Study of charmed strange baryons at Belle

Yuji Kato* ${ }^{*}$
Nagoya University
E-mail: kato@hepl.phys.nagoya-u.ac.jp

We report results of a study of charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy $e^{+} e^{-}$collider. We search for two excited charmed strange baryons, $\Xi_{c}(3055)^{+}$and $\Xi_{c}(3123)^{+}$with $\Lambda_{c}^{+} K^{-} \pi^{+}$ final states through intermediate $\Sigma_{c}^{++}(2455)$ or $\Sigma_{c}^{++}(2520)$ resonances. The $\Xi_{c}(3055)^{+}$signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the $\Xi_{c}(3123)^{+}$is seen. We also study $\Lambda D^{+(0)}$ final state. We observe decays of $\Xi_{c}(3055)^{+(0)}$ and $\Xi_{c}(3080)^{+}$into $\Lambda D^{+(0)}$. This is the first observation of the $\Xi_{c}(3055)^{0}$.

XV International Conference on Hadron Spectroscopy-Hadron 2013
4-8 November 2013
Nara, Japan

[^0]
1. Introduction

In recent years, there has been much progress in the experimental study of the charmed baryon spectroscopy mainly by Belle and BaBar experiments. In the charmed strange baryon sector, a number of excited states $\left(\Xi_{c}^{*}\right)$ has been observed. The Belle collaboration reported evidence of two excited states, $\Xi_{c}(2980)$ and $\Xi_{c}(3080)$, in the $\Lambda_{c}^{+} K^{-} \pi^{+}$and $\Lambda_{c}^{+} K_{S}^{0} \pi^{-}$final states [1]. These states are confirmed by BaBar later [2]. In the same paper, BaB ar also claimed evidence of two resonances, $\Xi_{c}(3055)^{+}$and $\Xi_{c}(3123)^{+}$, through intermediate $\Sigma_{c}(2455)^{++} K^{-}$and $\Sigma_{c}(2520)^{++} K^{-}$ final states. Independent search of these two states is necessary to confirm the existences. Among a number of possible decay modes of the charmed strange baryons, the $\Lambda D^{+(0)}$ mode is not studied well.

In this paper, we report the studies of charmed strange baryons in the $\Lambda_{c}^{+} K^{-} \pi^{+}$and $\Lambda D^{+(0)}$ final states using a data sample with an integrated luminosity of $980 \mathrm{fb}^{-1}$ collected with the Belle detector [3] at the KEKB asymmetric-energy $e^{+} e^{-}$collider [4]. All the results are preliminary.

2. Event selection

The Λ_{c}^{+}candidates are reconstructed via its decay to $p K^{-} \pi^{+}$and $p K_{S}^{0}$ [5]. The D^{+}candidates are reconstructed via its decay to $K^{-} \pi^{+} \pi^{+}$. The D^{0} candidates are reconstructed via its decays to $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{-}$and $K^{-} \pi^{+} \pi^{0}$. The charged proton, kaon, and pion are required to have a point of closest approach to the interaction point that is within 0.2 cm in the transverse $(r-\phi)$ direction and within 2 cm along the z-axis. (The z-axis is opposite the positron beam direction.) For each track, the likelihood values $\mathscr{L}_{p}, \mathscr{L}_{K}$, and \mathscr{L}_{π} are provided for the assumption of proton, kaon and pion, respectively. The likelihood ratio is defined as $\mathscr{L}(i: j)=\mathscr{L}_{i} /\left(\mathscr{L}_{i}+\mathscr{L}_{j}\right)$ and a track is identified as a proton if the likelihood ratios $\mathscr{L}(p: \pi)$ and $\mathscr{L}(p: K)$ are greater than 0.6. A track is identified as a kaon if the likelihood ratios $\mathscr{L}(K: \pi)$ and $\mathscr{L}(K: p)$ are greater than 0.6 . A track is identified as a pion if the likelihood ratios $\mathscr{L}(\pi: K)$ and $\mathscr{L}(\pi: p)$ are greater than 0.6 . In addition, electron $\left(\mathscr{L}_{e}\right)$ likelihood is provided. A track with an electron likelihood greater than 0.95 is rejected. The efficiencies of hadron identification are about 90% for pions and kaons and 93% for protons. The π^{0} candidates are selected from pair of photons whose invariant mass ($M_{\gamma \gamma}$) satisfies $120<M_{\gamma \gamma}<150 \mathrm{MeV} / c^{2}$. The energy of each photon is required to be greater than $50 \mathrm{MeV} / c^{2}$ and the energy of the π^{0} candidate is required to be greater than $500 \mathrm{MeV} / c^{2}$. The Λ candidates are selected based on their decay vertex information [6] and invariant mass of a Λ candidate is required to be within $3 \mathrm{MeV} / c^{2}$ of the nominal Λ mass, which corresponds to approximately 3σ of the mass resolution. The K_{S}^{0} candidate is reconstructed from its decay into $\pi^{+} \pi^{-}$. The vertex of the two pions for the K_{S}^{0} is required to be displaced from the interaction point (IP) in the direction of the pion pair momentum [7]. A pair of oppositely charged pions that have an invariant mass within $8 \mathrm{MeV} / c^{2}$ of the nominal K_{S}^{0} mass, which corresponds to approximately 3.5σ of the mass resolution, is selected. The $\Lambda_{c}^{+}\left(D^{+(0)}\right)$ candidates are selected by requiring invariant mass of the daughter particles to be within $1.5(2.0) \sigma$ of the nominal mass. The χ^{2} value of the common vertex fit of the Λ_{c}^{+}or $D^{(+) 0}$ is required to be less than 50 . For the remaining candidate, a mass constraint fit to the Λ_{c}^{+}or $D^{(+) 0}$ mass is performed to improve the momentum resolution. In order to reduce the combinatorial background, the scaled momentum $x_{p}=p^{*} / \sqrt{s / 4-m^{2}}$, where p^{*} is the CM
momentum of a Ξ_{c}^{*} candidate and s is CM energy squared and m is mass of the Ξ_{c}^{*} candidate, is required to be greater than 0.7 .

3. Results

3.1 Results for $\Lambda_{c}^{+} K^{-} \pi^{+}$final state

We select the $\Sigma_{c}(2455)^{++}\left(\Sigma_{c}(2520)^{++}\right)$region by requiring $\left|M\left(\Lambda_{c}^{+} \pi^{+}\right)-m_{\Sigma_{c}^{++}}\right|<5$ (18) MeV / c^{2}, where $m_{\Sigma_{c}^{++}}$is the nominal mass of the $\Sigma_{c}(2455)^{++}$or $\Sigma_{c}(2520)^{++}$. Figure 1 (a) shows the $M\left(\Lambda_{c}^{+} K^{-} \pi^{+}\right)$distribution for the $\Sigma_{c}(2455)^{++}$signal region together with the same plot for the $\Sigma_{c}(2455)^{++}$sideband region. Clear peaks corresponding to the $\Xi_{c}(2980)^{+}, \Xi_{c}(3055)^{+}$and $\Xi_{c}(3080)^{+}$are seen. To obtain the statistical significance of the $\Xi_{c}(3055)^{+}$, an un-binned extended maximum likelihood (UML) fit is applied. PDFs for the Ξ_{c}^{*} components are represented by a BreitWigner line-shape convolved with a Gaussian to account for the invariant-mass resolution. The background shape is assumed to be threshold function. To estimate the statistical significance of the $\Xi_{c}(3055)^{+}$, we evaluate the likelihood ratio $-2 \ln \left(\mathscr{L}_{0} / \mathscr{L}\right)$, where \mathscr{L}_{0} is the likelihood for the fit without signal and \mathscr{L} is likelihood for the fit with the signal taking into account the change of number of degrees of freedom. The statistical significance of the $\Xi_{c}(3055)^{+}$is 6.8σ.

Figure 1 (b) shows the $M\left(\Lambda_{c}^{+} K^{-} \pi^{+}\right)$distribution for the $\Sigma_{c}(2520)^{++}$selected region together with the same plot for the $\Sigma_{c}(2520)^{++}$sideband region. A clear peak corresponding to the $\Xi_{c}(3080)^{+}$is seen, while no peak structure is seen in the mass near $3.123 \mathrm{GeV} / \mathrm{c}^{2}$. An UML fit is applied to extract the signal yield. Again, the Ξ_{c}^{*} components are represented by a Breit-Wigner function convolved with a Gaussian. For the $\Xi_{c}(3080)^{+}$component, the mass and width of the Breit-Wigner are treated as free parameters; while for the $\Xi_{c}(3123)^{+}$component, the mass and width are fixed to the values obtained in Ref.[2]. The background shape is assumed to be threshold function. The yield of the $\Xi_{c}(3123)^{+}$is 8 ± 22 events, which is consistent with zero. Hence, a 95% C.L. upper limit for the product of the cross section and branching fraction of Λ_{c}^{+}produced with $x_{p}>0.7$ condition,

$$
\sigma_{\mathscr{B} \Lambda_{c}^{+}} \equiv \sigma\left(e^{+} e^{-} \rightarrow \Xi_{c}(3123)^{+} X\right) \times \mathscr{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)
$$

is evaluated with the Bayesian approach. As in Ref. [2], we assume $\mathscr{B}\left(\Xi_{c}(3123)^{+} \rightarrow \Sigma_{c}(2520)^{++} K^{-}\right)$ is equal to 1 . The upper limit on $\sigma_{\mathscr{B} \Lambda_{c}^{+}}$is 0.34 fb . The value is much smaller than that quoted in Ref. [2] ($1.6 \pm 0.6 \pm 0.2 \mathrm{fb}$). The systematic uncertainties of the masses and widths of the Ξ_{c}^{*} and stability of the statistical significance of the $\Xi_{c}(3055)^{+}$are studied by changing various fit conditions. In none of these fitting configurations does the statistical significance of the $\Xi_{c}(3055)^{+}$fall below 6.6σ. The measured mass and width of the Ξ_{c}^{*} states are summarized in Table 1 .

3.2 Results for $\Lambda D^{+(0)}$ final state

Figure 2 shows the $M\left(\Lambda D^{+(0)}\right)$ distribution, where peak structures near $3055 \mathrm{MeV} / c^{2}$ and $3080 \mathrm{MeV} / \mathrm{c}^{2}$ are seen. In order to check the existence of the peaking structure in the background, we check invariant mass distribution of the wrong-sign combination $\bar{\Lambda} D, \Lambda$ and D for the sideband

Figure 1: (a) The $M\left(\Lambda_{c}^{+} K^{-} \pi^{+}\right)$distribution with $\Sigma_{c}(2455)^{++}$selection. The dots with error bars show the distribution for the $\Sigma_{c}(2455)^{++}$selected whereas the rectangles show the distribution for the $\Sigma_{c}(2455)^{++}$ sideband region. Blue line shows the fit result. Black, yellow, red, and green lines show the contributions from the background, $\Xi_{c}(2980)^{+}, \Xi_{c}(3055)^{+}$, and $\Xi_{c}(3080)^{+}$, respectively. (b) The $M\left(\Lambda_{c}^{+} K^{-} \pi^{+}\right)$distribution with $\Sigma_{c}(2520)^{++}$selection. The dots with error bars show the distribution for $\Sigma_{c}(2520)^{++}$selected region whereas the rectangles show the distribution for the $\Sigma_{c}(2520)^{++}$sideband region. Blue line shows the fit result. Black, green, and purple lines show the contributions from the background, $\Xi_{c}(3080)^{+}$, and $\Xi_{c}(3123)^{+}$, respectively.
region the D candidates. None of them show a peaking structure. Therefore, these peaks are very likely to be corresponding to two known Ξ_{c}^{*} states, $\Xi_{c}(3055)^{+}$and $\Xi_{c}(3080)^{+}$.

We perform UML fit to mass spectra again. PDFs for a Ξ_{c}^{*} components are represented by Breit-Wigner line-shapes convolution with Gaussian. The mass and the width of the Ξ_{c}^{*} states are treated as free parameters. The third order Chebychev function is used to model the combinatorial background shape. The statistical significances are obtained to be $11.9(4.7) \sigma$ for $\Xi_{c}(3055)^{+}$ $\left(\Xi_{c}(3080)^{+}\right)$and $7.6(2.6) \sigma$ for the $\Xi_{c}(3055)^{0}\left(\Xi_{c}(3080)^{0}\right)$. The systematic uncertainty of the mass and width are evaluated by changing various fit conditions. The measured mass and width of the Ξ_{c}^{*} states are summarized in Table 1.

Figure 2: (a): $M\left(D^{+} \Lambda\right)$ distribution. (b): $M\left(D^{0} \Lambda\right)$ distribution. Blue line shows the fitting result. Black, red, and green lines show the background, $\Xi_{c}(3055)^{+/ 0}$, and $\Xi_{c}(3080)^{+/ 0}$ components, respectively.

Table 1: The measured masses and widths of the Ξ_{c}^{*+} states. The first error is statistical and second is systematic.

Particle	Mass $\left(\mathrm{MeV} / c^{2}\right)$	Width (MeV)
$\Xi_{c}(2980)^{+}$	$2974.9 \pm 1.5 \pm 2.1$	$14.8 \pm 2.5 \pm 4.1$
$\Xi_{c}(3055)^{+}\left(\Sigma_{c}(2455)\right)$	$3058.1 \pm 1.0 \pm 2.1$	$9.7 \pm 3.4 \pm 3.3$
$\Xi_{c}(3080)^{+}\left(\Sigma_{c}(2455)\right)$	$3077.9 \pm 0.4 \pm 0.7$	$3.2 \pm 1.3 \pm 1.3$
$\Xi_{c}(3080)^{+}\left(\Sigma_{c}(2520)\right)$	$3076.9 \pm 0.3 \pm 0.2$	$2.4 \pm 0.9 \pm 1.6$
$\Xi_{c}(3055)^{+}\left(\Lambda D^{+}\right)$	$3055.7 \pm 0.4 \pm 0.4$	$7.1 \pm 1.2 \pm 1.8$
$\Xi_{c}(3080)^{+}\left(\Lambda D^{+}\right)$	$3079.6 \pm 0.6 \pm 0.7$	$4.0 \pm 1.5 \pm 1.0$
$\Xi_{c}(3055)^{0}\left(\Lambda D^{0}\right)$	$3059.7 \pm 0.6 \pm 0.5$	$7.4 \pm 1.9 \pm 3.4$
$\Xi_{c}(3080)^{0}\left(\Lambda D^{0}\right)$	$3081.6 \pm 1.1 \pm 0.2$	$4.4 \pm 1.8 \pm 1.9$

4. Summary

We report studies of charmed strange baryons in the $\Lambda_{c}^{+} K^{-} \pi^{+}$and $\Lambda D^{+(0)}$ final states. We have searched for the $\Xi_{c}(3055)^{+}$and $\Xi_{c}(3123)^{+}$in the $\Lambda_{c}^{+} K^{-} \pi^{+}$decays through intermediate $\Sigma_{c}(2455)^{++}$or $\Sigma_{c}(2520)^{++}$states. We observe the $\Xi_{c}(3055)^{+}$while we do not observe any significant signal corresponding to the $\Xi_{c}(3123)^{+}$. We also report first observation of $\Xi_{c}(3055)^{+(0)}$ and $\Xi_{c}(3080)^{+}$decay in the $\Lambda D^{+(0)}$ final states. Especially, this is the first observation of the $\Xi_{c}(3055)^{0}$.

References

[1] R. Chistov et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162001 (2006) [hep-ex/0606051].
[2] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 77, 012002 (2008) [arXiv:0710.5763 [hep-ex]].
[3] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002); also see detector section in J.Brodzicka et al., Prog. Theory. Exp. Phys. (2012) 04D001.
[4] S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A499, 1 (2003), and other papers included in this volume; T.Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
[5] Throughout this paper, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.
[6] K. Abe et al. [Belle Collaboration], Phys. Rev. D 65, 091103 (2002) [hep-ex/0203027].
[7] K. Sumisawa et al. [Belle Collaboration], Phys. Rev. Lett. 95, 061801 (2005).

[^0]: *Speaker.
 ${ }^{\dagger}$ for the Belle collaboration.

