

Study of inclusive and exclusive multibody *B* decays to χ_{c1} and χ_{c2} mesons

Vishal Bhardwaj**

Nara Women's University, Japan E-mail: vishstar@gmail.com

In spite of the fact that the two-body *B* decays into χ_{c2} such as $B \to \chi_{c2}K^{(*)}$ are suppressed by the QCD factorization effect, the inclusive $B \to \chi_{c2}X$ branching fraction amounts to one third of the non-suppressed $B \to \chi_{c1}X$ decays because of the decay modes to multibody final states. Using a large-statistics $\Upsilon(4S)$ data sample corresponding to 772 million *B* meson pairs accumulated by the Belle detector at the KEKB e^+e^- collider, precise measurements of inclusive $B \to \chi_{c1}$ and χ_{c2} branching fractions are carried out. The multibody final states such as $\chi_{c2}K\pi$, $\chi_{c1}\gamma K\pi$ and so on are also investigated to look for new charmonium-like resonances.

XV International Conference on Hadron Spectroscopy-Hadron 2013 4-8 November 2013 Nara, Japan

^{*}Speaker. [†]for the Belle Collaboration

1. Introduction

Inclusive production of χ_{c2} mesons in *B* decays is relatively large [1, 2] in spite of the fact that two-body *B* decays into χ_{c2} are highly suppressed [3] (as in the factorization hypothesis [4]). A study of the differential branching fraction $(D\mathscr{B})$ in bins of χ_{cJ} (J = 1, 2) [5] suggests that χ_{c2} is found to be coming from three-body or higher multiplicity decays [1, 2], which have not yet been observed. More experimental studies are needed to search for these multibody decay modes if one wishes to understand the *B* decays needed for precision studies. As inclusive production of χ_{c2} is large, one can naively expect that there can be some exotic intermediate states (charmonium or charmonium-like states) decaying into χ_{c2} , as *B* decays to $XK^{(*)}$ and then *X* decays into $\chi_{c2}\pi$, $\chi_{c2}\pi\pi$ where *X* is some unknown resonance.

Recently, Belle found a new charmonium state X(3823) in the $B \to (\chi_{c1}\gamma)K$ final state, which is supposed to be the ψ_{2D} ($1^3D_2 c\bar{c}$) charmonium having J^{PC} of 2^{--} [6]. In such case, one expects it to have a large branching fraction in the $B^0 \to X(3823)(\to \chi_{c1}\gamma)K^*(K^+\pi^-)$ [7] decay mode worth to be searched for.

2. Data sample and event selection

We use a data sample of $772 \times 10^6 B\overline{B}$ events collected with the Belle detector [8] at the KEKB asymmetric-energy e^+e^- collider [9] operating at the $\Upsilon(4S)$ resonance. All results presented here are preliminary.

To suppress continuum backgrounds we require the ratio of the second to zeroth Fox-Wolfram moments to be less than 0.5 [10]. As charged tracks coming from *B* decays originate from the interaction point (IP), the distance of closest approach to IP is required to be within 3.5 cm in the beam direction (*z*) and within 1.0 cm in the transverse plane (*xy*-plane). Photons are reconstructed from the energy deposition in the electromagnetic calorimeter by requiring no matching with any extrapolated charged track. The combined information from the central drift chamber, time-of-flight and aerogel threshold Cherenkov counters is used to identify charged kaons and pions on basis of the *K*- π likelihood ratio, $R_{K(\pi)} = \mathcal{L}_{K(\pi)}/(\mathcal{L}_K + \mathcal{L}_{\pi})$. A track is identified as a kaon (pion) if the likelihood ratio $\mathcal{L}_{K(\pi)}$ is greater than 0.6.

The J/ψ meson is reconstructed via its decays to $\ell^+\ell^-$ ($\ell = e$ or μ). To reduce the radiative tail in the e^+e^- mode, the four-momenta of all photons within 50 mrad with respect to the original direction of the e^+ or e^- tracks are included in the invariant mass calculation, hereinafter denoted as $M_{e^+e^-(\gamma)}$. The reconstructed invariant mass of the J/ψ candidates is required to satisfy 2.95 $\text{GeV}/c^2 < M_{e^+e^-(\gamma)} < 3.13 \text{ GeV}/c^2$ or 3.03 $\text{GeV}/c^2 < M_{\mu^+\mu^-} < 3.13 \text{ GeV}/c^2$. For the selected J/ψ candidates, a vertex-constrained fit is applied and then a mass-constrained fit is performed in order to improve the momentum resolution.

The χ_{c1} and χ_{c2} candidates are reconstructed by combining J/ψ candidates with a photon having energy (E_{γ}) larger than 100 MeV in the laboratory frame. To reduce the combinatorial background coming from $\pi^0 \to \gamma\gamma$, we use a likelihood function that distinguishes an isolated photon from π^0 decays using the photon pair invariant mass, photon laboratory energy and polar angle [11]. We reject both γ 's in the pair if the π^0 likelihood probability is larger than 0.3 (0.8) for an inclusive study $(B^0 \to \chi_{c2}K^+\pi^-, B^+ \to \chi_{c2}K^+\pi^-\pi^+$ and $B^0 \to \chi_{c1}\gamma K^+\pi^-)$. The reconstructed

3. Results

3.1 $B \rightarrow \chi_{cJ} X$ study

To identify the signal, we use $\Delta M \equiv M_{\ell\ell\gamma} - M_{\ell\ell}$, where $M_{\ell\ell\gamma}(M_{\ell\ell})$ is the reconstructed mass of $J/\psi\gamma(J/\psi)$. We extract the signal yield using a one-dimensional binned maximum likelihood (1D BML) fit to the ΔM distribution. A double-sided Crystal Ball function is used to model the signal shapes of $B \rightarrow \chi_{c1}X$ and $B \rightarrow \chi_{c2}X$. Figure 2 (a) shows the fit to the ΔM distribution for $B \rightarrow \chi_{c1}X$ and $B \rightarrow \chi_{c2}X$. Figure 2 (a) shows the fit to the ΔM distribution for $B \rightarrow \chi_{c1}X$ and $B \rightarrow \chi_{c2}X$ decays in the range of [0.2, 0.6] GeV/ c^2 .

We used a 89.45 fb⁻¹ continuum data sample to estimate the χ_{cJ} feed-down from continuum and possible χ_{cJ} production. The scaled χ_{c1} and χ_{c2} continuum yields are subtracted from the on-resonance yields. The reconstruction efficiency for full inclusive $B \rightarrow \chi_{c1}X$ and $B \rightarrow \chi_{c2}X$ is estimated to be 24.2% and 25.9%, respectively. Uncertainty on the efficiency is estimated to be 4.0%.

We use the Particle Data Group [12] values for secondary daughter branching fractions. After subtracting the ψ' feed-down contribution, we get the direct branching fractions $\mathscr{B}(B \to \chi_{c1}X)$ and $\mathscr{B}(B \to \chi_{c2}X)$ to be $(3.00 \pm 0.04 \pm 0.24) \times 10^{-3}$ and $(0.70 \pm 0.05 \pm 0.08) \times 10^{-3}$, respectively, where the first (second) error is statistical (systematic). The branching fractions are summarized in Table 1.

Figure 1: (a) BML fit to the ΔM distribution of the $B \to \chi_{cJ}(\to J/\psi\gamma)X$ decays in the data. The curves show the signal (magenta dot-dashed for χ_{c1} and red dashed for χ_{c2}) and the background component (green double-dotted dashed for combinatorial) as well as the overall fit (blue solid). The lower plot shows the pull of the residuals with respect to the fit. (b) Plots showing $D\mathscr{B}(B \to \chi_{c1}X)$ [magenta circle •] and $D\mathscr{B}(B \to \chi_{c2}X)$ [red triangle \checkmark] in bins of $p^*_{\chi_{c1}}$.

Figure 2 (b) shows the obtained distribution of the $D\mathscr{B}$ in bins of $p_{\chi_{cJ}}^*$. It seems that χ_{c2} is mostly coming from multibody *B* decays.

	$B ightarrow \chi_{c1} X$		$B ightarrow \chi_{c2} X$	
	Yield (Y)	$\mathscr{B}, 10^{-3}$	Yield (Y)	$\mathscr{B}, 10^{-3}$
Fit	51286 ± 649	3.36 ± 0.04	9714 ± 453	1.05 ± 0.05
Continuum subtracted	50194 ± 657	3.29 ± 0.04	8991 ± 465	0.97 ± 0.05
$\psi' ightarrow \chi_{c1} \gamma$ feed down subtracted		3.00 ± 0.04		0.70 ± 0.05

Table 1: Yields and branching fractions. Errors are statistical only.

3.2 $B^0 \rightarrow \chi_{c2} K^+ \pi^-$ and $B^+ \rightarrow \chi_{c2} K^+ \pi^- \pi^+$ decay modes

Figure 3a (3b) shows the unbinned maximum likelihood (UML) fit to the ΔE distribution of the $B^0 \rightarrow \chi_{c2}K^+\pi^-$ ($B^+ \rightarrow \chi_{c2}K^+\pi^-\pi^+$) decay mode. We observe the $B^0 \rightarrow \chi_{c2}K^+\pi^-$ ($B^+ \rightarrow \chi_{c2}K^+\pi^-\pi^+$) decay with 206 ± 25 (269 ± 34) signal events, having a statistical significance of 9.7 σ (8.7 σ), for the first time. We also look at the $M_{\chi_{c2}\pi^+}$ and $M_{\chi_{c2}\pi^+\pi^-}$ distribution in order to search for any new resonance and find ourselves limited by the statistics.

Figure 2: 1D UML fit to the ΔE distribution of the (a) $B^0 \rightarrow \chi_{c2}\pi^+K^-$ and (b) $B^+ \rightarrow \chi_{c2}\pi^+\pi^-K^-$ decay modes. The curves shows the signal [red dashed for $B^0 \rightarrow \chi_{c2}K^+\pi^-$ in (a) and $B^+ \rightarrow \chi_{c2}K^+\pi^-\pi^-$ in (b)], peaking background [magenta dotted-dashed for $B^0 \rightarrow \chi_{c1}K^+\pi^-$ in (a) and $B^+ \rightarrow \chi_{c1}K^+\pi^+\pi^-$ in (b)] and the background component (green dotted for combinatorial) as well as the overall fit (blue solid).

3.3 $B^0 \rightarrow (\chi_{c1}\gamma)K^+\pi^-$ decay mode

In our search for $B^0 \to X(3823)K^+\pi^-$, we find a strong hint of a narrow peak at 3823 MeV in $M_{\chi_{c1}\gamma}$ with a significance of 2.5 σ (systematics included). Figure 4 shows the UML fit to the $M_{\chi_{c1}\gamma}$ distribution for the $B^0 \to (\chi_{c1}\gamma)K^+\pi^-$ decay mode. Using the central value of the measured branching fraction, we get $\frac{\mathscr{B}(B^0 \to X(3823)K^+\pi^-)}{\mathscr{B}(B^+X(3823)K^+)} = 2.5 \pm 1.0$ (stat. only).

4. Summary

Belle presented first preliminary results at this conference. $\mathscr{B}(B \to \chi_{cJ}X)$ measured by Belle is consistent with the previous results. $D\mathscr{B}(B \to \chi_{cJ}X)$ measured in bins of $p^*_{\chi_{cJ}}$ shows a suppression of χ_{c2} production in higher momentum bins. Belle observed the $B^0 \to \chi_{c2}K^+\pi^-$ and

Figure 3: UML fit to the $M_{\chi_{c1}\gamma}$ distribution for the $B^0 \to (\chi_{c1}\gamma)K^+\pi^-$ decay in the data. The curves shows the signal (magenta long-dashed for $B^0 \to \psi'[\to \chi_{c1}\gamma]K^+\pi^-$ and red dashed for $B^0 \to X(3823)[\to \chi_{c1}\gamma]K^+\pi^-$) and the background component (black dotted-dashed for $B^0 \to \psi'[\to \chi_{c1}\gamma]K^+\pi^-$ and green dotted for combinatorial) as well as the overall fit (blue solid).

 $B^+ \to \chi_{c1} K^+ \pi^+ \pi^-$ decay modes for the first time, while no narrow resonance is found in the $M_{\chi_{c2}\pi^+}$ and $M_{\chi_{c2}\pi^+\pi^-}$ distributions. Inclusive and exclusive study of *B* decays having χ_{c2} in the final state suggests suppression of two-body *B* decay due to suppression of a tensor, while multibody *B* decays into χ_{c2} are allowed. A hint of X(3823) in $B^0 \to X(3823)K^+\pi^-$ is seen with a significance of 2.5 σ (syst. included) and the large $\mathscr{B}(B^0 \to X(3823)K^+\pi^-)$ suggests its *J* to be 2. This further supports X(3823) to be identified as the ψ_{2D} (1³ $D_2 c\bar{c}$) state.

References

- [1] K. Abe et al., (Belle Collaboration), Phys. Rev. Lett. 89, 011803 (2002).
- [2] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 67, 032002 (2003).
- [3] V. Bhardwaj et al., (Belle Collaboration), Phys. Rev. Lett. 107, 091803 (2011).
- [4] M. Neubert and B. Stech, Adv. Ser. Direct. High Energy Phys. 15, 294 (1998) (arXiv:9705292v2 [hep-ph]), T.E. Browder, Acta Phys. Polon. B 28, 805 (1997) (arXiv:9612491v1 [hep-ph]).
- [5] Hereinafter, χ_{cJ} refers to either χ_{c1} or χ_{c2} , depending on which is reconstructed.
- [6] V. Bhardwaj et al. (Belle Collaboration), Phys. Rev. Lett. 111, 032001 (2013).
- [7] Charge-conjugate and neutral modes are included throughout the paper unless stated otherwise.
- [8] A. Abashian *et al.* (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A **479**, 117 (2002); also see detector section in J. Brodzicka *et al.*, Prog. Theor. Exp. Phys. (2012) 04D001.
- [9] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe *et al.*, Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
- [10] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
- [11] P. Koppenburg et al. (Belle Collaboration), Phys. Rev. Lett. 93, 061803 (2004).
- [12] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.