light systems
DWBA	Transfer	 Perturbation method Wave functions in the entrance and exit channels 	Low level densities
Microscopic models	Capture Transfer	 Based on a nucleon-nucleon interaction <i>A</i>-nucleon problems Predictive power 	
Hauser-Feshbach Shell model	Capture Transfer Capture	Statistical modelOnly gamma widths	Heavy systems

Potential model: two structureless particles (=optical model, without imaginary part)

- Calculations are simple
- Physics of the problem is identical in other methods
- Spins are neglected
- R_{cm} =center of mass, r =relative coordinate

$$r_1 = R_{cm} - \frac{A_2}{A}r$$
$$r_2 = R_{cm} + \frac{A_1}{A}r$$

• Initial wave function: $\Psi^{\ell_i m_i}(\mathbf{r}) = \frac{1}{r} u_{\ell_i}(r) Y_{\ell_i}^{m_i}(\Omega)$, energy E^{ℓ_i} =scattering energy EFinal wave function: $\Psi^{\ell_f m_f}(\mathbf{r}) = \frac{1}{r} u_{\ell_f}(r) Y_{\ell_f}^{m_f}(\Omega)$, energy E^{ℓ_f} The radial wave functions are given by:

$$-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right)u_\ell + V(r)u_\ell = E^\ell u_\ell$$

- Schrödinger equation: $-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} \frac{\ell(\ell+1)}{r^2}\right) u_\ell + V(r)u_\ell = E^\ell u_\ell$
- Typical potentials:
 - coulomb =point-sphere
 - nuclear: Woods-Saxon, Gaussian parameters adjusted on important properties (bound-state energy, phase shifts, etc.)
- Potentials can be different in the initial and final states
- Wave functions computed numerically (Numerov algorithm)
- Limitations
 - initial (scattering state): must reproduce resonances (if any)
 - final (bound) state: must have a A+B structure

Some typical examples

Problem more and more important when the level density increases

 \rightarrow in practice: limited to low-level densities (light nuclei or nuclei close to the drip lines)

• Electric operator for two particles:

$$\mathcal{M}_{\mu}^{E\lambda} = e\left(Z_{1}|\boldsymbol{r_{1}} - \boldsymbol{R_{cm}}|^{\lambda} Y_{\lambda}^{\mu}(\Omega_{r_{1}}-R_{cm}) + Z_{2}|\boldsymbol{r_{2}} - \boldsymbol{R_{cm}}|^{\lambda} Y_{\lambda}^{\mu}(\Omega_{r_{2}}-R_{cm})\right)$$

which provides

$$\mathcal{M}_{\mu}^{E\lambda} = e \left[Z_1 \left(-\frac{A_2}{A} \right)^{\lambda} + Z_2 \left(\frac{A_1}{A} \right)^{\lambda} \right] r^{\lambda} Y_{\lambda}^{\mu}(\Omega_r) = e Z_{eff} r^{\lambda} Y_{\lambda}^{\mu}(\Omega_r)$$

• Matrix elements needed for electromagnetic transitions

$$<\Psi^{J_f m_f} \left| \mathcal{M}_{\mu}^{E\lambda} \right| \Psi^{J_i m_i} > = eZ_{eff} < Y_{J_f}^{m_f} \left| \frac{Y_{\lambda}^{\mu}}{\lambda} \right| Y_{J_i}^{m_i} > \int_0^\infty u_{J_i}(r) u_{J_f}(r) r^{\lambda} dr$$

• Reduced matrix elements:

$$< \Psi^{J_f} \| \mathcal{M}^{E\lambda} \| \Psi^{J_i} > = eZ_{eff} < J_f 0\lambda 0 | J_i 0 > \\ \times \left(\frac{(2J_i + 1)(2\lambda + 1)}{4\pi (2J_f + 1)} \right)^{1/2} \int_0^\infty u_{J_i}(r) u_{J_f}(r) r^{\lambda} dr$$

 \rightarrow simple one-dimensional integrals

Assumptions:

- spins zero: $\ell_i = J_i$, $\ell_f = J_f$
- given values of J_i, J_f, λ

initial state E: all J_i are possible wave functions $u_{J_i}(r, E)$ photon with multipolarity λ Final state E_f , J_f

wave function: $u_{J_f}(r)$

Integrated cross section

$$\sigma_{\lambda}(E) = \frac{8\pi}{k^2} \frac{e^2}{\hbar c} Z_{eff}^2 k_{\gamma}^{2\lambda+1} F(\lambda, J_i, J_f) \left| \int_0^\infty u_{J_i}(r, E) u_{J_f}(r) r^{\lambda} dr \right|^2$$

with

•
$$Z_{eff} = Z_1 \left(-\frac{A_2}{A}\right)^{\lambda} + Z_2 \left(\frac{A_1}{A}\right)^{\lambda}$$

• $\Gamma(\lambda + L) = \zeta L^{10} O(L - 0) = (2L + 1)^{(\lambda+1)(2\lambda+1)}$

•
$$F(\lambda, J_i, J_f) = \langle J_i \lambda 0 \ 0 | J_f 0 \rangle (2J_i + 1) \frac{1}{\lambda(2\lambda + 1)!!^2}$$

• $k_{\gamma} = \frac{E - E_f}{\hbar c}$

Normalization

- final state (bound): normalized to unity $u_I(r) \rightarrow CW(2k_Br) \rightarrow C\exp(-k_Br)$
- initial state (continuum): $u_J(r) \rightarrow F_J(kr) \cos \delta_J + G_J(kr) \sin \delta_J$

Integrated vs differential cross sections

• Total (integrated) cross section:

$$\sigma(E) = \sum_{\lambda} \sigma_{\lambda}(E)$$

ightarrow no interference between the multipolarities

• Differential cross section:

$$\frac{d\sigma}{d\theta} = \left| \sum_{\lambda} a_{\lambda}(E) P_{\lambda}(\theta) \right|^{2}$$

- $P_{\lambda}(\theta)$ =Legendre polynomial
- $a_{\lambda}(E)$ are complex, $\sigma_{\lambda}(E) \sim |a_{\lambda}(E)|^2$
 - \rightarrow interference effects
 - ightarrow angular distributions are necessary to separate the multipolarities
 - \rightarrow in general one multipolarity is dominant (not in ¹²C(α,γ)¹⁶O: E1 and E2)

Example: ${}^{12}C(p,\gamma){}^{13}N$

- First reaction of the CNO cycle
- Well known experimentally
- Presents a low energy resonance ($\ell = 0 \rightarrow J = 1/2^+$)

Potential : $V = -55.3^{*} \exp(-(r/2.70)^{2})$ (final state) -70.5* $\exp(-(r/2.70)^{2})$ (initial state)

The calculation is repeated at all energies

Necessity of a spectroscopic factor S

Assumption of the potential model: ${}^{13}N={}^{12}C+p$ In reality ${}^{13}N={}^{12}C+p \oplus {}^{12}C^*+p \oplus {}^{9}Be+\alpha \oplus$

→ to simulate the missing channels: $u_f(r)$ is replaced by $S^{1/2}u_f(r)$ S=spectroscopic factor

Other applications: ⁷Be(p, γ)⁸B, ³He(α , γ)⁷Be, etc...

- General presentation
- Single resonance system
- Applications to elastic scattering ¹²C+p
- Application to ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{12}C(\alpha,\gamma){}^{16}O$

- Introduced by Wigner (1937) to parametrize resonances (nuclear physics) In nuclear astrophysics: used to fit data
- Provides scattering properties at all energies (not only at resonances)
- Based on the existence of 2 regions (radius a):
 - Internal: coulomb+nuclear
 - external: coulomb

Exit channels

Main Goal: fit of experimental data

¹⁸Ne+p elastic scattering \rightarrow resonance properties

Nuclear astrophysics: ${}^{12}C(\alpha,\gamma){}^{16}O$ → Extrapolation to low energies

• Internal region: The R matrix is given by a set of resonance parameters E_i , γ_i^2

$$R(E) = \sum_{i} \frac{\gamma_{i}^{2}}{E_{i}-E} = a \frac{\Psi'(a)}{\Psi(a)}$$
 i=3, E_{3}, γ_{3}^{2}
i=2, E_{2}, γ_{2}^{2}
i=1, E_{1}, γ_{1}^{2}

• External region: Coulomb behaviour of the wave function $\Psi(r) = I(r) - UO(r)$

 \rightarrow the collision matrix U is deduced from the R-matrix (repeated for each spin/parity $J\pi$)

- Two types of applications:
 - **phenomenological R matrix**: γ_i^2 and E_i are fitted to the data (astrophysics)
 - calculable R matrix: γ_i^2 and E_i are computed from basis functions (scattering theory)
- R-matrix radius *a* is not a parameter: the cross sections must be insensitive to *a*
- Can be extended to multichannel calculations (transfer), capture, etc.
- Well adapted to nuclear astrophysics: low energies, low level densities

A simple case: elastic scattering with a single isolated resonance

- From the total width $\Gamma \rightarrow$ reduced width $\Gamma = 2\gamma^2 P_l(E_R)$ $P_l(E_R)$ =penetration factor
- Link between $(E_R, \gamma^2) \leftrightarrow (E_0, \gamma_0^2)$
- Calculation of the R-matrix $R(E) = \frac{\gamma_0^2}{E_0 E}$
- Calculation of the scattering matrix: $U(E) = \frac{I(ka)}{O(ka)} \frac{1 L^*R(E)}{1 LR(E)}$ (must be done for each ℓ)
- Calculation of the cross section $\rightarrow E_0$ and/or γ_0^2 can be fitted

Example: ${}^{12}C+p$: $E_R=0.42$ MeV

In the considered energy range: resonance J=1/2+ ($\ell = 0$)

- \rightarrow Phase shift for $\ell = 0$ is treated by the R matrix
- \rightarrow Other phase shifts $\ell > 0$ are given by the hard-sphere approximation

First example: Elastic scattering ¹²C+p Data from H.O. Meyer et al., Z. Phys. A279 (1976) 41

R matrix fits for different channel radii

а	E _R	Γ	Eo	γ ₀ 2	χ^2
4.5	0.4273	0.0341	-1.108	1.334	2.338
5	0.4272	0.0340	-0.586	1.068	2.325
5.5	0.4272	0.0338	-0.279	0.882	2.321
6	0.4271	0.0336	-0.085	0.745	2.346

$\rightarrow E_R$, Γ very stable with a

 \rightarrow global fit independent of a

Extension to transfer, example: ${}^{18}F(p,\alpha){}^{15}O$

	resonance: energy E_R , partial widths Γ_1 , Γ_2 (or γ_1^2 , γ_2^2) = "observed parameters" "calculated" parameters: E_0 , γ_{01}^2 , γ_{02}^2
	threshold 1 (p+ ¹⁸ F)
	threshold 2 (α + ¹⁵ O)

- Link between $(E_R, \gamma_1^2, \gamma_2^2) \leftrightarrow E_0, \gamma_{01}^2, \gamma_{02}^2$ more complicated
 - $R_{ii}(E) = \frac{\gamma_{01}^2}{E_0 E}$ associated with the entrance channel $R_{ff}(E) = \frac{\gamma_{02}^2}{E_0 E}$ associated with the exit channel R-matrix: 2x2 matrix $R_{if}(E) = \frac{\gamma_{01}\gamma_{02}}{E_0 - F}$ associated with the transfer Scattering matrix: 2x2: $U_{11}, U_{22} \rightarrow$ elastic cross sections
- - U_{12} , \rightarrow transfer cross section More parameters, but some are common to elastic scattering (E_0, γ_{01}^2)
 - \rightarrow constraints with elastic scattering

Recent application to ${}^{18}F(p,p){}^{18}F$ and ${}^{18}F(p,\alpha){}^{15}O$ D. Mountford et al, *Phys. Rev. C 85 (2012) 022801*

simultaneous fit of both cross sections angle: 176° for each resonance: $J\pi$, E_R , Γ_p , Γ_α 8 resonances \rightarrow 24 parameters

Extension to radiative capture

E	resonance: energy E_R , reduced γ^2 , gamma width Γ_{γ} = "observed parameters" "calculated" parameters: E_0 , γ_0^2 , $\Gamma_{0\gamma}$
	Final state: ANC C _f

Capture reaction= transition between an initial state at energy *E* to bound states

Cross section
$$\sigma_{\mathcal{C}}(E) \sim |\langle \Psi_f | H_{\gamma} | \Psi_i(E) \rangle|^2$$

Additional pole parameter: gamma width $\Gamma_{\gamma i}$

$$<\Psi_f |H_{\gamma}|\Psi_i(E)> = <\Psi_f |H_{\gamma}|\Psi_i(E)>_{int} + <\Psi_f |H_{\gamma}|\Psi_i(E)>_{ext}$$

internal part:
$$< \Psi_f | H_\gamma | \Psi_i(E) >_{int} \sim \sum_{i=1}^N \frac{\gamma_i \sqrt{\Gamma_{\gamma i}}}{E_i - E}$$

external part: $<\Psi_f | H_\gamma | \Psi_i(E) >_{ext} \sim C_f \int_a^\infty W(2k_f r) r^\lambda (I_i(kr) - UO_i(kr)) dr$

External part: $\langle \Psi_f | H_{\gamma} | \Psi_i(E) \rangle_{ext} \sim C_f \int_a^\infty W(2k_f r) r^\lambda (I_i(kr) - UO_i(kr)) dr$

Essentially depends on k_f

Witthaker function $W(2k_f r) \sim \exp(-k_f r)$

• k_f large: fast decrease example ¹²C(α,γ)¹⁶O, E_f =7.16 MeV, $\mu = 3$ \rightarrow external term negligible \rightarrow insensitive to C_f

 k_f small: slow decrease example: ⁷Be(p,γ)⁸B, E_f =0.137 MeV, $\mu = 7/8$ → external term dominant

ightarrow mainly given by \mathcal{C}_{f}

Contribution of internal/external terms depends on energy (external larger at low energies)

Example 1: ${}^{12}C(p,\gamma){}^{13}N$: R-matrix calculation with a single pole

Experiment: $E_R = 0.42 \text{ MeV}$, $\Gamma_p = 31 \text{ keV}$, $\Gamma_{\gamma} = 0.4 \text{ eV}$ Red line: internal contribution, pure Breit-Wigner approximation Green lines: external contribution: important at low energies, sensitive to the ANC 110

- Example 2: ${}^{12}C(\alpha,\gamma){}^{16}O$
- General presentation of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$
- •Determines the ¹²C/¹⁶O ratio
- •Cross section needed near E_{cm} =300 keV (barrier ~2.5 MeV) \rightarrow cannot be measured in the Gamow peak
- •1⁻ and 2⁺ subthreshold states
 - \rightarrow extrapolation difficult
- •E1 and E2 important (E1 forbidden when T=0)
- •Interferences between 1⁻₁,1⁻₂ and between 2⁺₁, 2⁺₂
- Capture to gs dominant but also cascade transitions

Many experiments

- Direct ¹²C(α,γ)¹⁶O (angular distributions are necessary: E1 and E2)
- Indirect: spectroscopy of 1⁻₁ and 2⁺₁ subthreshold states
- Constraints
 - α +¹²C phase shifts (1⁻ \rightarrow E1, 2⁺ \rightarrow E2)
 - E1: ¹⁶N beta decay (*Azuma et al, Phys. Rev. C50 (1994) 1194*) probes J=1⁻ → E1
 - E2: ???

Current situation

S(300 keV): current situation for E1

S(300 keV): current situation for E2

9. Microscopic models

9. Microscopic models

- \circ Goal: solution of the Schrödinger equation $H\Psi = E\Psi$
- Hamiltonian: $H = \sum_{i} T_{i} + \sum_{j>i} V_{ij}$ T_{i} = kinetic energy of nucleon *i* V_{ii} = nucleon-nucleon interaction
- **Cluster** approximation $\Psi = \mathcal{A}\phi_1\phi_2g(\rho)$

with ϕ_1, ϕ_2 = internal wave functions (**input, shell-model**) $g(\rho)$ =relative wave function (**output**) \mathcal{A} = antisymmetrization operator

- Generator Coordinate Method (GCM): the radial function is expanded in Gaussians
 → Slater determinants (well adapted to numerical calculations)
- \circ Microscopic R-matrix: extension of the standard R-matrix \rightarrow reactions

9. Microscopic models

Many applications: not only nuclear astrophysics spectroscopy, exotic nuclei, elastic and inelastic scattering, etc.

Extensions:

• Multicluster calculations: \rightarrow deformed nuclei (example: ⁷Be+p)

- Multichannel calculations: Ψ = Aφ₁φ₂g(ρ) + Aφ₁^{*}φ₂^{*}g^{*}(ρ) + ···
 → better wave functions
 → inelastic scattering, transfer
- Ab initio calculations: no cluster approximation
 →very large computer times
 → limited to light nuclei
 - \rightarrow limited to light nuclei
 - \rightarrow difficult for scattering (essentially limited to nucleon-nucleus)
Example: $^{7}Be(p,\gamma)^{8}B$

- Important for the solar-neutrino problem
- Since 1995, many experiments:
 - Direct (proton beam on a ⁷Be target)
 - Indirect (Coulomb break-up)
- Extrapolation to zero energy needs a theoretical model (energy dependence)

From E. Adelberger et al., Rev. Mod. Phys.83 (2011) 196

astrophysical energies

Example: $^{7}Be(p,\gamma)^{8}B$

- Microscopic cluster calculations: 3-cluster calculations
 - P. D. and D. Baye, Nucl. Phys. A567 (1994) 341
 - P.D., Phys. Rev. C 70, 065802 (2004)
- Includes the deformation of ⁷Be: cluster structure a+³He
- Includes rearrangement channels ⁵Li+³He
- Can be applied to ⁸B/⁸Li spectroscopy
- Can be applied to ${}^{7}Be(p,\gamma){}^{8}B$ and ${}^{7}Li(n,\gamma){}^{8}Li$

Spectroscopy of ⁸B

	experiment	Volkov	Minnesota
μ (2+) (μ _N)	1.03	1.48	1.52
Q(2+) (e.fm ²)	$\textbf{6.83} \pm \textbf{0.21}$	6.6	6.0
B(M1,1 ⁺ →2 ⁺) (W.u.)	5.1 ± 2.5	3.4	3.8

Channel components in the ⁸B ground state

⁷ Be(3/2 ⁻)+p	47%
⁷ Be(1/2 ⁻)+p	9%
⁵ Li(3/2 ⁻)+ ³ He	34%
⁵ Li(1/2 ⁻)+ ³ He	3%

 \Rightarrow Important role of the 5+3 configuration

⁷Be(p,γ)⁸B S factor

- Low energies (E<100 keV): energy dependence given by the Coulomb functions
- 2 NN interactions (MN, V2): \rightarrow the sensitivity can be evaluated
- Overestimation: due to the ⁸B ground state (cluster approximation)

Cluster models

- In general a good approximation, but do not allow the use of realistic NN interactions
- Example: α particle described by 4 0s orbitals
 - \rightarrow intrinsic spin =0
 - ightarrow no spin-orbit, no tensor force, no 3-body force
 - \rightarrow these terms are simulated by (central) NN interactions

Ab initio models

- No cluster approximation
- Use of realistic NN interactions (fitted on deuteron, NN phase shifts, etc.)
- Application: d+d systems ²H(d,γ)⁴He, ²H(d,p)³H, ²H(d,n)³He two physics issues
 - Analysis of the d+d S factors (Big-Bang nucleosynthesis)
 - Role of the tensor force in ${}^{2}H(d,\gamma){}^{4}He$

²H(d, γ)⁴He S factor

- Ground state of ⁴He=0+
- E1 forbidden \rightarrow main multipole is E2 \rightarrow 2⁺ to 0⁺ transition \rightarrow d wave as initial state
- Experiment shows a plateau below 0.1 MeV: typical of an s wave
- Interpretation : the ⁴He ground state contains an admixture of d wave final 0⁺ state: $\Psi^{0+} = \Psi^{0+}(L = 0, S = 0) + \Psi^{0+}(L = 2, S = 2) = |0^+, 0 > + |0^+, 2 >$ initial 2⁺ state: $\Psi^{2+} = \Psi^{2+}(L = 2, S = 0) + \Psi^{2+}(L = 0, S = 2) = |2^+, 0 > + |2^+, 2 >$

Application: d+d systems

- Collaboration Niigata (K. Arai, S. Aoyama, Y. Suzuki)-Brussels (D. Baye, P.D.) Phys. Rev. Lett. 107 (2011) 132502
- Mixing of d+d, ³H+p, ³He+n configurations

- The total wave function is written as an expansion over a gaussian basis
- Superposition of several angular momenta
- 4-body problem (in the cluster approximation we would have: x₁=x₂=0)

We use 3 NN interactions:

- Realistic: Argonne AV8', G3RS
- Effective: Minnesota MN

- No parameter
- MN does not reproduce the plateau (no tensor force)
- D wave component in ⁴He: 13.8% (AV8') 11.2% (G3RS)

Transfer reactions ²H(d,p)³H, ²H(d,n)³He

10. Conclusions

Needs for nuclear astrophysics:

- low energy cross sections
- resonance parameters

Experiment: direct and indirect approaches

Theory: various techniques

- fitting procedures (R matrix) \rightarrow extrapolation
- non-microscopic models: potential, DWBA, etc.
- microscopic models:
 - cluster: developed since 1960's, applied to NA since 1980's
 - \succ ab initio: problems with scattering states, resonances \rightarrow limited at the moment
- Current challenges: new data on ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$, triple α process, ${}^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$, etc. D(d, γ) ${}^{4}\text{He}$: 4 nucleons \rightarrow 4 clusters