NIC-XIII school, 2014 ПKAVVU

Stellar structure
 \& Evolution

Raphael Hirschi

- L1: Basics of stellar structure and evolution
- L2: Physical ingredients
- L3: Massive stars
- L4: Low- and intermediate-mass stars

Acknowledgements er Bibliography

- Slides in white background (with blue title) were taken from Achim Weiss' lecture slides, which you can find here: http://www.mpa-garching.mpg.de/~weiss/lectures.html
- Some graphs were taken from Onno Pols' lecture notes on stellar evolution, which you can find here:

http://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/

- Some slides (colourful ones) and content was taken from George Meynet's summer school slides.

Acknowledgements é Bibliography

Recommended further reading:

- R. Kippenhahn \& A. Weigert, Stellar Structure and Evolution, 1990, Springer-Verlag, ISBN 3-540-50211-4
- A. Maeder, Physics, Formation and Evolution of Rotating Stars, 2009, Springer-Verlag, ISBN 978-3-540-76948-4
- D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, 2000, Cambridge University Press, ISBN 0-521-65937-X
- C.J. Hansen, S.D. Kawaler \& V. Trimble, Stellar Interiors, 2004, SpringerVerlag, ISBN 0-387-20089-4
- M. Salaris \& S. Cassisi, Evolution of Stars and Stellar Populations, 2005, John Wiley \& Sons, ISBN 0-470-09220-3
- Importance and observational constraints
- Physics governing the structure and evolution of stars
- Equations of stellar structure
- Modelling stars and their evolution

Importance as

Luminous Blue Variables
 Wolf-Rayet Luminous Blue Variables

Red SuperGiant

OB stars
OHST

(C)B. Mendez

Importance as rogrevito ens

White
Dwarfs

Supernovae

Neutron Stars

Black Holes

© STSCi

Importance for

Stars Role in Iniverse

© NASA - WMAP science team
Dark Energy
Accelerated Expansion

- Re-ionisation
- Kinetic feedbadk

Big Bang Expansion

- Chemical feedback observed in EMP stars

First Stellar Generations: Importance

Observational Data

- Photometry \rightarrow brightness and colour
- Spectroscopy $\rightarrow T_{\text {eff }}, \mathrm{g}, \mathrm{X}_{\mathrm{i}}$ (composition), mass loss
- Astrometry \rightarrow distance
- Eclipsing binaries \rightarrow mass ratios, orbital info
- Occultations \& interferometry \rightarrow angular diameter, R
- Seismology \rightarrow interior structure: c_{s}, ρ, \ldots

Observational Data: Y $\mathcal{T} \mathcal{D}$

Hertzsrpung-Russell (HR) Diagram:

Stellar Luminosity

How can two stars have the same temperature, but vastly different luminosities?

- The luminosity of a star depends on 2 things:
- surface temperature
- surface area (radius)
- $\mathrm{L}=\sigma \mathrm{T}^{4} 4 \pi \mathrm{R}^{2}$ ($\sigma=5.67 \mathrm{e}-8 \mathrm{Wm}^{-2} \mathrm{~T}^{-4}$)
- The stars have different sizes!!
- The largest stars are in the upper right corner of the H-R Diagram.

Stellar Luminosity Classes

Table 15.2 Stellar Luminosity Classes

Class

I

Radius of largest stars is larger than 1 AU !
© 2004 Pearson Education Inc., publishing as Addison-Wesley

The Most Voluminous Stars

(2)

Earth < Neptune < Uranus < Saturn < Jupiter
(4) Sirius < Pollux < Arcturus < Aldebaran

The Most Voluminous Stars

Stellar Evolution in 1 Slide

Stellar Evolution Theory

Goal of stellar evolution theory:
"To understand the structure and evolution of stars, and their observational properties, using known laws of physics"

Basic assumptions:

- Stars are self-gravitating hot plasma
- Stars emit energy in the form of photons from the surface (+ neutrinos in advanced phases)
- Stars are (approximately) spherically symmetric
\rightarrow Can be reduced to a 1D problem, with radius as the natural coordinate (Euler description)

Radius and Mass

- Euler description: radius as indep. variable but more convenient to use mass, m_{r}, as independent variable (Lagrangian descr.)

Conservation of mass applied to a spherical

shell in a steady state $(\partial() / \partial t=0)$ gives:

Figure 2.1. Mass shell inside a spherically symmetric star, at radius r and with thickness $d r$. The mass of the shell is $d m=4 \pi r^{2} \rho d r$. The pressure and the gravitational force acting on a cylindrical mass element are also indicated.

From SE notes, O. Pols (2009)
$\mathrm{dm}=\rho \mathrm{dV}=4 \pi \mathrm{r}^{2} \rho \mathrm{dr}$ from which we can write:

$$
\mathrm{dr} / \mathrm{dm}=\left(4 \pi r^{2} \rho\right)^{-1}(1)
$$

Gravity and Equation of Motion

The gravitational field is given by Poisson's equation: $\nabla^{2} \Phi=4 \pi G \rho$.
In spherical symmetry, we get:

$$
\mathrm{g}=\mathrm{d} \Phi / \mathrm{dr}=\mathrm{Gm} / \mathrm{r}^{2}
$$

Conservation of momentum applied to a small gas element (see figure) gives:

$$
d^{2} r / d t^{2} d m=-g d m+P(r) d S-P(r+d r) d S
$$

which we can re-write as the eqn. of motion:

$$
\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}=-\mathrm{Gm} / \mathrm{r}^{2}-1 / \rho \mathrm{dP} / \mathrm{dr}
$$

Figure 2.1. Mass shell inside a spherically symmetric star, at radius r and with thickness $d r$. The mass of the shell is $d m=4 \pi r^{2} \rho d r$. The pressure and the gravitational force acting on a cylindrical mass element are also indicated.

Assuming hydrostatic equilibrium, we get:

$$
\mathrm{d}^{2} \mathrm{r} / \mathrm{dt} \mathrm{t}^{2}=0=-\mathrm{Gm} / \mathrm{r}^{2}-1 / \rho \mathrm{dP} / \mathrm{dr}
$$

Combining with Eqn (1): dr/dm $=\left(4 \pi r^{2} \rho\right)^{-1}$, we obtain:

$$
\mathrm{dP} / \mathrm{dm}=-\mathrm{Gm} /\left(4 \pi \mathrm{r}^{4}\right)(2)
$$

On the other hand, we can estimate the free-fall timescale, t_{ff}, by ignoring the pressure term in the eqn. of motion. We then can write:

$$
\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2} \approx \mathrm{R} / \mathrm{t}_{\mathrm{ff}}^{2} \rightarrow \mathrm{t}_{\mathrm{ff}} \approx \sqrt{ }(\mathrm{R} / \mathrm{g})\left(\approx 1 / 2 \sqrt{ }(\mathrm{G}<\rho>)=\mathrm{t}_{\mathrm{dyn}}\right)
$$

Examples for $\mathrm{t}_{\mathrm{H}} / \mathrm{t}_{\mathrm{dyn}}: 30 \mathrm{~min}$ for the sun, 18 days for red giant $\left(100 \mathrm{R}_{\odot}\right)$,
4.5 s for white dwarfs $\left(R_{\odot} / 50\right) \ll$ stars' lifetime
\rightarrow hydrostatic equil. is a good approximation

The Virial Theorem

The Virial theorem can be obtain by multiplying the hydrostatic equil.
Eqn. (2) by the volume $\left(\mathrm{V}=4 / 3 \pi r^{3}\right)$ and integrate over the total mass, M :

$$
\int \vee \mathrm{dP} / \mathrm{dm}=-1 / 3 \int(\mathrm{Gm} / \mathrm{r}) \mathrm{dm}=1 / 3 \mathrm{E}_{\text {grav }}
$$

The left hand-side term is related to the internal energy, $\mathrm{E}_{\mathrm{int}}$. After some algebra, one obtains for an ideal mono-atomic gas:

$$
E_{\text {grav }}=-2 E_{\text {int }}=-2 L d t
$$

If a star contracts, half of the energy is radiated away (L) and the other half is used to increase the internal energy (so T goes up).

Seeing it another way, the star loses energy by radiation (L) \rightarrow it must contract \rightarrow its internal energy/temperature goes up

Telvin-Hemfiolz and Nuclear Timescales

Kelvin and Helmholz independently derived the timescale for thermal adjustments, t_{KH}. Consider a star contracting due to gravity and supported only by thermal pressure (internal energy). The timescale for contraction is given by (using the Virial theorem):

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{KH}}=\mathrm{E}_{\mathrm{int}} / \mathrm{L} \approx-\mathrm{E}_{\mathrm{grav}} /(2 \mathrm{~L}) \approx-\mathrm{GM}^{2} /(2 \mathrm{RL}) \rightarrow \\
& \mathrm{t}_{\mathrm{KH}} \approx 1.5 \times 10^{7}\left(\mathrm{M} / \mathrm{M}_{\odot}\right)^{2}\left(\mathrm{R}_{\odot} / \mathrm{R}\right)\left(\mathrm{L}_{\odot} / \mathrm{L}\right) \mathrm{yr}
\end{aligned}
$$

Lifetime of Sun much longer than t_{KH}, thus something else powers stars: nuclear reactions!

Nuclear t: $\mathrm{t}_{\text {nuc }}=\mathrm{E}_{\text {nuc }} / \mathrm{L} \approx 0.007_{(m->E)} \mathrm{X}_{\mathrm{H}} \mathrm{f}_{\text {core }} \mathrm{Mc}^{2} / \mathrm{L} \approx 10^{10}\left(\mathrm{M} / \mathrm{M}_{\odot}\right)\left(\mathrm{L}_{\odot} / \mathrm{L}\right) \mathrm{yr}$

Conservation of Energy

Local energy conservation can be written as:

$$
\mathrm{dL} / \mathrm{dm}=\epsilon_{\text {nuc }}+\epsilon_{\text {grav-therm }}-\epsilon_{v^{\prime}}(3)
$$

Where ϵ are in units of erg/g/s.
$\epsilon_{\text {nuc }}$ is the nuclear energy generation rate,
$\epsilon_{\text {gravo-therm }}$ is the gravo-thermal energy generation rate (>0 for contraction)
ϵ_{v}, is the neutrino energy loss rate (absolute value) emitted by the plasma (as opposed to nuclear reactions).

Energy Transport

Average temperature gradient in the Sun: $\Delta \mathrm{T} / \Delta \mathrm{r} 10^{7} / 10^{11}=10^{-4} \mathrm{~K} / \mathrm{cm}$
Energy is transported by radiation, convection and conduction.

$$
\mathrm{dT} / \mathrm{dm}=-\mathrm{T} / \mathrm{P} * \mathrm{Gm} /\left(4 \pi \mathrm{r}^{4}\right) *(\partial \ln \mathrm{~T} / \partial \mathrm{InP})=-\mathrm{T} / \mathrm{P} * \mathrm{Gm} /\left(4 \pi \mathrm{r}^{4}\right) \nabla(4)
$$

- For radiation, $\nabla_{\mathrm{rad}}=3 /(16 \pi \mathrm{acG}) * \kappa_{\mathrm{r}} \mathrm{P} /\left(\mathrm{mT}^{4}\right)$,
where κ is the (Rosseland) mean opacity (assuming radiative diffusion)
- For conduction, the opacity is modified to include heat conduction
- For convection, $\nabla_{\mathrm{ad}}=\mathrm{P} \delta /\left(\mathrm{T} \rho \mathrm{c}_{\mathrm{p}}\right)$, (assuming adiabatic convection), which is a good approximation for stellar interiors but not the convective zones in the envelope, for which thermal losses much be considered. The mixing-length theory (Bohm-Vitense 1958) is most often used.

Importance:

- Transports energy and mixes composition
- Lengthens lifetime of stars (fresh fuel) if convective core is present
- Enables the enrichment of surface in giant stars with convective envelopes.

Perturbations and stability: convection

Schematic picture: the temperature excess $D T$ is positive, if the element is hotter than its surrounding. $D P=0$ due to hydrostatic equilibrium. If $D \rho<$ 0 , the element is lighter and will move upwards.
Take an element and lift it by $\triangle r$:

$$
D \rho=\left[\left(\frac{\partial \rho}{\partial r}\right)_{e}-\left(\frac{\partial \rho}{\partial r}\right)_{s}\right] \Delta r
$$

Stability condition

Note: The tricky bit here is to remember that these gradients are negative!
The stability condition thus is $\left(\frac{\partial \rho}{\partial r}\right)_{e}-\left(\frac{\partial \rho}{\partial r}\right)_{s}>0$. EOS: $\mathrm{d} \ln \rho=\alpha \mathrm{d} \ln P-\delta \mathrm{d} \ln T-\varphi \mathrm{d} \mu \rightarrow$ the stability condition changes into

$$
\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{s}-\left(\frac{\delta}{T} \frac{\mathrm{~d} T}{\mathrm{~d} r}\right)_{e}-\left(\frac{\varphi}{\mu} \frac{\mathrm{d} \mu}{\mathrm{~d} r}\right)_{s}>0
$$

multiply the stability condition by the pressure scale height

$$
H_{P}:=-\frac{\mathrm{d} r}{\mathrm{~d} \ln P}=-P \frac{\mathrm{~d} r}{\mathrm{~d} P}=\frac{P}{\rho g}>0 \Rightarrow
$$

Slides taken from Achim Weiss' lectures:

Stability condition ...

$$
\begin{aligned}
\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{s} & <\left(\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}\right)_{e}+\frac{\varphi}{\delta}\left(\frac{\mathrm{d} \ln \mu}{\mathrm{~d} \ln P}\right)_{s} \\
\nabla_{s} & <\nabla_{\mathrm{ad}}+\frac{\varphi}{\delta} \nabla_{\mu} \\
\nabla_{\mathrm{rad}} & <\nabla_{\mathrm{ad}}+\frac{\varphi}{\delta} \nabla_{\mu}
\end{aligned}
$$

The last equation holds in general cases and is called the Ledoux-criterion for dynamical stability. If $\nabla_{\mu}=0$, the Schwarzschild-criterion holds. Note: $\nabla_{\mu}>0$ and will stabilize.

The four ∇

In an unstable layer, the following relations hold:

$$
\nabla_{\mathrm{rad}}>\nabla>\nabla_{e}>\nabla_{\mathrm{ad}}
$$

The task of convection theory is to calculate ∇ !

Convection in stars

- highly turbulent (Reynolds number $\operatorname{Re}:=\frac{v \rho l_{m}}{\eta} \approx 10^{10} ; \eta$ viscosity; $l_{m}=10^{9} \mathrm{~cm}$; lab.: turbulence for $\mathrm{Re}>100$);)
- 3-dimensional and non-local
- motion in compressible medium on dynamical timescales (v speed of blobs $\approx 10^{3} \mathrm{~cm} / \mathrm{s}=10^{-5} v_{\text {sound }}$)
- 3-d hydro simulations limited to illustrative cases
- 2-d hydro: larger stellar parameter range; shallow convective layers
- dynamical models: averages, simplifications, too complicated for stellar evolution
$\Rightarrow \nabla$ from simple approaches with additional extensions

The Mixing Length Theory

$$
\begin{aligned}
F & =\frac{L_{r}}{4 \pi r^{2}}=F_{\mathrm{conv}}+F_{\mathrm{rad}} \\
F & =: \frac{4 a c G}{3} \frac{T^{4} m}{\kappa P r^{2}} \nabla_{\mathrm{rad}} \\
F_{\mathrm{rad}} & =\frac{4 a c G}{3} \frac{T^{4} m}{\kappa P r^{2}} \nabla \\
F_{\mathrm{conv}} & =\rho v c_{P}(D T)
\end{aligned}
$$

A blob starts somewhere with $D T>0$ and loses identity after a typical mixing length distance l_{m}. On average

$$
\frac{D T}{T}=\frac{1}{T} \frac{\partial(D T)}{\partial r} \frac{l_{m}}{2}=\left(\nabla-\nabla_{e}\right) \frac{l_{m}}{2} \frac{1}{H_{P}}
$$

The mixing length parameter

- mixing length $l_{m}=\alpha_{\mathrm{MLT}} H_{P} ; \alpha_{\mathrm{MLT}}$: mixing-length parameter
- $\alpha_{\text {MLT }}$ of order 1
- determined usually by solar models, $\alpha_{\text {MLT }} \approx 1.6 \cdots 1.9$
- or other comparisons with observations (giant stars with CE)
- NO calibration or meaning!

Examples for ∇ : Sun: $r=R_{\odot} / 2, m=M_{\odot} / 2, T=10^{7}, \rho=1$, $\delta=\mu=1$

$$
\rightarrow U=10^{-8} \rightarrow \nabla=\nabla_{\mathrm{ad}}+10^{-5}=0.4
$$

(as long as $\nabla_{\mathrm{rad}}<100 \cdot \nabla_{\mathrm{ad}}$); at center, $\nabla=\nabla_{\mathrm{ad}}+10^{-7}$.

Deficits of MLT

- local theory \rightarrow no overshooting from convective boundaries due to inertia of convective elements
- time-independent \rightarrow instantaneous adjustment; critical if other short timescales (pulsations, nuclear burning) present
- only one length scale, but spectrum of turbulent eddies \rightarrow improvements by Canuto \& Mazzitelli
- presence of chemical gradients ignored (semiconvection) \rightarrow treatment of such layers unclear; probably slow mixing on diffusive timescale due to secular g-modes; T-gradient radiative?

3 to $1 \mathcal{D}$ link for convection

3D simulations

Uncertainties in 1D

e.g. Arnett \& Meakin 2011 Mocak et al 2011, ...

Herwig et al 06

Meakin et al 2009 ; Bennett et al in prep
Determine effective diffusion (advection?) coefficient

The overall problem

- $m=M_{r}$: Lagrangian coordinate
- r, P, T, L_{r} : independent variables
- X_{i} : composition variables
- $\rho, \kappa, \epsilon, \ldots$. dependent variables
- initial value problem in time: $r(m, t=0), P(m, t=0)$,
$T(m, t=0), L_{r}(m, t=0), \vec{X}(m, t=0)=\vec{X}(t=0) \rightarrow$ integration with time
- boundary value problem in space: $r(m=0, t)=0$, $L_{r}(m=0, t)=0$ and $L=4 \pi \sigma R^{2} T_{\text {eff }}^{4}$, $P(m=M)=P(\tau=2 / 3)$

Slides taken from Achim Weiss' lectures:
http://www.mpa-garching.mpg.de/~weiss/lectures.html

The equations

The four structure equations to be solved are:

$$
\begin{aligned}
\frac{\partial r}{\partial m} & =\frac{1}{4 \pi r^{2} \rho} \\
\frac{\partial P}{\partial m} & =-\frac{G m}{4 \pi r^{4}}-\frac{1}{4 \pi r^{2}} \frac{\partial^{2} r}{\partial t^{2}} \\
\frac{\partial L_{r}}{\partial m} & =\epsilon_{n}-\epsilon_{\nu}-c_{P} \frac{\partial T}{\partial t}+\frac{\delta}{\rho} \frac{\partial P}{\partial t} \\
\frac{\partial T}{\partial m} & =-\frac{G m T}{4 \pi r^{4} P} \nabla
\end{aligned}
$$

The equations

For energy transport, we have to find the appropriate ∇. In case of radiative transport, this is:

$$
\nabla_{\mathrm{rad}}=\frac{3}{16 \pi a c G} \frac{\kappa L_{r} P}{m T^{4}}
$$

Finally, for the composition, we have

$$
\frac{\partial X_{i}}{\partial t}=\frac{m_{i}}{\rho}\left(\sum_{j} r_{j i}-\sum_{k} r_{i k}\right)+\text { diff. or similar terms }
$$

Numerical Procedure

In addition: $\rho\left(P, T, X_{i}\right), \kappa\left(P, T, X_{i}\right), r_{j k}\left(P, T, X_{i}\right), \epsilon_{n}\left(P, T, X_{i}\right)$, $\epsilon_{\nu}\left(P, T, X_{i}\right), \ldots$

In space (mass $0 \leq m \leq M$): boundary value problem with boundary conditions:

- at center: $r(0)=0, L_{r}(0)=0$
- at $r=R: P$ and T either from $P=0, T=0$ ("zero b.c.") or from atmospheric lower boundary and:
- Stefan-Boltzmann-law $L=4 \pi \sigma R^{2} T_{\text {eff }}^{4}$

Central conditions

Series expansion in m around center:

$$
\begin{aligned}
r & =\left(\frac{3}{4 \pi \rho_{c}}\right)^{1 / 3} m^{1 / 3} \\
P & =P_{c}-\frac{3 G}{8 \pi}\left(\frac{4 \pi}{3} \rho_{c}\right)^{4 / 3} m^{2 / 3} \\
L_{r} & =\left(\epsilon_{g}+\epsilon_{n}-\epsilon_{\nu}\right)_{c} m
\end{aligned}
$$

Stellar atmospheres (hydrostatic, grey):

- optical depth: $\tau:=\int_{R}^{\infty} \kappa \rho \mathrm{d} r=\bar{\kappa} \int_{R}^{\infty} \rho \mathrm{d} r$;
- pressure $P(R):=\int_{R}^{\infty} g \rho \mathrm{~d} r \approx g_{R} \int_{R}^{\infty} \rho \mathrm{d} r \Rightarrow P=\frac{G M}{R^{2}} \frac{2}{3} \frac{1}{\bar{\kappa}}$

In time, we have an initial value problem (zero-age model).

Numerical methods

Spatial problem

1. Direct integration : e.g. Runge-Kutta
2. Difference method : difference equations replace differential equations
3. Hybrid methods : direct integration between fixed mesh-points; multiple-fitting method, but the variation of the guesses at the fixed points is done via a Newton-method

The Henyey-method

Write the equations in a general form:

$$
A_{i}^{j}:=\frac{y_{i}^{j+1}-y_{i}^{j}}{m_{i}^{j+1}-m_{i}^{j}}-f_{i}\left(y_{1}^{j+1 / 2}, \ldots, y_{4}^{j+1 / 2}\right)
$$

upper index: grid-point ($j+1 / 2$ mean value); lower index:
i-th variable
Outer and inner boundary conditions:

$$
B_{i}=0 \quad i=1,2 \quad C_{i}=0 \quad i=1, \ldots, 4
$$

where the inner ones are to be taken at grid-point $N-1$ and the expansions around $m=0$ have been used already.

Henyey-method (contd.)

$\rightarrow 2+4+(N-2) \cdot 4=4 N-2$ equs.
for $4 \times N$ unknowns -2 b.c.
Newton-approach for corrections δy_{i}

$$
\begin{gathered}
A_{i}^{j}+\sum_{i} \frac{\partial A_{i}^{j}}{\partial y_{i}} \delta y_{i}=0 \\
H\left(\begin{array}{c}
\delta y_{1}^{1} \\
\delta y_{2}^{1} \\
\vdots \\
\delta y_{3}^{N} \\
\delta y_{4}^{N}
\end{array}\right)=\left(\begin{array}{c}
B_{1} \\
\vdots \\
A_{i}^{j} \\
\vdots \\
C_{4}
\end{array}\right)
\end{gathered}
$$

Henyey-scheme

Matrix H contains all derivatives and is called Henyeymatrix. It contains non-vanishing elements only in blocks. This leads to a particular method for solving it (Henyey-
 method).
Expresse some of corrections in terms of others, e.g.: $\delta y_{1}^{1}=U_{1} \delta y_{3}^{2}+V_{1} \delta y_{4}^{2}+W_{1} \Rightarrow$ matrix equations for U_{i}, V_{i}, W_{i}.

Henyey-scheme

First block-matrix $j=1,2$:

$$
\left[\begin{array}{cccc}
\frac{\partial B_{1}}{\partial y_{1}^{1}} & \frac{\partial B_{1}^{1}}{\partial y_{2}^{2}} & \cdots & 0 \\
\frac{\partial B_{2}}{\partial y_{1}^{1}} & \frac{\partial B_{2}}{\partial y_{1}^{2}} & \cdots & 0 \\
\frac{\partial A_{1}^{1}}{\partial y_{1}^{1}} & \frac{\partial A_{1}^{1}}{\partial y_{2}^{1}} & \cdots & \frac{\partial A_{1}^{1}}{\partial y_{2}^{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial A_{1}^{4}}{\partial y_{1}^{1}} & \frac{\partial A_{1}^{4}}{\partial y_{2}^{1}} & \cdots & \frac{\partial A_{1}^{4}}{\partial y_{2}^{2}}
\end{array}\right]\left[\begin{array}{ccc}
U_{1} & V_{1} & W_{1} \\
U_{2} & V_{2} & W_{2} \\
U_{3} & V_{3} & W_{3} \\
\vdots & \vdots & \vdots \\
U_{6} & V_{6} & W_{6}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -B_{1} \\
0 & 0 & -B_{2} \\
-\frac{\partial A_{1}^{1}}{\partial y_{3}^{1}} & -\frac{\partial A_{1}^{1}}{\partial y_{4}^{2}} & -A_{1}^{1} \\
\vdots & \vdots & \vdots \\
-\frac{\partial A_{1}^{1}}{\partial y_{3}^{2}} & -\frac{\partial A_{1}^{1}}{\partial y_{4}^{2}} & -A_{4}^{1}
\end{array}\right.
$$

Integration in time

$$
X_{i}(t+\Delta t)=X_{i}(t)+\frac{\partial X_{i}}{\partial t}(T(t), P(t), \ldots) \Delta t
$$

Improvement:
backward differencing (e.g. nuclear network)

$$
X_{i}(t+\Delta t)=X_{i}(t)+\Delta t \sum_{i} r_{i j}(t) X_{i}(t+\Delta t) X_{j}(t+\Delta t)
$$

done for chemical evolution, mixing, diffusion, etc.

Nowadays matrices can be inverted without splitting them into small sections and without decoupling of space and time, see e.g. MESA code: Paxton et al 2011

Massive Stars: Evolution of the chemical composition

Burning stages (lifetime [yr]):
Hydrogen $\left(10^{6-7}\right):{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$

$$
\&{ }^{12} \mathrm{C},{ }^{16} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}
$$

Helium $\left(10^{5-6}\right):{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$

$$
\&^{14} \mathrm{~N} \rightarrow{ }^{18} \mathrm{O} \rightarrow{ }^{22} \mathrm{Ne}
$$

Carbon $\left(10^{2-3}\right):{ }^{12} \mathrm{C} \rightarrow{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg}$
Neon (0.1-1): ${ }^{20} \mathrm{Ne} \rightarrow{ }^{16} \mathrm{O},{ }^{24} \mathrm{Mg}$
Oxygen (0.1-1): ${ }^{16} \mathrm{O} \rightarrow{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S}$
Silicon $\left(10^{-3}\right):{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S} \rightarrow{ }^{56} \mathrm{Ni}$

http://www.astro.keele.ac.uk/~hirschi/animation/anim.html

- Importance and observational constraints
- Physics governing the structure and evolution of stars
- Equations of stellar structure
- Modelling stars and their evolution

Importance as

Hertzsrpung-Russell (HR) Diagram:

$$
\begin{gathered}
\text { Physical } \\
\text { Ingredients }
\end{gathered}
$$

Acknowledgements er Bibliography

- Slides in white background (with blue title) were taken from Achim Weiss' lecture slides, which you can find here: http://www.mpa-garching.mpg.de/~weiss/lectures.html
- Some graphs were taken from Onno Pols' lecture notes on stellar evolution, which you can find here:

http://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/

- Some slides (colourful ones) and content was taken from George Meynet's summer school slides.

Acknowledgements é Bibliography

Recommended further reading:

- R. Kippenhahn \& A. Weigert, Stellar Structure and Evolution, 1990, Springer-Verlag, ISBN 3-540-50211-4
- A. Maeder, Physics, Formation and Evolution of Rotating Stars, 2009, Springer-Verlag, ISBN 978-3-540-76948-4
- D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, 2000, Cambridge University Press, ISBN 0-521-65937-X
- C.J. Hansen, S.D. Kawaler \& V. Trimble, Stellar Interiors, 2004, SpringerVerlag, ISBN 0-387-20089-4
- M. Salaris \& S. Cassisi, Evolution of Stars and Stellar Populations, 2005, John Wiley \& Sons, ISBN 0-470-09220-3

Importance, basics, effects, uncertainties of:

- Nuclear reactions \rightarrow B. Meyer
- Convection in L1
- Mass loss
- Rotation
- Magnetic fields
- Binarity
- Equation of state, opacities \& neutrino losses
including metallicity dependence

Importance of Mass Loss

Ekström et al 12, see also Chieffi \& Limongi 13

Injection of Mechanical Energy

Mass Loss: General Dependence on Stellar Mass

More massive stars have stronger winds because they are much more luminous:

For low-mass stars:

$$
L \propto \frac{\beta^{4} \mu^{4} M^{3}}{K}
$$

For high-mass stars:

$$
L \propto \underline{\mu^{4} M}
$$

K

Where β is the ratio of gas to total pressure: $1 \rightarrow 0$ from low to high-mass stars

Main Phases of Stellar Evolution

Mass loss driving mechanism and prescriptions are very different for different evolutionary stages

Ekstroem et al 12

Mass loss driving mechanism and prescriptions at different stages:

- O-type \& "LBV" stars (bi-stab.): line-driven Vink et al 2000, 2001
- WR stars (clumping effect): line-driven Nugis \& Lamers 2000, Gräfener \& Hamann (2008)
- RSG: Pulsation/dust? de Jager etal 1988
- RG: Pulsation/dust? Reimers 1975,78 , with $\eta=\sim 0.5$
- AGB: Super winds? Dust Bloecker etal 1995 , with $\eta=\sim 0.05$
- LBV eruptions: continuous driven winds? owocki et al

What changes at low Z?

- Stars are more compact: $\mathrm{R} \sim \mathrm{R}\left(\mathrm{Z}_{\mathrm{o}}\right) / 4$ (lower opacities) at $\mathrm{Z}=10^{-8}$
- Mass loss weaker at low $\mathrm{Z}: \rightarrow$ faster rotation

$$
\dot{M}(Z)=\dot{M}\left(Z_{0}\right)\left(Z \mid Z_{0}\right)^{x}
$$

$-\alpha=0.5-0.6$ (Kudritzki \& Puls 00, Ku02)
(Nugis \& Lamers, Evans et al 05)

- $\alpha=0.7-0.86$ (Vink et al 00,01,05)

$$
\begin{gathered}
Z(\mathrm{LMC}) \sim Z_{0} / 2.3=>\mathrm{Mdot} / 1.5-\mathrm{Mdot} / 2 \\
\mathrm{Z}(\mathrm{SMC}) \sim \mathrm{Z}_{0} / 7=>\mathrm{Mdot} / 2.6-\mathrm{Mdot} / 5
\end{gathered}
$$

Mass loss at low Z still possible?
RSG (and LBV?): no Z-dep.; CNO? (Van Loon 05, Owocky et al)
Mechanical mass loss \leftarrow critical rotation
(e.g. Hirschi 2007, Ekstroem et al 2008, Yoon et al 2012)

CLUMPING

If wind clumped in reality but supposed to be homogeneous

> Excess emission from inhomogeneities \rightarrow incorrectly interpreted as arising from a smooth but denser medium

MASS LOSS OVERESTIMATED

Fullerton et al 05: Mdot/10
Bouret et al 05: Mdot/3 or smaller
Surlan et al 13: problem resolved?

Observational constraints:

- RSG Upper Luminosity: Log (L/ Lsun $_{\text {sun }}$ ~ 5.2-5.3
(median value of the most $5 L_{\text {sun }}$ stars)
(Levesque et al 05)
- SNII-P Log (L/L suñ) <~5.1 (Smartt et al. 2009)
- No clear dependence on Z for these upper limit
- WR/O, RSG/BSG ratios vary with Z

CHANGE OF MASS LOSS

For a given initial mass

RSG/DSG/WR-SN $I I, I I 6, I 6, I c$

RSG Upper Luminosity ~5.2-5.3
(median value of the most $5 L_{\text {SUN }}$ stars)
SNII-P ~ 5.1 (Smartt et al. 2009)

No clear dependence on Z

- Tracks: Ekstroem et al 12
- grey areas: obs. See MM89
- red circles: Levesque et al 05

- Tracks: Chieffi \& Limongi 13
(CL13)

Importance:

- Induces instabilities in radiative zones (none otherwise) \rightarrow additional mixing of composition
- Changes properties of stars: shape, $L, T_{\text {eff }}$
- Powers some stellar explosions (e.g. GRB, magnetars).

Rotational Effects on Surface

Doppler-broadened line profile

$T_{\text {eff }}$ map (BMAD)

Fast rotators -> oblate shape:

\leftarrow Altair: pole brighter than equator: Effect compatible with von-Zeipel theorem ()

Rotation velocity Distribution

Geneva Stellar Evolution Code

1.5D hydrostatic code (Eggenberger et al 2008)

Rotation: (Maeder \& Meynet 2008)
Centrifugal force: KEY FOR GRB prog.

$$
\begin{aligned}
\vec{g}_{\text {eff }}=\vec{g}_{\text {eff }}(\Omega, \theta)= & \left(-\frac{G M}{r^{2}}+\Omega^{2} r \sin ^{2} \theta\right) \vec{e}_{r} \\
& +\Omega^{2} r \sin \theta \cos \theta \vec{e}_{\theta}
\end{aligned}
$$

Shellular rotation \rightarrow still 1D: (Zahn 1992)

- Energy conservation:

$$
\begin{equation*}
\frac{\partial L_{P}}{\partial M_{P}}=\epsilon_{\text {nud }}-\epsilon_{\nu}+\epsilon_{\text {grav }}=\epsilon_{\text {nucl }}-\epsilon_{\nu}-c_{\mathrm{p}} \frac{\partial T}{\partial t}+\frac{\delta}{\rho} \frac{\partial P}{\partial t} \tag{2.9}
\end{equation*}
$$

- Momentum equation:

$$
\begin{equation*}
\frac{\partial P}{\partial M_{P}}=-\frac{G M_{P}}{4 \pi r_{P}^{4}} f_{P} \tag{2.10}
\end{equation*}
$$

- Mass conservation (or continuity equation):

$$
\begin{equation*}
\frac{\partial r_{P}}{\partial M_{P}}=\frac{1}{4 \pi r_{P}^{2} \bar{\rho}} \tag{2.12}
\end{equation*}
$$

- Energy transport equation:

$$
\begin{equation*}
\frac{\partial \ln \bar{T}}{\partial M_{P}}=-\frac{G M_{P}}{4 \pi r_{P}^{4}} f_{P} \min \left[\nabla_{\mathrm{ad}}, \nabla_{\mathrm{rad}} \frac{f_{T}}{f_{P}}\right] \tag{2.12}
\end{equation*}
$$

where

$$
\begin{aligned}
\nabla_{\mathrm{ad}} & =\frac{P \delta}{\bar{T} \bar{\rho} c_{\mathrm{p}}} \text { (convective zones) } \\
\nabla_{\mathrm{rad}} & =\frac{3}{16 \pi a c G} \frac{\kappa l P}{m \bar{T}^{4}} \text { (radiative zones), }
\end{aligned}
$$

$$
\begin{aligned}
f_{P} & =\frac{4 \pi r_{P}^{4}}{G M_{P} S_{P}} \frac{1}{<g^{-1}>} \\
f_{T} & =\left(\frac{4 \pi r_{P}^{2}}{S_{P}}\right)^{2} \frac{1}{<g><g^{-1}>}
\end{aligned}
$$

(Meynet and Meynet 97)

Rotation Induced Iransport

Zahn 1992: strong horizontal turbulence

Transport of angular momentum:

$$
\rho \frac{\mathrm{d}}{\mathrm{~d} t}\left(r^{2} \bar{\Omega}\right)_{M_{r}}=\underbrace{\frac{1}{5 r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} \bar{\Omega} U(r)\right)}_{\text {advection term }}+\underbrace{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho D r^{4} \frac{\partial \bar{\Omega}}{\partial r}\right)}_{\text {diffusion term }}
$$

Transport of chemical elements:

Meynet \& Maeder 2000

$$
\rho \frac{\mathrm{d} X_{i}}{\mathrm{~d} t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{2}\left[D+D_{e f f}\right] \frac{\partial X_{i}}{\partial r}\right)+\left(\frac{\mathrm{d} X_{i}}{\mathrm{~d} t}\right)_{\mathrm{nucl}}
$$

D: diffusion coeff. due to various transport mechanisms (convection, shear)
$D_{\text {eff }}$ diffusion coeff. due to meridional circulation + horizontal turbulence

Rotation Induced Iransport: Prescriptions

D_{h} : three prescriptions Zahn (1992); Maeder (2003); Mathis et al. (2004)
$\mathrm{D}_{\text {shear }}$: two prescriptions
Talon \& Zahn (1997);
Maeder (1997)
Different zones concerned inside the star
mixing \pm strong ($4 \%, 12 \%$)

Rotation Induced Iransport: Prescriptions

D_{h} : three prescriptions Zahn (1992); Maeder (2003); Mathis et al. (2004)
$\mathrm{D}_{\text {shear }}$: two prescriptions Talon \& Zahn (1997); Maeder (1997)

Different zones concerned inside the star
mixing \pm strong ($4 \%, 12 \%$)

See also Chieffi \& Limongi 13

Mass Loss

Mass loss prescription without rotation:

- O-type \& LBV stars (bi-stab.): Vink et al 2000, 2001 and RSG de Jager et al 1988
- WR stars (clumping effect): Nugis \& Lamers 2000

Effects of rotation:

- Enhancement: Maeder \& Meynet 2000

$$
\frac{\dot{M}(\Omega)}{\dot{M}(0)} \approx \frac{(1-\Gamma)^{\frac{1}{\alpha}-1}}{\left(1-\frac{4}{9} \frac{v^{2}}{v^{2}}-\Gamma\right)^{\frac{1}{\alpha}-1}}
$$

- \& anisotropy:

$$
\mathrm{T}_{\text {eff }}=25000 \mathrm{~K} \quad \mathrm{~T}_{\text {eff }}=30000 \mathrm{~K}
$$

$\mathrm{F}_{\mathrm{rad}} \sim \mathrm{g}_{\text {eff }}:$ Von Zeipel, $1924 \rightarrow$ affects angular momentum loss

Evolution of Rotation

Angular velocity: $\boldsymbol{\Omega} \uparrow$ end $\mathrm{Si}: \Omega \sim 1 \mathrm{~s}^{-1}$

Angular momentum, $\mathfrak{j} \downarrow$ j(end Si) ~ j(end He)

Hirschi et al 2004, A\&A

Impact of Rotation (@ solar Z)

$\mathbf{v}_{\mathrm{ini}}=$ 300 km/s 0 km/s

Impact of rotation @ solar Z)

$\mathbf{v}_{\mathrm{ini}}=$ 300 km/s 0 km/s

Impact of Rotation (@solar Z):I

Roche model: $R_{\text {eq,crit }}=\frac{3}{2} R_{\text {pol,crit }}$
Modification of the gravity:

$$
\begin{gathered}
\vec{g}_{\text {eff }}=\vec{g}_{\text {eff }}(\Omega, \theta)= \\
\left(-\frac{G M}{r^{2}}+\Omega^{2} r \sin ^{2} \theta\right) \vec{e}_{r}+\left(\Omega^{2} r \sin \theta \cos \theta\right) \vec{e}_{\theta}
\end{gathered}
$$

and thus of the $T_{\text {eff }}$:

$$
T_{\mathrm{eff}}=T_{\mathrm{eff}}(\Omega, \theta)=\left[\frac{L}{4 \pi \sigma G M^{\star}} g_{\mathrm{eff}}(\Omega, \theta)\right]^{1 / 4}
$$

Standard outputs of the models: $=\left(L / \sigma S_{P}\right)^{1 / 4}$
S_{P} : true deformed surface
model from Georgy et al. (2013)

Correction for limb darkening according to Claret 2000

Impact of Rotation, $M_{i n i}=20 M_{\text {. }}$

$$
v_{\mathrm{ini}}=0 \mathrm{~km} / \mathrm{s}
$$

$v_{\mathrm{ini}}=300 \mathrm{~km} / \mathrm{s}$

Log(time until core collapse) [yr]

Impact of Rotation, $M_{i n i}=20 M_{\text {. }}$

W见 Lifetimes @ solar Z

Rotation: decrease of $\mathrm{M}_{\min }$ for WR formation \& increase in WR lifetimes
Meynet \& Maeder 03

NO ROT: $\mathrm{M}_{\min } \approx 25-30 \mathrm{M}_{\mathrm{o}}$
ROT: $M_{\min } \approx 20 \mathrm{M}_{\mathrm{o}}$

Nitrogen Surface Enrichment

Rotating models: enrichment starts during MS

Meynet \& Maeder 2000, Heger \& Langer 2000
$15 \mathrm{M}_{\mathrm{o}}$ model with $\mathrm{U}_{\mathrm{ini}}=300 \mathrm{~km} / \mathrm{s}$

Non-rotating models: no enrichment before
$1^{\text {st }}$ dredge up (RSG)
Mixing questioned by FLAMES survey (Hunter et al 08,09)

Nitrogen Surface Enrichment

Flames survey:

Explanations:

Single stars:

G1: less evolved/
lower mass
G2: pole-on / B-f?
Binary stars:(Langer eal o8)
G1: N-poor matter accr.
G2: * slowed down / B-f?
Other issues: Initial composition, overshooting, enriched blue supergiants VLT FLAMES survey of massive stars: Hunter etal 07,08,09,
Boron can help distinguish between rotation and binarity

Boron Surface Depletion: Models

- Boron is

depleted in the stellar interior.

Boron Surface Depletion: Models

Rotational mixing

-> surface
boron depletion

Boron Surface Depletion

Rotational mixing -> surface boron depletion

Frischknecht et al A\&A 2010
Binaries cannot explain B depletion without N enrichment (Langer et al 2010)

Importance:

- Guides charged-particle
- Shapes stellar winds
- Couples rotation of different parts of the star

Importance debated

Surface Magnetic Fields

Donati et al. 2006

Surface Magnetic Fields

A few dozen He-peculiar stars

7 magnetic OB stars

	Ref	Sp. T.	Vsini Km/s	Prot days	M Msol	Incl. Deg.	β Deg.	$\begin{aligned} & \text { Bpol } \\ & \text { G } \end{aligned}$
HD191612	(6)			538			45	~1500
Θ Ori C	(1)	O4-6V	20	15.4	45	45	42+-6	1100+-100
β Сер	(2)	B1IVe	27	12.00	12	60+-10	85+-10	$360+-40$
τ Sco	(7)	B0.2V		41				~500
V2052 Oph	(3)	B1V	63	3.64	10	71+-10	35+-17	250+-190
$\zeta \mathrm{Cas}$	(4)	B2IV	17	5.37	9	18+-4	80+-4	340+-90
ω Ori	(5)	B2IVe	172	1.29	8	42+-7	50+-25	530+-200
He-peculiar		B1-B8p		0.9-22	<10			1000-10000

(1) Donati et al. 2003 (2) Henrichs et al. $2000(3,4,5)$ Neiner et al. 2003abc, (6,7) Donati et al. 2006ab
β Angle between the magnetic axis and the rotation axis
Large ongoing surveys: e.g. MiMes
Most magnetic stars show abundance anomalies: Bp, Ap stars

Magnetic Fields

Question: are these values compatible with magnetic fields observed in pulsars?

$$
\text { Pulsars } \rightarrow \quad 10^{12} \mathrm{G}
$$

$$
\mathrm{Br}^{2}=\text { const. } \quad\left(10 \mathrm{~km} / 5 \mathrm{R}_{\text {sol }}\right)^{2} \times 10^{12} \mathrm{G} \sim 10 \mathrm{G} .
$$

$$
B_{+} / B_{-}=\left(r_{-} / r_{+}\right)^{2}
$$

Answer: observed magnetic are one-two orders of magnitude higher \rightarrow More compatible with progenitors of magnetars $10^{15} \mathrm{G}$

Question: may the observed values have an impact on the wind?

$$
\eta(r) \equiv \frac{B^{2} / 8 \pi}{\rho v^{2} / 2} \quad \text { if } \quad \eta>1 \rightarrow \text { wind behavior }
$$

Answer: YES. For early-type stars, $\eta>1$ for B~ 50-100 G

Magnetic Fields: Theory

Taylor Instability (1973)

Small initial horizontal field: instability of the field lines
\rightarrow Small vertical component
\rightarrow Differential rotation winds up
\rightarrow New horizontal field lines closer and denser:

Criteria for field
amplification:
Criteria for field
amplification:

$$
\begin{aligned}
& \Omega>\omega_{A}=\frac{B}{r \sqrt{4 \pi \bar{\varphi}}} \\
& q=-\frac{\partial \ln \Omega}{\partial \ln r}>q_{\min }=\left(\frac{N}{\Omega}\right)^{7 / 4}\left(\frac{\eta}{N r^{2}}\right)^{1 / 4} \\
& \text { where } N^{2}=\frac{\eta / K}{\eta / K+2} N_{T}^{2}+N_{\mu}^{2}
\end{aligned}
$$

Transport coefficients:

More general expressions
(Maeder 04, Maeder \& Meynet 2005)

$$
\begin{aligned}
& D_{\text {chem }}=\frac{r^{2} \Omega}{q^{2}}\left(\frac{\omega_{A}}{\Omega}\right)^{6} \\
& D_{\Omega}=\frac{r^{2} \Omega}{q^{2}}\left(\frac{\omega_{A}}{\Omega}\right)^{3}\left(\frac{\Omega}{N}\right)
\end{aligned}
$$

DYNAMO
 (Spruit 2002)

but Taylor-Spruit dynamo debated (Zahn et al 07)

Magnetic Fields: Models

Transport of $\Omega(v)$:

dominated by B-fields (v)
Flatter Ω profiles

Transport of $X_{i}(\eta)$:

Dominated by meridional circulation $\left(\mathrm{D}_{\text {eff }}\right)$

Stronger mixing

$15 \mathrm{M}_{\mathrm{o}}, \mathrm{Z}=0.02$ \& $\mathrm{v}_{\mathrm{ini}}=300 \mathrm{~km} / \mathrm{s}$

(Maeder \& Meynet 2005)

Magnetic Fields: Rotation of the Sun

Sun rotation profile compatible with helioseismology (Eggenberger et al 2005)

Taylor-Spruit dynamo debated Brun \& Zahn 2009

Gravity waves can also help
(Charbonnel \& Talon 2005, Arnett \& Meakin 2006)

Magnetic Fields: Massive Stars

Taylor-Spruit dynamo (Spruit 02, Maeder \& Meynet 05) :
Better for pulsar periods
(see also Heger et al 2005)
Not enough for WDs
(Suijs et al 08)

Other mechanisms?

- Dynamo in conv. env.
- During/after explosions
(see discussion in Meynet et al 11,13) GRBs/MHD explosions?
\leftarrow Quasi chemically-homog.
 evol. of fast rot. stars (avoid RSG)

Magnetic Fields: Massive Stars

Taylor-Spruit dynamo (Spruit 02, Maeder \& Meynet 05) :
Better for pulsar periods
(see also Heger et al 2005)
Not enough for WDs
(Suijs et al 08)

Other mechanisms?

- Dynamo in conv. env.
- During/after explosions
(Meynet et al 13)
GRBs/MHD explosions?

\leftarrow Quasi chemically-homog.
evol. of fast rot. stars (avoid RSG)
(Yoon et al 06,07, Woosley \& Heger 2006)

Binarity

- Stars in six nearby galactic open clusters \rightarrow
- 71 single and multiple 0-type objects
- 40 detected binaries

Sana Orbital period (d)

Binarity

Binarity

The VLT-FLAMES Tarantula Survey* (LMC)

VIII. Multiplicity properties of the O-type star population

H. Sana ${ }^{1}$, A. de Koter ${ }^{1,2}$, S.E. de Mink ${ }^{3,4 \star \star}$, P.R. Dunstall ${ }^{5}$, C.J. Evans ${ }^{6}$, V. Hénault-Brunet ${ }^{7}$, J. Maíz Apellániz ${ }^{8}$, O.H. Ramírez-Agudelo ${ }^{1}$, W.D. Taylor ${ }^{7}$, N.R. Walborn ${ }^{3}$, J.S. Clark ${ }^{9}$, P.A. Crowther ${ }^{10}$, A. Herrero ${ }^{11112}$, M. Gieles ${ }^{13}$, N. Langer ${ }^{14}$, D.J. Lennon ${ }^{15,3}$, and J.S. Vink ${ }^{16}$
(Affiliations can be found after the references)
Received May 17, 2012; accepted September 18, 2012

360 0-type stars Intrinsic binary fraction 51\%

Sana et al. (2012)

Equation of State - Ideal gas

$$
P=n k_{B} T=\frac{\mathcal{R}}{\mu} \rho T
$$

with $\rho=n \mu m_{u} ; \mu$: molecular weight, mass of particle per m_{u}.
Several components in gas with relative mass fractions
$X_{i}=\frac{\rho_{i}}{\rho} \rightarrow n_{i}=\frac{\rho X_{i}}{m_{u} \mu_{i}}$
electrons and ions:

$$
P=P_{e}+\sum_{i} P_{i}=\left(n_{e}+\sum_{i} n_{i}\right) k T .
$$

Ionization - limiting cases

Completely ionized atoms (of mass fraction X_{i} and charge Z_{i}):

$$
P=n k T=\mathcal{R} \sum_{i} \frac{X_{i}\left(1+Z_{i}\right)}{\mu_{i}} \rho T=\frac{\mathcal{R}}{\mu} \rho T
$$

$\mu:=\left(\sum_{i} \frac{X_{i}\left(1+Z_{i}\right)}{\mu_{i}}\right)^{-1}$: mean molecular weight
For a neutral gas, $\mu=\left(\sum_{i} \frac{X_{i}}{\mu_{i}}\right)^{-1}$.
The mean molecular weight per free electron is

$$
\mu_{e}:=\left(\sum_{i} \frac{X_{i} Z_{i}}{\mu_{i}}\right)^{-1}=\frac{2}{(1+X)}
$$

Ideal gas with radiation pressure

$$
\begin{gathered}
P=P_{\mathrm{gas}}+P_{\mathrm{rad}} \\
\beta:=\frac{P_{\mathrm{gas}}}{P} \Rightarrow\left(\frac{\partial \beta}{\partial T}\right)_{P}=-\frac{4(1-\beta)}{T} \text { and }\left(\frac{\partial \beta}{\partial P}\right)_{T}=\frac{(1-\beta)}{T} .
\end{gathered}
$$

Furthermore

$$
\begin{aligned}
\alpha & :=\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T}=\frac{1}{\beta} \\
\delta & :=-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}=\frac{4-3 \beta}{\beta} \\
\varphi & :=\left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{T, P}=1
\end{aligned}
$$

- For $\beta \rightarrow 1, c_{P} \rightarrow \frac{5 R}{2 \mu}, \nabla_{\mathrm{ad}} \rightarrow 2 / 5$,

Ionization

Saha-equation (see introductory course for derivation):

Illustration of ionization of hydrogen and helium within a stellar envelope. In panel (b) the corresponding run of $\nabla_{\text {ad }}$ is shown. The depression is due to the increase in c_{P} due to ionziation. Since $\nabla_{\text {ad }}$ is getting smaller, convection will set in.

Electron degeneracy

The distribution of electrons in momentum space (Boltzmann equation; p is momentum):

$$
f(p) \mathrm{d} p \mathrm{~d} V=n_{e} \frac{4 \pi p^{2}}{\left(2 \pi m_{e} k T\right)^{3 / 2}} \exp \left(-\frac{p^{2}}{2 m_{e} k T}\right) \mathrm{d} p \mathrm{~d} V
$$

Pauli-principle:

$$
f(p) \mathrm{d} p \mathrm{~d} V \leq \frac{8 \pi p^{2}}{h^{3}} \mathrm{~d} p \mathrm{~d} V
$$

Partial degeneracy

$$
\ldots U_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{E p^{2} \mathrm{~d} p}{1+\exp \left(\frac{E}{k T}-\Psi\right)}
$$

$f(p)$ for partially degenerate gas with $n_{e}=10^{28} \mathrm{~cm}^{-3}$ and $T=$
1.9•10 ${ }^{7}$ K corresponding to $\Psi=$ 10.

The equation of state for normal stellar matter:

$$
P=P_{\mathrm{ion}}+P_{e}+P_{\mathrm{rad}}=\frac{\mathcal{R}}{\mu_{0}} \rho T+\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} \frac{p^{3} v(p) \mathrm{d} p}{1+\exp \left(\frac{E}{k T}-\Psi\right)}+\frac{a}{3} T^{4}
$$

Non-ideal effects

- finite size of atoms \rightarrow pressure ionization important already in Sun and low-mass stars
- Coulomb interaction - low density \rightarrow pressure reduction important in many stars (envelopes, but also solar core)
- Coulomb interaction - high density \rightarrow crystallization white dwarfs, neutron stars
- configuration effects \rightarrow van der Waals gas; quantum effects (spin-spin-interactions)
- neutronization
neutron stars

Combination of sources for

EOS in SE codes:

Figure 1. $\rho-T$ coverage of the equations of state used by the eos module for $Z \leqslant 0.04$. Inside the region bounded by the black dashed lines we use MESA EOS tables that were constructed from the OPAL and SCVH tables. The OPAL and SCVH tables were blended in the region shown by the blue dotted lines, as described in the text. Regions outside of the black dashed lines utilize the HELM and PC EOSs, which, respectively, incorporate electron-positron pairs at high temperatures and crystallization at low temperatures. The blending of the MESA table and the HELM/PC results occurs between the black dashed lines and is described in the text. The dotted red line shows where the number of electrons per baryon has doubled due to pair production, and the region to the left of the dashed red line has $\Gamma_{1}<4 / 3$. The very low density cold region in the leftmost part of the figure is treated as an ideal, neutral gas. The region below the black dashed line labeled as $\Gamma=175$ would be in a crystalline state for a plasma of pure oxygen and is fully handled by the PC EOS. The red dot-dashed line shows where MESA blends the PC and HELM EOSs. The green lines show stellar profiles for a main-sequence star $\left(M=1.0 M_{\odot}\right)$, a contracting object of $M=0.001 M_{\odot}$, and a cooling white dwarf of $M=0.8 M_{\odot}$. The heavy dark line is an evolved $25 M_{\odot}$ star that has a maximum infalling speed of $1000 \mathrm{~km} \mathrm{~s}^{-1}$. The jagged behavior reflects the distinct burning shells.

Opacity

- Electron scattering: Thomson-scattering:

$$
\kappa_{\mathrm{sc}}=\frac{8 \pi}{3} \frac{r_{e}^{2}}{m_{e} m_{u}}=0.20(1+X) \mathrm{cm}^{2} \mathrm{~g}^{-1}
$$

- Compton-scattering: $T>10^{8}$: momentum exchange \rightarrow $\kappa<\kappa_{\text {sc }}$
- free-free transitions:
$\kappa_{\mathrm{ff}} \propto \rho T^{-7 / 2}$ (Kramers formula)
- bound-free transitions:

$$
\kappa_{\mathrm{bf}} \propto Z(1+X) \rho T^{-7 / 2}
$$

- b-f for H^{-}-ion below $10^{4} \mathrm{~K}$ (major source)
- bound-bound transitions: below $10^{6} \mathrm{~K}$. No simple formula.
- e^{-}-conduction: $\kappa_{\mathrm{c}} \propto \rho^{-2} T^{2}$

Opacities - practical use

- complications: complex line structures, many elements, molecules, underlying EOS, transition probabilities ...
- no on-line calculation accurate enough \rightarrow treat separately
- use of pre-calculated tables for many mixtures
- Opacity Project (Sun, atomic data); OPAL (Sun and stars); Ferguson \& Alexander (low T; molecules)

Plasma neutrino emission

Stellar plasma emits neutrinos, which leave star without interaction and lead to energy loss L_{ν}.
Processes are:

1. Pair annihilation: $e^{-}+e^{+} \rightarrow \nu+\bar{\nu}$ at $T>10^{9} \mathrm{~K}$.
2. Photoneutrinos: $\gamma+e^{-} \rightarrow e^{-}+\nu+\bar{\nu}$ (as Compton scattering, but with ν-pair instead of γ).
3. Plasmaneutrinos: $\gamma_{\mathrm{pl}} \rightarrow \nu+\bar{\nu}$; decay of plasma state γ_{pl}
4. Bremsstrahlung: inelastic nucleus $-e^{-}$scattering, but emitted photon replaced by a ν-pair.
5. Synchroton neutrinos: as synchroton radiation, but again a photon replaced by a ν-pair.

Regions of plasma-neutrino processes

Non-Degenerate Conditions

Let us first consider a uniform contraction of a mass M. In that case a variation in radius ΔR corresponds to a variation in pressure ΔP and to a variation in density $\Delta \rho$ so that we have the following relations:

$$
\frac{\Delta P}{P}=-4 \frac{\Delta R}{R}, \text { and } \frac{\Delta \rho}{\rho}=-3 \frac{\Delta R}{R} .
$$

The first equality is deduced from the hydrostatic equilibrium equation and the second from the continuity equation. From these two relations, we can write

$$
\Delta \ln P=\frac{4}{3} \Delta \ln \rho .
$$

Let us now write the equation of state as follows

$$
\Delta \ln \rho=\alpha \Delta \ln P-\delta \Delta \ln T,
$$

where α and δ are defined by $\alpha=\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T, \mu}$ and $\delta=-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P, \mu}$, and where μ, the mean molecular weight, is supposed to remain constant. From these two relations one obtains, by eliminating ΔP the two following relations between a variation in $\log \mathrm{T}$ and $\log \rho$:

$$
\begin{equation*}
\Delta \ln T=\left(\frac{4 \alpha-3}{3 \delta}\right) \Delta \ln \rho \tag{1}
\end{equation*}
$$

For a perfect gas law we have $\alpha=\delta=1$. Therefore an increase of, for instance, 30% in density implies an increases of 10% in temperature.

Non-Degenerate Conditions

Models by
Ekström et al. (2012) A\&A, 537, A146)

Stars=system with a negative specific heat!

Degenerate Conditions

no longer valid, but if during the course of evolution, when the central conditions pass from the non-degenerate region to the degenerate one, α becomes inferior to three quarters before δ is equal to zero, then a contraction can produce a cooling! This can be understood as due to the fact that, in order to allow electrons to occupy still higher energy state, some energy has to be extracted from the non degenerate nuclei which, as a consequence, cool down.

$$
\begin{gathered}
\Delta \ln T=\left(\frac{4 \alpha-3}{3 \delta}\right) \Delta \ln \rho . \\
P \propto \rho^{5 / 3} \\
\alpha=3 / 5 \text { and } \delta=0
\end{gathered}
$$

Non \rightarrow Degenerate Conditions

δ

(Non relativistic)

Evolution of the temperature and density at the centre

Pgaz=PdegNR
$\frac{k}{\mu m_{H}} \rho T=K_{1}\left|\frac{\rho}{\mu e}\right|^{5 / 3} \rightarrow T=K_{1} \frac{\mu m_{H}}{k} \frac{1}{\mu_{e}^{5 / 3}} \rho^{2 / 3}$

Non \rightarrow Degenerate Conditions

Models by
Ekström et al. (2012) A\&A, 537, A146)

Stars=system with a negative specific heat!

Mass Domains

Mass Domains

- $0.08 \mathrm{M}_{\text {sun }}$ inferior mass limit for core H -burning : Brown Dwarfs
- $0.08 \mathrm{M}_{\text {sun }}-0.5 \mathrm{M}_{\text {sun }}$: H burning OK , degenerate before core He-burning (lifetime > Hubble time \rightarrow no He white dwarf from single stars)
- $0.5-7 \mathrm{M}_{\text {sun }}$: core H OK, core He OK (He-flash below 1.8 $\mathrm{M}_{\text {sun }}$), degenerate CO white dwarf
- 7-9 $\mathrm{M}_{\text {sun }}$: Core C burning $\mathrm{OK} \rightarrow \mathrm{WD}($? $)$ or Complete destruction (?) or collapse through electron captures (?)
- 9-150 $\mathrm{M}_{\text {sun }}$: core $\mathrm{H}, \mathrm{He}, \mathrm{C}, \mathrm{Ne}, \mathrm{O}, \mathrm{Si}-\rightarrow$ Fe cores
- 150-250 $\mathrm{M}_{\text {sun }}$: Pair Creation Supernovae

Mass Domains

Fig. 26.10. Evolution of central conditions for different masses with indications of instability domains (Sect. 7.8), the $\mathrm{Fe}-\alpha$ transition indicates the photodesintegration of Fe nuclei into α particles. The degenerate region is light gray. Dashed lines show the place where nuclear energy generation rates balance neutrino losses. Adapted from T.J. Mazurek and J.C. Wheeler [401]

Importance, basics, effects, uncertainties of:
(- Nuclear reactions)

- Convection in L1
- Mass loss
- Rotation
- Magnetic fields
- Binarity
- Equation of state, opacities \& neutrino losses including metallicity dependence

Recent Papers/Reviews

- Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars (Springer Verlag)
- Maeder and Meynet, "Rotating massive stars: From first stars to gamma ray bursts", 2012RvMP...84...25M
- Ekstroem, S., Georgy, C., Eggenberger, P., et al. 2012, A\&A, 537, A146
- Chieffi, Limongi, "Pre-supernova Evolution of Rotating Solar Metallicity Stars in the Mass Range 13-120 M ${ }_{\odot}$ and their Explosive Yields", 2012ApJS..199...38L
- Langer, "Pre-Supernova Evolution of Massive Single and Binary Stars", ARAA, 2012, astroph-1206.5443

Pressure and energy

Pressure as momentum transfer \perp area $=n(\epsilon) \cdot \vec{p}(\epsilon) \cdot \vec{v}(\epsilon)$ Mean over incident angle ($1 / 3 \cdot p \cdot v$) and particle energy ϵ :

$$
P=\frac{1}{3} \int_{0}^{\infty} n(\epsilon) p(\epsilon) v(\epsilon) \mathrm{d} \epsilon
$$

relativistic case:

$$
\begin{aligned}
& \gamma:=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} ; p=\gamma m v ; \epsilon=(\gamma-1) m c^{2} \Rightarrow \\
& \quad P=\frac{1}{3} \int_{0}^{\infty} n \epsilon\left(1+\frac{2 m c^{2}}{\epsilon}\right)\left(1+\frac{m c^{2}}{\epsilon}\right)^{-1} \mathrm{~d} \epsilon
\end{aligned}
$$

Pressure and energy

limiting cases

- non-relativistic: $m c^{2} \gg \epsilon \rightarrow$

$$
P_{\mathrm{NR}}=\frac{2}{3} \int n \epsilon \mathrm{~d} \epsilon=\frac{2}{3}\langle n \epsilon\rangle=\frac{2}{3} U_{\mathrm{NR}}
$$

- extrem-relativistic: $m c^{2} \ll \epsilon \rightarrow P_{\mathrm{ER}}=\frac{1}{3} U_{\mathrm{ER}}$
\Rightarrow general relation $P \sim U$ (energy density)
Radiation pressure:

$$
P_{\mathrm{rad}}=\frac{1}{3} U=\frac{a}{3} T^{4}\left(a=7.56 \cdot 10^{-15} \frac{\mathrm{erg}}{\mathrm{~cm}^{3} \mathrm{~K}^{4}}\right)
$$

Typical mass-loss rates for galactic 0-type stars on the MS

$$
0.5-20 \times 10^{-6} M_{\text {sol }} \text { year }^{-1}
$$

$$
\begin{aligned}
& M \propto L^{1.7} \quad \Longleftrightarrow \quad \dot{M} \propto M^{3.4} \\
& L \propto M^{2} \\
& \tau_{M S} \propto M^{-0.6} \\
& \Delta M / M \propto M^{1.8}
\end{aligned}
$$

Dust enshrouded red supergiant may have higher mass loss (factor between 3 and 50) van Loon et al. (2005).

RSG/DSG/WR-SN $I I, I I 6, I 6, I c$

RSG Mdot: $-\log ($ Teff/K) > 3.7: de Jager et al. (1988)

- $\log ($ Teff $/ K)$ < 3.7: linear fit from the data of Sylvester et al.

```
M}=-1.479\times1\mp@subsup{0}{}{-14}\times(\frac{L}{L
``` (1998) and van Loon et al. (1999) (see Crowther 2001)


Models: Georgy 12 (see also Eldridge et al 13)
Super-Eddington layers \(\rightarrow\) increased Mdot (see Ekstroem et al 13)

\section*{Final stages ef SN type}

\section*{Ratio SNIbc/SNII: tests final type}

Georgy et al 09

- THEORY: Georgy et al 09 (solid line) binaries: Eldridge etal 08 (dotted)
- OBS: Prantzos \& Boissier 03 (triangles) Prieto etal 08 (pentagons)

\section*{Long of Soft Gamma-Ray Bursts (GRBs)}

\section*{Long soft GRB-SN Ic connection: GRB060218/SN2006aj}

GRB 031203-SN 2003lw / GRB 030329-SN 2003dh / GRB 980425-SN 1998bw, ...
Tagliaferri, G et al 2004 / Matheson 2003, ... / Iwamoto, K. 1999, ...

\section*{Collapsar progenitors must: (Woosley 1993, A. Mc Fadyen)}

Form a BH
Lose their H-rich envelope \(\rightarrow\) WR star
Core w. enough angular momentum Observational info:

Z of close-by GRBs is lower than solar
~ Z (Magellanic clouds)

6(simulation by Mc Fadyen)

Hirschi et al A\&A, 443, 581, 2005
\begin{tabular}{|c|c|c|c|c|}
\hline & \(Z_{\text {SMC }}\) & \(Z_{\text {LMC }}\) & \(Z_{0}\) & \(Z_{\text {GC }}\) \\
\hline \(\mathrm{M}_{\text {GRB }}{ }^{\text {min }}(\mathrm{WR})\) & 32 & 25 & 22 & 21 \\
\hline \(\mathrm{M}_{\text {GRB }}{ }^{\text {max }}(\mathrm{WR})\) & 95 & 95 & 75 & 55 \\
\hline \(\mathrm{R}_{\text {GRB }}{ }^{\text {max }}(\mathrm{WR})\) & \(1.15 \mathrm{E}-03\) & \(1.74 \mathrm{E}-03\) & \(2.01 \mathrm{E}-03\) & \(1.92 \mathrm{E}-03\) \\
\hline \(\mathrm{M}_{\text {GRB }}{ }^{\text {min }}(\mathrm{WO})\) & 50 & 45 & - & - \\
\hline \(\mathrm{M}_{\text {GRB }}{ }^{\text {max }}(\mathrm{WO})\) & 95 & 95 & - & - \\
\hline \(\mathrm{R}_{\text {GRRR }}^{\text {max }}(\mathrm{WO})\) & \(4.74 \mathrm{E}-04\) & \(5.99 \mathrm{E}-04\) & - & - \\
\hline
\end{tabular}

GRB favoured at low Z, maybe also very low Z (85 Mo)

\section*{GRB progenitors with B-Fields}

\section*{Rates compatible with observations}
\(\mathrm{Z}=0.004\)

\(\mathrm{Z}=0.001\)
\(Z_{\max } \sim 0.003\)
is a bit low. Dep. on Mdot \&

\section*{\(\mathrm{Z}=0.002\)}

\(\mathrm{Z}=0.00001\)

\section*{GRB progenitors with B-Fields}

Taylor-Spruit dynamo (Spruit 2002) : better for NS (Heger et al 2005, Suijs etal 08) No \(A_{\text {BH }}>1\) in Fe-core @ pre-SN stage with B-fields (Petrovic et al 2005, ...)
- \(\mathrm{A}_{\mathrm{BH}}-1 \leftarrow\) Quasi chemically-homog. evol. of fast rot. stars (avoid RSG) (Yoon \& Langer 06, Woosley \& Heger 2006)

\begin{tabular}{|c|c|c|c|c|c}
\hline\(V_{\text {ini }}[k m / s]\) & \(Z_{0}\) & \(Z(S M C)\) & \(Z=10^{-3}\) & \(Z=10^{-5}\) & \(Z=10^{-8}\) \\
\hline-230 & - & - & - & No & - \\
\hline\(\sim 300\) & - & WR & - & - & - \\
\hline \(400-500\) & WR & WR & WR & WR & No \\
\hline 700 & - & - & - & - & WR \\
\hline
\end{tabular}
- WR (SNIb,c) \& GRBs predicted down to Z=~0 (Yoon et al 06) This study

\section*{Question:}
- GRBs around \(Z(\) LMC \() \& Z(S M C)\) ? Dep. On mass loss / NO GRB @ Z。
(Meynet \& Maeder 2007)

\section*{Quasi-Chem. Evol. @ very low Z? 40M models}
\(\mathrm{Z}=1 \mathrm{e}-5, v_{i n i}=600 \mathrm{~km} / \mathrm{s}\left(v_{i n i} / v_{c r i t}=0.59\right)\)

\(\mathrm{Z}=1 \mathrm{e}-8, v_{i n i}=700 \mathrm{~km} / \mathrm{s}\left(v_{i n i} / v_{c r i t}=0.55\right)\)

Diff. Coeff. Smaller --> Quasi-Chem. Evol. harder for the first stellar generations
\[
\begin{aligned}
& \text { Stellar Evolution: } \\
& \text { From the Most } \\
& \text { to the Least } \\
& \text { massive stars }
\end{aligned}
\]

\section*{Acknowledgements er Bibliography}
- Slides in white background (with blue title) were taken from Achim Weiss' lecture slides, which you can find here: http://www.mpa-garching.mpg.de/~weiss/lectures.html
- Some graphs were taken from Onno Pols' lecture notes on stellar evolution, which you can find here:

\section*{http://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/}
- Some slides (colourful ones) and content was taken from George Meynet's summer school slides.

\section*{Acknowledgements é Bibliography}

Recommended further reading:
- R. Kippenhahn \& A. Weigert, Stellar Structure and Evolution, 1990, Springer-Verlag, ISBN 3-540-50211-4
- A. Maeder, Physics, Formation and Evolution of Rotating Stars, 2009, Springer-Verlag, ISBN 978-3-540-76948-4
- D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, 2000, Cambridge University Press, ISBN 0-521-65937-X
- C.J. Hansen, S.D. Kawaler \& V. Trimble, Stellar Interiors, 2004, SpringerVerlag, ISBN 0-387-20089-4
- M. Salaris \& S. Cassisi, Evolution of Stars and Stellar Populations, 2005, John Wiley \& Sons, ISBN 0-470-09220-3

Importance, basics, effects, uncertainties of:
- Nuclear reactions \(\rightarrow\) B. Meyer
- Convection in L1
- Mass loss
- Rotation
- Magnetic fields
- Binarity
- Equation of state, opacities \& neutrino losses
including metallicity dependence

\section*{Impact of Rotation, \(M_{i n i}=20 M_{\text {. }}\)}

\section*{Importance as}

\section*{Hertzsrpung-Russell (HR) Diagram:}

\section*{Main Phases of Stellar Evolution}

\section*{Evolutionary tracks \(\rightarrow\)}

Ekstroem et al 12

\section*{Central Lemperature vs Central Density Diagram}

Evolutionary tracks \(\rightarrow\)

- EOS and partial degeneracy
- Standard massive stars
- The most massive stars
- Weak s-process
- Intermediate- and low-mass stars
- Stars at the boundary between massive and intermediate-mass stars

\section*{Equation of State - Ideal gas}
\[
P=n k_{B} T=\frac{\mathcal{R}}{\mu} \rho T
\]
with \(\rho=n \mu m_{u} ; \mu\) : molecular weight, mass of particle per \(m_{u}\).
Several components in gas with relative mass fractions
\(X_{i}=\frac{\rho_{i}}{\rho} \rightarrow n_{i}=\frac{\rho X_{i}}{m_{u} \mu_{i}}\)
electrons and ions:
\[
P=P_{e}+\sum_{i} P_{i}=\left(n_{e}+\sum_{i} n_{i}\right) k T .
\]

\section*{Partial degeneracy}
\[
\ldots U_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{E p^{2} \mathrm{~d} p}{1+\exp \left(\frac{E}{k T}-\Psi\right)}
\]

\(f(p)\) for partially degenerate gas with \(n_{e}=10^{28} \mathrm{~cm}^{-3}\) and \(T=\)
1.9•10 \({ }^{7}\) K corresponding to \(\Psi=\) 10.

The equation of state for normal stellar matter:
\[
P=P_{\mathrm{ion}}+P_{e}+P_{\mathrm{rad}}=\frac{\mathcal{R}}{\mu_{0}} \rho T+\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} \frac{p^{3} v(p) \mathrm{d} p}{1+\exp \left(\frac{E}{k T}-\Psi\right)}+\frac{a}{3} T^{4}
\]

\section*{Non-ideal effects}
- finite size of atoms \(\rightarrow\) pressure ionization important already in Sun and low-mass stars
- Coulomb interaction - low density \(\rightarrow\) pressure reduction important in many stars (envelopes, but also solar core)
- Coulomb interaction - high density \(\rightarrow\) crystallization white dwarfs, neutron stars
- configuration effects \(\rightarrow\) van der Waals gas; quantum effects (spin-spin-interactions)
- neutronization
neutron stars

\section*{Combination of sources for}

\section*{EOS in SE codes:}

Figure 1. \(\rho-T\) coverage of the equations of state used by the eos module for \(Z \leqslant 0.04\). Inside the region bounded by the black dashed lines we use MESA EOS tables that were constructed from the OPAL and SCVH tables. The OPAL and SCVH tables were blended in the region shown by the blue dotted lines, as described in the text. Regions outside of the black dashed lines utilize the HELM and PC EOSs, which, respectively, incorporate electron-positron pairs at high temperatures and crystallization at low temperatures. The blending of the MESA table and the HELM/PC results occurs between the black dashed lines and is described in the text. The dotted red line shows where the number of electrons per baryon has doubled due to pair production, and the region to the left of the dashed red line has \(\Gamma_{1}<4 / 3\). The very low density cold region in the leftmost part of the figure is treated as an ideal, neutral gas. The region below the black dashed line labeled as \(\Gamma=175\) would be in a crystalline state for a plasma of pure oxygen and is fully handled by the PC EOS. The red dot-dashed line shows where MESA blends the PC and HELM EOSs. The green lines show stellar profiles for a main-sequence star \(\left(M=1.0 M_{\odot}\right)\), a contracting object of \(M=0.001 M_{\odot}\), and a cooling white dwarf of \(M=0.8 M_{\odot}\). The heavy dark line is an evolved \(25 M_{\odot}\) star that has a maximum infalling speed of \(1000 \mathrm{~km} \mathrm{~s}^{-1}\). The jagged behavior reflects the distinct burning shells.

\section*{Central Temperature vs Central Density Diagram}

Evolutionary tracks \(\rightarrow\)

What is the slope of the evolutionary tracks?

\section*{Non-Degenerate Conditions}

Let us first consider a uniform contraction of a mass \(M\). In that case a variation in radius \(\Delta R\) corresponds to a variation in pressure \(\Delta P\) and to a variation in density \(\Delta \rho\) so that we have the following relations:
\[
\frac{\Delta P}{P}=-4 \frac{\Delta R}{R}, \text { and } \frac{\Delta \rho}{\rho}=-3 \frac{\Delta R}{R} .
\]

The first equality is deduced from the hydrostatic equilibrium equation and the second from the continuity equation. From these two relations, we can write
\[
\Delta \ln P=\frac{4}{3} \Delta \ln \rho .
\]

Let us now write the equation of state as follows
\[
\Delta \ln \rho=\alpha \Delta \ln P-\delta \Delta \ln T,
\]
where \(\alpha\) and \(\delta\) are defined by \(\alpha=\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T, \mu}\) and \(\delta=-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P, \mu}\), and where \(\mu\), the mean molecular weight, is supposed to remain constant. From these two relations one obtains, by eliminating \(\Delta P\) the two following relations between a variation in \(\log \mathrm{T}\) and \(\log \rho\) :
\[
\begin{equation*}
\Delta \ln T=\left(\frac{4 \alpha-3}{3 \delta}\right) \Delta \ln \rho \tag{1}
\end{equation*}
\]

For a perfect gas law we have \(\alpha=\delta=1\). Therefore an increase of, for instance, \(30 \%\) in density implies an increases of \(10 \%\) in temperature.

\section*{Non-Degenerate Conditions}

Models by
Ekström et al. (2012) A\&A, 537, A146)

Stars=system with a negative specific heat!

\section*{Degenerate Conditions}
no longer valid, but if during the course of evolution, when the central conditions pass from the non-degenerate region to the degenerate one, \(\alpha\) becomes inferior to three quarters before \(\delta\) is equal to zero, then a contraction can produce a cooling! This can be understood as due to the fact that, in order to allow electrons to occupy still higher energy state, some energy has to be extracted from the non degenerate nuclei which, as a consequence, cool down.
\[
\begin{gathered}
\Delta \ln T=\left(\frac{4 \alpha-3}{3 \delta}\right) \Delta \ln \rho . \\
P \propto \rho^{5 / 3} \\
\alpha=3 / 5 \text { and } \delta=0
\end{gathered}
\]

\section*{Non \(\rightarrow\) Degenerate Conditions}

\section*{\(\delta\)}

(Non relativistic)

\section*{Evolution of the temperature and density at the centre}

Pgaz=PdegNR
\(\frac{k}{\mu m_{H}} \rho T=K_{1}\left|\frac{\rho}{\mu e}\right|^{5 / 3} \rightarrow T=K_{1} \frac{\mu m_{H}}{k} \frac{1}{\mu_{e}^{5 / 3}} \rho^{2 / 3}\)

\section*{Non \(\rightarrow\) Degenerate Conditions}

Models by
Ekström et al. (2012) A\&A, 537, A146)

\section*{Mass Domains}

\section*{Mass Domains}
- \(0.08 \mathrm{M}_{\text {sun }}\) inferior mass limit for core H -burning : Brown Dwarfs
- \(0.08 \mathrm{M}_{\text {sun }}-0.5 \mathrm{M}_{\text {sun }}\) : H burning OK , degenerate before core He-burning (lifetime > Hubble time \(\rightarrow\) no He white dwarf from single stars)
- \(0.5-7 \mathrm{M}_{\text {sun }}\) : core H OK, core He OK (He-flash below 1.8 \(\mathrm{M}_{\text {sun }}\)), degenerate CO white dwarf
- 7-9 \(\mathrm{M}_{\text {sun }}\) : Core C burning \(\mathrm{OK} \rightarrow \mathrm{WD}(\) ? \()\) or Complete destruction (?) or collapse through electron captures (?)
- 9-150 \(\mathrm{M}_{\text {sun }}\) : core \(\mathrm{H}, \mathrm{He}, \mathrm{C}, \mathrm{Ne}, \mathrm{O}, \mathrm{Si}-\rightarrow\) Fe cores
- 150-250 \(\mathrm{M}_{\text {sun }}\) : Pair Creation Supernovae

Fig. 26.10. Evolution of central conditions for different masses with indications of instability domains (Sect. 7.8), the \(\mathrm{Fe}-\alpha\) transition indicates the photodesintegration of Fe nuclei into \(\alpha\) particles. The degenerate region is light gray. Dashed lines show the place where nuclear energy generation rates balance neutrino losses. Adapted from T.J. Mazurek and J.C. Wheeler [401]

\section*{Massive Stars}

Massive stars: M > 9 solar masses
Main sequence:
hydrogen burning
After Main Sequence:
Helium burning
Supergiant stage (red or blue) Wolf-Rayet (WR): M > 20-25 M

WR without RSG: \(\mathrm{M}>40 \mathrm{M}_{0}\)

http://www.astro.keele.ac.uk/~hirschi/animation/anim.html Advanced stages:
carbon, neon, oxygen, silicon burning \(\rightarrow\) iron core
Core collapse \(\rightarrow\) bounce \(\rightarrow\) supernova explosion

\section*{Impact of Rotation, \(M_{i n i}=20 M_{\text {. }}\)}

\section*{Massive Stars}
\(\mathrm{M}<\sim 30 \mathrm{M}_{0}\) : Rotational mixing dominates \(\rightarrow\) bigger cores

M>~30 M : mass loss dominates \(\rightarrow \sim\) or smaller cores

\section*{How massive can stars be?}

Do very massive stars (VMS: M>100M \({ }_{0}\)) exist?
Very Massive Stars in the Local Universe, 2014, Springer, Ed. Jorick S. Vink
- Star formation: already difficulties with \(30 \mathrm{M}_{0}\) stars but 2/3D simulations are promising (Kuiper et al 11, Krumholz 2014)
- Stellar evolution: possible up to \(\sim 1,000 \mathrm{M}_{0}\) (BUT mass loss/rad.)

Can we see them?
- Rare and short-lived
- Need to look at youngest and most massive clusters:
- Arches: \(\mathrm{M}<\sim 150 \mathrm{Mo}\)
(Figer 05, Martins et al 08)
- NGC 3603 \& R136: new \(M_{\text {max }}=320 M_{0}\) !

R136 cluster
(Crowther et al 10, MNRAS)

R136a1 \(\left(10^{7} \mathrm{~L}_{\mathrm{o}}\right)\) alone supplies \(7 \%\) of the ionizing flux of the entire 30 Doradus region!

What is the shape of the
luminosity vs mass relation in this mass range?

Textbooks: L ~ M \({ }^{3}\) for stars in the solar mass range

Above \(100 \mathrm{M}_{\mathrm{o}}\) : \(\mathrm{L} \sim \mathrm{M}^{1-1.5}\)

\section*{The Evolution of DMS}

VMS = Very Massive Stars for \(\mathrm{M}>100 \mathrm{M}_{0}\)

Log10(Time left until collapse)
\(300 \mathrm{M}_{\mathrm{o}}\)

Model: G300z14S000

(Yusof et al 13 MNRAS, aph1305.2099) VMS: much larger convective core \& mass loss!

\section*{The fate of VMS: PCSN \(\operatorname{BH} /\) CCSN?}
(Yusof et al 13 MNRAS, aph1305.2099)
\(\mathrm{Z}_{\text {solar }}:\) no PCSN
(Rotating) models with \(\mathrm{Z}<\mathrm{Z}(\mathrm{LMC})\) lose less mass,
and enter the PCSN instability region!

BUT mass loss uncertain!

PCSN range from Heger \& Woosley (2002)

Consistent with Langer et al (2007): PCSN for \(\mathrm{Z}<\mathrm{Z}_{\odot} / 3\)

\section*{\(S\) Process in Massive Stars}

Weak s process: (slow neutron capture process) during core He- and shell C-burning Kaeppeler, et al, 2011, RvMP, 83, 157
He: T > 0.25 GK
(\(\sim 21.6 \mathrm{keV}\))
C: T ~ 1GK

N -source: \({ }^{22} \mathrm{Ne}(\mathrm{a}, \mathrm{n})\)
Seed: iron
Poisons:
- He-b.: \({ }^{22} \mathrm{Ne},{ }^{25} \mathrm{Mg}\), \({ }^{16} \mathrm{O},{ }^{12} \mathrm{C}\)
- C-b.: \({ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}\),
\({ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne}\)

At solar Z: rotating models may produce up to \(3 x\) more s process (See also Chieffi, Limongi, 2012ApJS..199...38L)
How much s process do massive rotating stars produce at low Z?

\section*{Rotation induced mixing @ Low Z}

\section*{Before H-shell boost}

\section*{Xi @ end of He burning}

\section*{Nerw S-Process Models of Massive Rotating Stars}
\(\mathrm{Z}=10^{-5}\), rotating models with different \({ }^{17} \mathrm{O}(\mathrm{a}, \mathrm{g})\) rates; \(\mathrm{V}_{\text {in }}\)

Frischknecht et al, A\&A letter 2011, 2014 in prep
- STELLAR EVOLUTION CALCULATIONS WITH 600/700-ISOTOPE NETWORK!
\({ }^{22}\) Ne production almost primary but still varies with \(Z\) \& especially \(V_{\text {ini }} \cdot \mathrm{M}_{\text {ini }}\)
- Secondary seeds (Fe) limit production (\({ }^{(22} \mathrm{Ne}\) cannot act as seed)
- Strong variations in [Sr,Y/Ba] up to 2 dex dep. on \(\mathrm{Z}, \mathrm{V}_{\text {inip }}\) and \({ }^{17} \mathrm{O}(\mathrm{a}, \mathrm{g})\)
- Possibility of explosive n-capture process in He-shell

\section*{S Process in Massive Stars: Nuclear Physics Uncertainty}

Hirschi et al 2008, NICX
Pignatari et al 08, ApJ letter, 687,95
\({ }^{16} \mathrm{O}(\mathrm{n}, \gamma){ }^{17} \mathrm{O}:\)
\(-{ }^{16} \mathrm{O}\) poison if
\({ }^{17} \mathrm{O}(\alpha, \gamma){ }^{21} \mathrm{Ne}\) dom.
\(-{ }^{16} \mathrm{O}\) absorber if
\({ }^{17} \mathrm{O}(\alpha, n){ }^{20} \mathrm{Ne}\) dom.

Measurement of \({ }^{17} \mathrm{O}(\mathrm{a}, \mathrm{g})^{21} \mathrm{Ne}\) at TRIUMF
Taggart et al NICXI:
\({ }^{17} \mathrm{O}(\mathrm{a}, \mathrm{g})\) lower than CF88!
Best et al 2011 (@ Notre Dame): But much higher than Descouvemont 1993!

\section*{New S-Process Models Compared to ENTP * \& Bulge GC}
* New models also explain abundances in one of the oldest clusters in galactic bulge Chiappini et al, Nature Letter, 2011

Inhomogeneous GCE models by Cescutti et al 2013 A\&A,553,51
- Strong variations in
[Sr/Ba] > 1 dex matches well observed range for EMP stars (black circles)!
(no main s process included so cannot explain CEMP-s stars in blue)

\begin{tabular}{|c|c|c|c|}
\hline Model name & panels in Fig. 5 & s-process & r -process \\
\hline \(\mathrm{r}-\) & Upper & No s-process from massive stars & standard + extended r-process site \(\left(8-30 \mathrm{M}_{\odot}\right)\) \\
\hline as- & middle & average rotators \(\left(v_{\text {sin }} / v_{\text {critic }}=0.4\right)\) & standard r-process site \(\left(8-10 \mathrm{M}_{\odot}\right)\) \\
\hline \(\mathrm{fs}-\) & lower & \begin{tabular}{c}
fast rotators \(\left(V_{\text {int }} / v_{\text {critic }}=0.5\right)\) \\
and \(1 / 10\) for \({ }^{17} O(\alpha, \gamma)\) reaction rate
\end{tabular} & standard r-process site \(\left(8-10 \mathrm{M}_{\odot}\right)\) \\
\hline \hline
\end{tabular}
(EMP *: Frebel et al 2010)

\section*{Intermediate ef Low-Mass Stars}

Herwig, ARAA, 2005

CO white dwarfs
s-process

C-star formation
low-mass AGB

He-core flash fate: white dwarf
fate: neutron star or black hole
\begin{tabular}{llllll}
& Mass/M & 10 & 8.0 & 4 & 1.8 \\
1.0
\end{tabular}

Intermediate-mass stars: 1.8-9 \(\mathrm{M}_{0}\) do not ignite C-burning in centre
(C-flash for SAGB stars, see later)
Low-mass stars: \(0.5-1.8 \mathrm{M}_{0}\) do not ignite He-burning in centre (He-flash)

\section*{Intermediate \& Low-MLass Stars}

AGB phase \& \(s\) process in both
intermediate-mass stars and low-mass
stars!

\section*{Intermediate of Low-Mass Stars}

The plot you usually see at conferences for AGB stars:

Herwig, ARAA, 2005
Where does it fit in the star's evolution?

\section*{Intermediate of Low-Mass Stars}

\section*{\(5 \mathrm{M}_{\mathrm{o}}\) star: Evolution through H - and He-burning}

From SE notes, O. Pols (2009)

\section*{Intermediate of Low-Mass Stars}
\(1 \mathrm{M}_{\mathrm{o}}\) star: Evolution through H - and He-burning

From SE notes, O. Pols (2009)

He-flash at point \(\mathrm{F} \rightarrow \mathrm{G}\)

\section*{Intermediate \& Low-Mass Stars}
\(5 \mathrm{M}_{\mathrm{o}}\) star: AGB phase

\section*{Structure in AGB phase}

From SE notes, O. Pols (2009)

\section*{Intermediate of Low-Mass Stars}

\section*{\(5 \mathrm{M}_{\mathrm{o}}\) star: AGB phase}

\section*{Structure in AGB phase}

Herwig, ARAA, 2005

From SE notes, O. Pols (2009)

\section*{Intermediate \& Low-Mass Stars}
\(5 \mathrm{M}_{\mathrm{o}}\) star: AGB phase

\section*{Structure in AGB phase}

From SE notes, O. Pols (2009)

\section*{Intermediate ef Low-Mass Stars}
\(2 \mathrm{M}_{\mathrm{o}}\) star: post-AGB phase

Herwig, ARAA, 2005

\section*{Massive/AGB Stars Transition}

7-15 M models \(\leftarrow\) MESA stellar evolution code: http://mesa.sourceforge.net/ Paxton et al 10

Jones et al 2013; see also Mueller et al 12, Umeda et al 12

\section*{\(M_{\text {up }} \leq M \leq M_{\text {mas }} ; \quad M_{\text {up }} \approx 8 M_{\text {sun }}\)}

Early evolution like AGBs;

Fig. 4.-Evolutionary track in the central density and temperature diagram

TP-phase \(\rightarrow\) core growth
Dep. on Mdot \(\leftrightarrow\) mixing

4

- Critical ONeMg core mass \(=M_{\text {crit }}=1.375\) (Miyaji et al. 1980; Nomoto 1984)
See also: Miyaji (1980); Nomoto(1984, 1987); Miyaji \& Nomoto (1987); Garcia-Berro, Ritossa and Iben (1990s); Eldridge \& Tout (2004); L. Siess (2006, 2007, 2009, 2010), Poelarends (2008); Doherty et al. (2010) ...

\section*{\(M_{\text {up }} \leq M \leq M_{\text {mas }} ; \quad M_{\text {up }} \approx 8 M_{\text {sun }}\)}

Early evolution like AGBs;

Fig. 4.-Evolutionary track in the central density and temperature diagram

\section*{TP-phase \(\rightarrow\) core growth}

Dep. on Mdot \(\leftrightarrow\) mixing

Jones et al (in prep)
- Critical \(O N e M g\) core mass \(=M_{\text {crit }}=\sim 1.375\) (Miyaji et al. 1980; Nomoto 1984)
See also: Miyaji (1980); Nomoto(1984, 1987); Miyaji \& Nomoto (1987); Garcia-Berro, Ritossa and Iben (1990s); Eldridge \& Tout (2004); L. Siess (2006, 2007, 2009, 2010), Poelarends (2008); Doherty et al. (2010) ...

7-15 \(\mathrm{M}_{\mathrm{o}}\) models \(\leftarrow\) MESA stellar evolution code: http://mesa.sourceforge.net/ Paxton et al 10,12
\(12 \mathrm{M}_{\mathrm{o}}\) is a typical massive star:

All burning stages ignited centrally. Fate: Fe-CCSN

\section*{Can Massive Stars produce ECSN?}

\section*{9.5 \(\mathrm{M}_{\mathrm{o}}\) still a massive star:}

Ne-Si burning stages ignited off-centre. Fate: still Fe-CCSN

Simulations include 114-isotope network!

\section*{Can Massive Stars produce ECSNC?}

\section*{8.8 \(\mathrm{M}_{\mathrm{o}}\) failed massive star:}

Jones et al. (2013), ApJ 772, 150
Ne-b. starts off-centre but does not reach the centre. See also Nomoto 84: case 2.6 MESA \(\rightarrow\) Oxygen deflagration

Timmes et al 92,94
Eldridge \& Tout 04 Agile-Bolztran for collapse + explosion Fischer et al (in prep) Fate: ECSN

Key uncertainties: convective boundary mixing, mass loss

\section*{Fate of Eeast-Massive MS: ECSN/Fe-CCSN?}
- Fe-CCSN

Jones et al. (2013), ApJ 772, 150
Both SAGB and failed massive stars may produce ECSN
- EOS and partial degeneracy
- Standard massive stars
- The most massive stars
- Weak s-process
- Intermediate- and low-mass stars
- Stars at the boundary between massive and intermediate-mass stars

\section*{Teele is Not शiel (Germany) But Where is it?}

\section*{West Midlands:}
 and football: Stoke city fc in premier league

\section*{Supernova Explosion Iypes}

Massive stars: \(\rightarrow\) SN II (H envelope), lb (no H), Ic (no H \& He) \(\leftarrow\) WR

White dwarfs (WD): in binary systems Accretion \(\rightarrow\) Chandrasekhar
 mass \(\rightarrow\) SN la

\section*{Supernova Explosion Iypes}

Massive stars: \(\rightarrow\) SN II (H envelope), lb (no H), Ic (no H \& He) \(\leftarrow\) WR

White dwarfs (WD): in binary systems Accretion \(\rightarrow\) Chandrasekhar
 mass \(\rightarrow\) SN la

\section*{SN type:}
- NO SNIIn predicted! ~ NOT ok for SN2006gy (e.g. Woosley et al 2007)
- SNIc at solar Z,
- SNIb/c at Z(SMC)
~ ok for SN2007bi
(Gal-Yam 2009) BUT see Dessart et al 12,13+ Panstarrs results

(Yusof et al 13 MNRAS, aph1305.2099)```

