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1. Introduction

Interactions between charmoniuer) and nucleon) seems to have unique features as the
strong interaction of hadrons. It is quite different from the other hadronic interactions. First, the
charmonium and the nucleon have no valence quarks in common, so interactions mediated by flavor
singlet meson exchanges are strongly suppressed by the Okubo-Zweig-lizuka (OZI) rule. For the
same reason, the Pauli exclusion principle for quarks does not cause a repulsion at short distances.
Further, a single gluon exchange is prohibited sif@® andN are both color singlet. Thus the
(cc) — N interactions are dominated by multiple-gluon exchanges. Therefore, the role of gluons and
QCD in low energy hadronic interaction can be studied in(toeg — N system. It is very difficult
to carry out low energycc) — N scattering experiment. But {icc)—nucleus bound states exist,
we can obtain the information of the strength and detailed structures ¢€dhe N interaction
indirectly from the spectroscopy of thfec)—nucleus, as was done for— N interaction from the
spectroscopy of hypernuclei.

One of the typical multiple-gluon exchange interactions is the QCD color van der Waals inter-
action, which is known to be attractive in principle. Recent lattice QCD calculdfld® Ehowed
that the(cc)-nucleon interaction is weakly attractive and thus confirmed the previous studies. Con-
sidering the heavy mass of theg), it is highly possible thatcc)—nucleus bound states exist, when
the nucleon numbek increasedd].

In this paper, we consider bound states of the charmoniyr(J™ = 1") or n¢(0~), with
few-nucleon system#]. In order to make an analysis independent from the microscopic models
of the (cc) — N interaction, we here employ a phenomenological potential model and obtain a
relation between the binding enerByof (cc)—nucleus and thécc) — N scattering lengtla. Then
we can compare the results with the microscopic studigs@mf- N interaction in QCD, e.g., the
value of the scattering lengthobtained from lattice QCD.

We considefcc) — NN, (cC)—“*He, and(cC) — a — a cases and apply the Gaussian Expansion
Method (GEM) [ to obtain their binding energies and the wave functions. Then we determine the
value of the scattering length that is needed to form a bound stgtE)oWith the deuteron?He
(a) or®Be (@ —a).

2. Formalism

In present analysis, we considgg (J™=0") andJ/¢ (17) for the charmonium, both of
which are charge neutral and have no electromagnetic interaction. SingeetheN interaction
is considered to be weak and short ranged, we only calculate the ground state with orbital angular
momentumL = 0. Then, the spin-orbit force does not contribute. Furthermore, for simplicity, we
do not consider the tensor force, which is supposed to be weaker than the central force.

Let us consider an effectiec) — N potential. Fomc, we only have a spin-independent central
force, given by a single Gaussian,\as_n(r) = voe*“rz. For theJ/y — N potential, in order to
take into account the spin structure of thaepy — N interaction, we define

Vy/p-n(r) = (Vo+Vs(Sy/y - Sv))e = Veff(SJ/wfm)e*“ri (2.1)

whereS;,;, andSy are the spin operators of thlg¢y andN, respectively. Here we assume that
the ranges of the spin-independent and spin-dependent terms are equal for simplicity, and also
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because they both come from gluon exchangggS;/y_n) =Vo—Vs (for Syp-N= 1/2) , o+ %vs
(for Syp-n= 3/2). TheJ/y — N scattering lengtha;,,_n can be calculated as a functionvgf
in Eq. 2.J) by solving the non-relativistic Schrodinger equatiorEat 0 (see Ref. (] for the
results).

Using various values of th@c) — N potential parameters, we calculate flee) — NN three-
body system using the Gaussian Expansion Method (GEM)[he total Hamiltonian and the
Schrédinger equation are given b — E)Wiym =0, H =T +Wy,—n, + Veeon, + Vee—n,, Where
T is the kinetic-energy operator aM, n,,Vez—n;; Vee—N, are the potentials betwedéh— N and
(cc) —N. For theN — N interaction, we employ the Minnesota potentgl [

The total wave function is expanded in GEM as

3 NmaxNmax

Wim = Czlnzl él Z Coni@im(T o) WM (Re) [[Xs(1) Xs(2)]1 Xs(3)lam (2.2)

where ¢,,(r) = r'e*V“'ZYIm(f) with vy = 1/r2, rp =@ (n=1,...,nmay and Y y(R) =
RieWRYM(R) Ay = 1/R3, Ry = RIAN 1 (N =1,...,Nmay). We take sum over all the sets of
the Jacobi coordinates, each denoteccby 1,2,3. Here,rc andR; (c = 1,2,3) are the Jacobi
coordinates for each channel axy1), xs(2) andxs(3) are the spin wave functions of the particles
1, 2 and 3. The orbital angular momemtan andL, M correspond to andR, respectively. The
number of the basis functions used in the present calculation,(%g& 10 and Néﬁgxz 10 for
c=12 andngﬁgxz 12 andN,(nC;X: 14 forc = 3.

The only possible state for s-wavg — NN system has the total angular momentdim 1,
Sun = 1 and isospiril = 0. We do not consider th€ = 1 state, since thBIN (Syn =0, T = 1)
state has a weaker attraction.

The binding energy o8/ — NN system is affected by the spin-dependence oflthg — N
interaction Eq. [Z.J). We consider three channelB'= 0,1~ and 2 with T = 0 for the three-
body system. Fad™ =0~ andJ™ = 2", §;_y is uniquely given as 12 and 32, respectively. On
the other hand, for th¢" = 1=, T = 0 state, botl$,;,;,_n = 1/2 and 32 are mixed. In solving this
system, we can simply take an effective (spin-averaged) potential given by

Vi T e = (NN)s=1. /33 | Vg (1) | (NN)sypm1, /033 ) (2:3)
wherevéfcf)’o) =Vp— Vs = Veii(1/2), Ve(f%’o) =Vg— %vs, andve(fzf’o) =Vp+ %vs = Vefi(3/2) , respectively.
Among theT = 0 states, the differences of the spin structure appear only in the coefficientgf the
The binding energ of theJ/y—deuteron systenil(= 0) is determined only by the value .
Therefore in the calculations we specify the valu&/gf, and do not change, andvs separately,
and see how the binding energy of thay—deuteron changes.

J/W—*He system is suitable for studying spin-independent centralvypasince the ground
state of*He is spin 0 and /(y—*He interaction has no contribution frova As the binding energy
of “He is large, its wave function may not be disturbed by the relatively Wégk— N interaction.
Therefore we assume that thide and thel/(—“*He system can be treated as a singleluster
and aJ/y — a two-body system, respectively. As an effectiVépy — a potential, we use the
folding potentialVoia(r) = fVy,y-n(r —r')p(r')d3’ with the center of mass correctiorp(r)
is the nucleon density distribution ffiHe. We choose a Gaussian functiptr) = p(0)e~ /b’
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with b = 1.358 fm, which reproduces the experimental data of charge form factor in the elastic
electron-*He scatteringf, B, @. The samel/y — a potential is used to calculatt/ ¢y — a — a
three-body system. The — a potential is calculated by folding Hasegawa-Nagata potential with
the OCM.

3. Results

3.1 Charmonium-deuteron three-body bound states

The relation betweed/y—deuteron binding energg and the potential deptii« of the ef-
fective potential in EqZ3) is shown in Fig[l We fix the range parametgr= (1.0 fm)~2, taken
from the confinement scale of gluon and the binding en&gy measured from deutered /Y
breakup thresholdMp + Mn +M; 4 — 2.2 MeV). We find that there existsH ¢y—deuteron bound
state folVesr < —33 MeV. We now convert these results into a relation betweed tije— N scat-
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Figure 1: The relation between the binding en-  Figure 2: The relation between the binding en-
ergy B (MeV) of J/(—deuteron and/esr (MeV) ergy B (MeV) of J/y—deuteron and the scatter-
of 3/ — N potential. ing lengthags (fm) of 3/ — N.

tering length and thd/y—deuteron binding energy. In sect. 2, we have shown that the effective
J/Y—N potentiaIVe(fJf’T) in Eq.(23 for aJ/y — NN system is given by a single combination of
Vo andvs in Eq. 2.J) once the total spid and the isospi is determined. Then we define the
effective scattering length. for each channel, which corresponds to the relevant combination of
Vo andvs, i.e., Ve of EQ.2.3. We obtain a relation betweeny and the binding energ®, which

is shown in Figl2 The relation fom: — NN sytem is almost identical to that of tdgy — NN. For
J=0 (J = 2), acft is the scattering length for the potentialp — vs)e 1 ((vo+ %vs)e*“ﬁ) , While

for J =1, ae is for the potential(vo — %vs)e“”z, as is given by EJZJ averaging the spin of
J/Y — N system. The former corresponds to the scattering lengiti ¢f— N with spin 1/2 (3/2),

but theJ = 1 potential does not correspond to a specific spin stafg ¢f— N. We find in Fig.2
that the critical value of the scattering length to havly ¢g—deuteron bound state @g¢ = —0.95

fm. This is a much stronger attraction than the recent lattice QCD restts 0.35 fm [2], which

is equivalent to/ef = —16.7 MeV. So there is little possibility of makingd® ¢ — NN bound state
according to the recent lattice QCD data. It has been checked in[Behalt our results are not
sensitive to the form of th¢cc) — N potential (Gaussian or Yukawa-type) and the value of the
potential rangep.
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Figure 3: The relation between the scattering lenggh of J/@ — N and the binding energs of J/¢—*He
andJ/y—a—a.

3.2 J/Y—*He andJ/ — a — a systems

The relations between tlig ¢y — N scattering lengthey and the binding energg of J/—*He
andJ/y — a — a are shown in Fig3 There exists d/(¢—*He bound state whem,s < —0.24 fm.
The binding energies are, for example, wiegp = —0.35 fm, B = 0.5 MeV. Comparing with the
lattice QCD datd], a;,,n ~ —0.35 fm, this result supports the existence of a shallgy —*He
bound state. Similarly, fal/ — o — a case, a bound state is formed wlegp < —0.16 fm, and its
binding energy i88 = 2 MeV fromJ/( + a + a break up threshold and3.MeV from J/(—*He
bound state foaet = —0.35 fm. Note that the net spin-spin interactions between the nucleon and
J/ in both J/@—*He andJ/y — a — a systems cancel out so that the contribution only from
the spin-independent pakg of Eq. Z.1), comes into account. Therefore the effective scattering
lengthags corresponds only to the spin-independent patt,

Sincecc — N interaction is attractive, we conclude from simple effective potential analyses
that the charmoniunc€) may form bound states in the nuclei®f> 4, supposing that the current
lattice QCD evaluation of the charmonium-nucleon scattering lengths are reliable.
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