## PROCEEDINGS OF SCIENCE

# PoS

# Study of charmed strange baryons at Belle

### Yuji Kato\*†

Nagoya University E-mail: kato@hepl.phys.nagoya-u.ac.jp

We report results of a study of charmed strange baryons. The analysis is performed using a 980 fb<sup>-1</sup> data sample collected with the Belle detector at the KEKB asymmetric-energy  $e^+e^-$  collider. We search for two excited charmed strange baryons,  $\Xi_c(3055)^+$  and  $\Xi_c(3123)^+$  with  $\Lambda_c^+K^-\pi^+$  final states through intermediate  $\Sigma_c^{++}(2455)$  or  $\Sigma_c^{++}(2520)$  resonances. The  $\Xi_c(3055)^+$  signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the  $\Xi_c(3123)^+$  is seen. We also study  $\Lambda D^{+(0)}$  final state. We observe decays of  $\Xi_c(3055)^{+(0)}$  and  $\Xi_c(3080)^+$  into  $\Lambda D^{+(0)}$ . This is the first observation of the  $\Xi_c(3055)^0$ .

XV International Conference on Hadron Spectroscopy-Hadron 2013 4-8 November 2013 Nara, Japan

<sup>\*</sup>Speaker.

<sup>&</sup>lt;sup>†</sup>for the Belle collaboration.

#### 1. Introduction

In recent years, there has been much progress in the experimental study of the charmed baryon spectroscopy mainly by Belle and BaBar experiments. In the charmed strange baryon sector, a number of excited states ( $\Xi_c^*$ ) has been observed. The Belle collaboration reported evidence of two excited states,  $\Xi_c(2980)$  and  $\Xi_c(3080)$ , in the  $\Lambda_c^+ K^- \pi^+$  and  $\Lambda_c^+ K_S^0 \pi^-$  final states [1]. These states are confirmed by BaBar later [2]. In the same paper, BaBar also claimed evidence of two resonances,  $\Xi_c(3055)^+$  and  $\Xi_c(3123)^+$ , through intermediate  $\Sigma_c(2455)^{++}K^-$  and  $\Sigma_c(2520)^{++}K^-$  final states. Independent search of these two states is necessary to confirm the existences. Among a number of possible decay modes of the charmed strange baryons, the  $\Lambda D^{+(0)}$  mode is not studied well.

In this paper, we report the studies of charmed strange baryons in the  $\Lambda_c^+ K^- \pi^+$  and  $\Lambda D^{+(0)}$  final states using a data sample with an integrated luminosity of 980 fb<sup>-1</sup> collected with the Belle detector [3] at the KEKB asymmetric-energy  $e^+e^-$  collider [4]. All the results are preliminary.

#### 2. Event selection

The  $\Lambda_c^+$  candidates are reconstructed via its decay to  $pK^-\pi^+$  and  $pK_s^0$  [5]. The  $D^+$  candidates are reconstructed via its decay to  $K^-\pi^+\pi^+$ . The  $D^0$  candidates are reconstructed via its decays to  $K^-\pi^+$ ,  $K^-\pi^+\pi^+\pi^-$  and  $K^-\pi^+\pi^0$ . The charged proton, kaon, and pion are required to have a point of closest approach to the interaction point that is within 0.2 cm in the transverse  $(r \cdot \phi)$ direction and within 2 cm along the z-axis. (The z-axis is opposite the positron beam direction.) For each track, the likelihood values  $\mathscr{L}_p$ ,  $\mathscr{L}_K$ , and  $\mathscr{L}_\pi$  are provided for the assumption of proton, kaon and pion, respectively. The likelihood ratio is defined as  $\mathscr{L}(i:j) = \mathscr{L}_i / (\mathscr{L}_i + \mathscr{L}_i)$  and a track is identified as a proton if the likelihood ratios  $\mathscr{L}(p:\pi)$  and  $\mathscr{L}(p:K)$  are greater than 0.6. A track is identified as a kaon if the likelihood ratios  $\mathscr{L}(K:\pi)$  and  $\mathscr{L}(K:p)$  are greater than 0.6. A track is identified as a pion if the likelihood ratios  $\mathscr{L}(\pi:K)$  and  $\mathscr{L}(\pi:p)$  are greater than 0.6. In addition, electron  $(\mathcal{L}_{\rho})$  likelihood is provided. A track with an electron likelihood greater than 0.95 is rejected. The efficiencies of hadron identification are about 90% for pions and kaons and 93% for protons. The  $\pi^0$  candidates are selected from pair of photons whose invariant mass  $(M_{\gamma\gamma})$  satisfies  $120 < M_{\gamma\gamma} < 150 \text{ MeV}/c^2$ . The energy of each photon is required to be greater than 50 MeV/ $c^2$ and the energy of the  $\pi^0$  candidate is required to be greater than 500 MeV/ $c^2$ . The  $\Lambda$  candidates are selected based on their decay vertex information [6] and invariant mass of a  $\Lambda$  candidate is required to be within 3 MeV/ $c^2$  of the nominal  $\Lambda$  mass, which corresponds to approximately  $3\sigma$  of the mass resolution. The  $K_s^0$  candidate is reconstructed from its decay into  $\pi^+\pi^-$ . The vertex of the two pions for the  $K_S^0$  is required to be displaced from the interaction point (IP) in the direction of the pion pair momentum [7]. A pair of oppositely charged pions that have an invariant mass within 8 MeV/ $c^2$  of the nominal  $K_S^0$  mass, which corresponds to approximately 3.5 $\sigma$  of the mass resolution, is selected. The  $\Lambda_c^+$  ( $D^{+(0)}$ ) candidates are selected by requiring invariant mass of the daughter particles to be within 1.5 (2.0) $\sigma$  of the nominal mass. The  $\chi^2$  value of the common vertex fit of the  $\Lambda_c^+$  or  $D^{(+)0}$  is required to be less than 50. For the remaining candidate, a mass constraint fit to the  $\Lambda_c^+$  or  $D^{(+)0}$  mass is performed to improve the momentum resolution. In order to reduce the combinatorial background, the scaled momentum  $x_p = p^* / \sqrt{s/4 - m^2}$ , where  $p^*$  is the CM

momentum of a  $\Xi_c^*$  candidate and *s* is CM energy squared and *m* is mass of the  $\Xi_c^*$  candidate, is required to be greater than 0.7.

#### 3. Results

#### **3.1 Results for** $\Lambda_c^+ K^- \pi^+$ final state

We select the  $\Sigma_c(2455)^{++}$  ( $\Sigma_c(2520)^{++}$ ) region by requiring  $|M(\Lambda_c^+\pi^+) - m_{\Sigma_c^{++}}| < 5$  (18) MeV/ $c^2$ , where  $m_{\Sigma_c^{++}}$  is the nominal mass of the  $\Sigma_c(2455)^{++}$  or  $\Sigma_c(2520)^{++}$ . Figure 1 (a) shows the  $M(\Lambda_c^+K^-\pi^+)$  distribution for the  $\Sigma_c(2455)^{++}$  signal region together with the same plot for the  $\Sigma_c(2455)^{++}$  sideband region. Clear peaks corresponding to the  $\Xi_c(2980)^+$ ,  $\Xi_c(3055)^+$  and  $\Xi_c(3080)^+$  are seen. To obtain the statistical significance of the  $\Xi_c(3055)^+$ , an un-binned extended maximum likelihood (UML) fit is applied. PDFs for the  $\Xi_c^*$  components are represented by a Breit-Wigner line-shape convolved with a Gaussian to account for the invariant-mass resolution. The background shape is assumed to be threshold function. To estimate the statistical significance of the  $\Xi_c(3055)^+$ , we evaluate the likelihood ratio  $-2\ln(\mathscr{L}_0/\mathscr{L})$ , where  $\mathscr{L}_0$  is the likelihood for the fit without signal and  $\mathscr{L}$  is likelihood for the fit with the signal taking into account the change of number of degrees of freedom. The statistical significance of the  $\Xi_c(3055)^+$  is  $6.8\sigma$ .

Figure 1 (b) shows the  $M(\Lambda_c^+ K^- \pi^+)$  distribution for the  $\Sigma_c(2520)^{++}$  selected region together with the same plot for the  $\Sigma_c(2520)^{++}$  sideband region. A clear peak corresponding to the  $\Xi_c(3080)^+$  is seen, while no peak structure is seen in the mass near 3.123 GeV/ $c^2$ . An UML fit is applied to extract the signal yield. Again, the  $\Xi_c^*$  components are represented by a Breit-Wigner function convolved with a Gaussian. For the  $\Xi_c(3080)^+$  component, the mass and width of the Breit-Wigner are treated as free parameters; while for the  $\Xi_c(3123)^+$  component, the mass and width are fixed to the values obtained in Ref.[2]. The background shape is assumed to be threshold function. The yield of the  $\Xi_c(3123)^+$  is  $8 \pm 22$  events, which is consistent with zero. Hence, a 95% C.L. upper limit for the product of the cross section and branching fraction of  $\Lambda_c^+$  produced with  $x_p > 0.7$  condition,

$$\sigma_{\mathscr{B}\Lambda_c^+} \equiv \sigma(e^+e^- \to \Xi_c(3123)^+ X) \times \mathscr{B}(\Lambda_c^+ \to pK^-\pi^+)$$

is evaluated with the Bayesian approach. As in Ref. [2], we assume  $\mathscr{B}(\Xi_c(3123)^+ \to \Sigma_c(2520)^{++}K^-)$ is equal to 1. The upper limit on  $\sigma_{\mathscr{B}\Lambda_c^+}$  is 0.34 fb. The value is much smaller than that quoted in Ref. [2] (1.6 ± 0.6 ± 0.2 fb). The systematic uncertainties of the masses and widths of the  $\Xi_c^*$  and stability of the statistical significance of the  $\Xi_c(3055)^+$  are studied by changing various fit conditions. In none of these fitting configurations does the statistical significance of the  $\Xi_c(3055)^+$  fall below 6.6 $\sigma$ . The measured mass and width of the  $\Xi_c^*$  states are summarized in Table 1.

## **3.2 Results for** $\Lambda D^{+(0)}$ final state

Figure 2 shows the  $M(\Lambda D^{+(0)})$  distribution, where peak structures near 3055 MeV/ $c^2$  and 3080 MeV/ $c^2$  are seen. In order to check the existence of the peaking structure in the background, we check invariant mass distribution of the wrong-sign combination  $\overline{\Lambda}D$ ,  $\Lambda$  and D for the sideband



Figure 1: (a) The  $M(\Lambda_c^+ K^- \pi^+)$  distribution with  $\Sigma_c(2455)^{++}$  selection. The dots with error bars show the distribution for the  $\Sigma_c(2455)^{++}$  selected whereas the rectangles show the distribution for the  $\Sigma_c(2455)^{++}$  sideband region. Blue line shows the fit result. Black, yellow, red, and green lines show the contributions from the background,  $\Xi_c(2980)^+$ ,  $\Xi_c(3055)^+$ , and  $\Xi_c(3080)^+$ , respectively. (b) The  $M(\Lambda_c^+ K^- \pi^+)$  distribution with  $\Sigma_c(2520)^{++}$  selection. The dots with error bars show the distribution for  $\Sigma_c(2520)^{++}$  selected region whereas the rectangles show the distribution for the  $\Sigma_c(2520)^{++}$  selected region whereas the rectangles show the distribution for the  $\Sigma_c(2520)^{++}$  selected  $\Xi_c(3080)^+$ , and  $\Xi_c(3123)^+$ , respectively.

region the D candidates. None of them show a peaking structure. Therefore, these peaks are very likely to be corresponding to two known  $\Xi_c^*$  states,  $\Xi_c(3055)^+$  and  $\Xi_c(3080)^+$ .

We perform UML fit to mass spectra again. PDFs for a  $\Xi_c^*$  components are represented by Breit-Wigner line-shapes convolution with Gaussian. The mass and the width of the  $\Xi_c^*$  states are treated as free parameters. The third order Chebychev function is used to model the combinatorial background shape. The statistical significances are obtained to be 11.9 (4.7) $\sigma$  for  $\Xi_c(3055)^+$ ( $\Xi_c(3080)^+$ ) and 7.6 (2.6) $\sigma$  for the  $\Xi_c(3055)^0$  ( $\Xi_c(3080)^0$ ). The systematic uncertainty of the mass and width are evaluated by changing various fit conditions. The measured mass and width of the  $\Xi_c^*$  states are summarized in Table 1.



**Figure 2:** (a): $M(D^+\Lambda)$  distribution. (b): $M(D^0\Lambda)$  distribution. Blue line shows the fitting result. Black, red, and green lines show the background,  $\Xi_c(3055)^{+/0}$ , and  $\Xi_c(3080)^{+/0}$  components, respectively.

| ystemate.                       |                          |                       |
|---------------------------------|--------------------------|-----------------------|
| Particle                        | Mass (MeV/ $c^2$ )       | Width (MeV)           |
| $\Xi_c(2980)^+$                 | $2974.9 \pm 1.5 \pm 2.1$ | $14.8\pm2.5\pm4.1$    |
| $\Xi_c(3055)^+(\Sigma_c(2455))$ | $3058.1 \pm 1.0 \pm 2.1$ | $9.7\pm3.4\pm3.3$     |
| $\Xi_c(3080)^+(\Sigma_c(2455))$ | $3077.9 \pm 0.4 \pm 0.7$ | $3.2\pm1.3\pm1.3$     |
| $\Xi_c(3080)^+(\Sigma_c(2520))$ | $3076.9 \pm 0.3 \pm 0.2$ | $2.4\pm0.9\pm1.6$     |
| $\Xi_c(3055)^+(\Lambda D^+)$    | $3055.7 \pm 0.4 \pm 0.4$ | $7.1\pm1.2\pm1.8$     |
| $\Xi_c(3080)^+(\Lambda D^+)$    | $3079.6 \pm 0.6 \pm 0.7$ | $4.0\pm1.5\pm1.0$     |
| $\Xi_c(3055)^0(\Lambda D^0)$    | $3059.7 \pm 0.6 \pm 0.5$ | $7.4 \pm 1.9 \pm 3.4$ |
| $\Xi_c(3080)^0(\Lambda D^0)$    | $3081.6 \pm 1.1 \pm 0.2$ | $4.4\pm1.8\pm1.9$     |

**Table 1:** The measured masses and widths of the  $\Xi_c^{*+}$  states. The first error is statistical and second is systematic.

#### 4. Summary

We report studies of charmed strange baryons in the  $\Lambda_c^+ K^- \pi^+$  and  $\Lambda D^{+(0)}$  final states. We have searched for the  $\Xi_c(3055)^+$  and  $\Xi_c(3123)^+$  in the  $\Lambda_c^+ K^- \pi^+$  decays through intermediate  $\Sigma_c(2455)^{++}$  or  $\Sigma_c(2520)^{++}$  states. We observe the  $\Xi_c(3055)^+$  while we do not observe any significant signal corresponding to the  $\Xi_c(3123)^+$ . We also report first observation of  $\Xi_c(3055)^{+(0)}$  and  $\Xi_c(3080)^+$  decay in the  $\Lambda D^{+(0)}$  final states. Especially, this is the first observation of the  $\Xi_c(3055)^0$ .

#### References

- [1] R. Chistov et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162001 (2006) [hep-ex/0606051].
- [2] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 77, 012002 (2008) [arXiv:0710.5763 [hep-ex]].
- [3] A. Abashian *et al.* (Belle Collab.), Nucl. Instr. and Meth. A **479**, 117 (2002); also see detector section in J.Brodzicka et al., Prog. Theory. Exp. Phys. (2012) 04D001.
- [4] S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A499, 1 (2003), and other papers included in this volume; T.Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
- [5] Throughout this paper, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.
- [6] K. Abe et al. [Belle Collaboration], Phys. Rev. D 65, 091103 (2002) [hep-ex/0203027].
- [7] K. Sumisawa et al. [Belle Collaboration], Phys. Rev. Lett. 95, 061801 (2005).