Mixing angle of K_{1} axial vector mesons

Hai-Yang Cheng**
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China
E-mail: phcheng@phys.sinica.edu.tw

Analyses of various experimental measurements all indicate that the mixing angle $\theta_{K_{1}}$ of $K_{1}(1270)$ and $K_{1}(1400)$ is in the vicinity of 33° or 57°. However, whether $\theta_{K_{1}}$ is greater or less than 45° is still quite controversial. For example, there were two very recent studies of the strong decays of K_{1} mesons. One group claimed that $\theta_{K_{1}} \approx 60^{\circ}$, while the other group obtained $\theta_{K_{1}}=(33.6 \pm 4.3)^{\circ}$. Since the determination of the mixing angles $\alpha_{3_{P_{1}}}$ and $\alpha_{1_{P_{1}}}$ with the former (latter) being the mixing angle of $f_{1}(1285)\left(h_{1}(1170)\right)$ and $f_{1}(1420)\left(h_{1}(1380)\right)$ in the flavor basis through mass relations depends on $\theta_{K_{1}}$, we show that $\theta_{K_{1}} \approx 57^{\circ}$ is ruled out as it leads to a too large deviation from ideal mixing in the ${ }^{1} P_{1}$ sector, inconsistent with the lattice calculation of $\alpha_{1_{P_{1}}}$ and the observation of strong decays of $h_{1}(1170)$ and $h_{1}(1380)$. We find that for $\theta_{K_{1}} \approx(28-30)^{\circ}$, the corresponding $\alpha_{{ }_{P_{1}}}$ and $\alpha_{1_{1}}$ agree well with all lattice and phenomenological analyses. This again reinforces the statement that $\theta_{K_{1}} \sim 33^{\circ}$ is much more favored than 57°.

XV International Conference on Hadron Spectroscopy-Hadron 2013
4-8 November 2013
Nara, Japan

[^0]
1. Introduction

The mixing of the flavor-SU(3) singlet and octet states of vector and tensor mesons to form mass eigenstates is of fundamental importance in hadronic physics. According to the AppelquistCarazzone decoupling theorem, in a vectorial theory, as the mass of a particle gets large compared with a relevant scale, say, $\Lambda_{Q C D} \simeq 300 \mathrm{MeV}$, one can integrate this particle out and define a lowenergy effective field theory applicable below this scale [1]. Evidently, even though m_{s} is not $\gg \Lambda_{Q C D}$, there is still a nearly complete decoupling for the case of vector mesons, namely, $\rho(770)$ and $\omega(892)$ states. A similar situation of near-ideal mixing occurs for the $J^{P C}=2^{++}$tensor mesons $f_{2}(1275), f_{2}^{\prime}(1525)$ and the $J^{P C}=3^{--}$mesons $\omega_{3}(1670), \phi_{3}(1850)$ and this can also be understood in terms of approximate decoupling of the light $u \bar{u}+d \bar{d}$ state from the heavier $s \bar{s}$ state.

In the quark model, two nonets of $J^{P}=1^{+}$axial-vector mesons are expected as the orbital excitation of the $q \bar{q}$ system. In terms of the spectroscopic notation ${ }^{2 S+1} L_{J}$, there are two types of P-wave axial-vector mesons, namely, ${ }^{3} P_{1}$ and ${ }^{1} P_{1}$. These two nonets have distinctive C quantum numbers for the corresponding neutral mesons, $C=+$ and $C=-$, respectively. Experimentally, the $J^{P C}=1^{++}$nonet consists of $a_{1}(1260), f_{1}(1285), f_{1}(1420)$ and $K_{1 A}$, while the 1^{+-}nonet contains $b_{1}(1235), h_{1}(1170), h_{1}(1380)$ and $K_{1 B}$. The non-strange axial vector mesons, for example, the neutral $a_{1}(1260)$ and $b_{1}(1235)$ cannot have a mixing because of the opposite C-parities. On the contrary, $K_{1 A}$ and $K_{1 B}$ are not the physical mass eigenstates $K_{1}(1270)$ and $K_{1}(1400)$ and they are mixed together due to the mass difference of strange and light quarks. Following the common convention we write

$$
\binom{\left|K_{1}(1270)\right\rangle}{\left|K_{1}(1400)\right\rangle}=\left(\begin{array}{cc}
\sin \theta_{K_{1}} & \cos \theta_{K_{1}} \tag{1.1}\\
\cos \theta_{K_{1}} & -\sin \theta_{K_{1}}
\end{array}\right)\binom{\left|K_{1 A}\right\rangle}{\left|K_{1 B}\right\rangle} .
$$

Various phenomenological studies indicate that the $K_{1 A}-K_{1 B}$ mixing angle $\theta_{K_{1}}$ is around either 33° or $57^{\circ},{ }^{1}$ but there is no consensus as to whether this angle is greater or less than 45°.

We have shown in [2] that the mixing angle $\theta_{K_{1}}$ can be pinned down based on the observation that when the $f_{1}(1285)-f_{1}(1420)$ mixing angle $\theta_{3 P_{1}}$ and the $h_{1}(1170)-h_{1}(1380)$ mixing angle $\theta_{1 P_{1}}$ are determined from the mass relations, they depend on the masses of $K_{1 A}$ and $K_{1 B}$, which in turn depend on $\theta_{K_{1}}$. Since nearly ideal mixing occurs for vector, tensor and 3^{--}mesons except for pseudoscalar mesons where the axial anomaly plays a unique role, this feature is naively expected to hold also for axial-vector mesons. Lattice calculations of $\theta_{1 P_{1}}$ and the phenomenological analysis of the strong decays of $h_{1}(1170)$ and $h_{1}(1380)$ will enable us to discriminate the two different solutions for $\theta_{K_{1}}$. In this talk we will elaborate on this in more detail.

2. Mixing of axial-vector mesons

There exist several estimations on the mixing angle $\theta_{K_{1}}$ in the literature. From the early experimental information on masses and the partial rates of $K_{1}(1270)$ and $K_{1}(1400)$, Suzuki found

[^1]two possible solutions $\theta_{K_{1}} \approx 33^{\circ}$ and 57° [3]. A similar constraint $35^{\circ} \lesssim \theta_{K_{1}} \lesssim 55^{\circ}$ was obtained in Ref. [4] based solely on two parameters: the mass difference between the $a_{1}(1260)$ and $b_{1}(1235)$ mesons and the ratio of the constituent quark masses. An analysis of $\tau \rightarrow K_{1}(1270) \nu_{\tau}$ and $K_{1}(1400) v_{\tau}$ decays also yielded the mixing angle to be $\approx 37^{\circ}$ or 58° [5]..2 Another determination of $\theta_{K_{1}}$ comes from the $f_{1}(1285)-f_{1}(1420)$ mixing angle $\theta_{3 P_{1}}$ to be introduced shortly below which can be reliably estimated from the analysis of the radiative decays $f_{1}(1285) \rightarrow \phi \gamma, \rho^{0} \gamma[6]$. A recent updated analysis yields $\theta_{3_{P_{1}}}=\left(19.4_{-4.6}^{+4.5}\right)^{\circ}$ or $\left(51.1_{-4.6}^{+4.5}\right)^{\circ}[7] .^{3}$ As we shall see below, the mixing angle $\theta_{3_{P_{1}}}$ is correlated to $\theta_{K_{1}}$. The corresponding $\theta_{K_{1}}$ is found to be $\left(31.7_{-2.5}^{+2.8}\right)^{\circ}$ or $\left(56.3_{-4.1}^{+3.9}\right)^{\circ}$. Therefore, all the analyses yield a mixing angle $\theta_{K_{1}}$ in the vicinity of either 33° or 57°.

However, there is no consensus as to whether $\theta_{K_{1}}$ is greater or less than 45°. It was found in the non-relativistic quark model that $m_{K_{1 A}}^{2}<m_{K_{1 B}}^{2}[10,11,12]$ and hence $\theta_{K_{1}}$ is larger than 45°. Interestingly, $\theta_{K_{1}}$ turned out to be of order 34° in the relativized quark model of [13]. Based on the covariant light-front model [14], the value of 51° was found by the analysis of [15]. From the study of $B \rightarrow K_{1}(1270) \gamma$ and $\tau \rightarrow K_{1}(1270) \nu_{\tau}$ within the framework of light-cone QCD sum rules, Hatanaka and Yang advocated that $\theta_{K_{1}}=(34 \pm 13)^{\circ}$ [16]. There existed two recent studies of strong decays of $K_{1}(1270)$ and $K_{1}(1400)$ mesons with different approaches. One group obtained $\theta_{K_{1}} \approx$ 60° based on the ${ }^{3} P_{0}$ quark-pair-creation model for K_{1} strong decays [17], while the other group found $\theta_{K_{1}}=(33.6 \pm 4.3)^{\circ}$ using a phenomenological flavor symmetric relativistic Lagrangian [18]. In short, there is a variety of different values of the mixing angle cited in the literature. It is the purpose of this work to pin down $\theta_{K_{1}}$.

We next consider the mixing of the isosinglet $1^{3} P_{1}$ states, $f_{1}(1285)$ and $f_{1}(1420)$, and the $1^{1} P_{1}$ states, $h_{1}(1170)$ and $h_{1}(1380)$ in the quark flavor and octet-singlet bases:

$$
\binom{\left|f_{1}(1285)\right\rangle}{\left|f_{1}(1420)\right\rangle}=\left(\begin{array}{cc}
\cos \theta_{3 P_{1}} & \sin \theta_{3 P_{1}} \tag{2.1}\\
-\sin \theta_{3 P_{1}} & \cos \theta_{3 P_{1}}
\end{array}\right)\binom{\left|f_{1}\right\rangle}{\left|f_{8}\right\rangle}=\left(\begin{array}{cc}
\cos \alpha_{3 P_{1}} & \sin \alpha_{3 P_{1}} \\
-\sin \alpha_{3 P_{1}} & \cos \alpha_{3 P_{1}}
\end{array}\right)\binom{\left|f_{q}\right\rangle}{\left|f_{s}\right\rangle},
$$

and

$$
\binom{\left|h_{1}(1170)\right\rangle}{\left|h_{1}(1380)\right\rangle}=\left(\begin{array}{cc}
\cos \theta_{1 P_{1}} & \sin \theta_{1 P_{1}} \tag{2.2}\\
-\sin \theta_{1 P_{1}} & \cos \theta_{1 P_{1}}
\end{array}\right)\binom{\left|h_{1}\right\rangle}{\left|h_{8}\right\rangle}=\left(\begin{array}{cc}
\cos \alpha_{P_{1}} & \sin \alpha_{P_{P_{1}}} \\
-\sin \alpha_{1_{1}} & \cos \alpha_{P_{P_{1}}}
\end{array}\right)\binom{\left|h_{q}\right\rangle}{\left|h_{s}\right\rangle}
$$

where $f_{1}=(u \bar{u}+d \bar{d}+s \bar{s}) / \sqrt{3}, f_{8}=(u \bar{u}+d \bar{d}-2 s \bar{s}) / \sqrt{6}, f_{q}=(u \bar{u}+d \bar{d}) / \sqrt{2}, f_{s}=s \bar{s}$ and likewise for h_{1}, h_{8}, h_{q} and h_{s}. The mixing angle α in the flavor basis is related to the singlet-octet mixing angle θ by the relation $\alpha=35.3^{\circ}-\theta$. Therefore, α measures the deviation from ideal mixing. Applying the Gell-Mann Okubo relations for the mass squared of the octet states

$$
\begin{equation*}
m_{8}^{2}\left({ }^{3} P_{1}\right) \equiv m_{3 P_{1}}^{2}=\frac{1}{3}\left(4 m_{K_{1 A}}^{2}-m_{a_{1}}^{2}\right), \quad m_{8}^{2}\left({ }^{1} P_{1}\right) \equiv m_{1 P_{1}}^{2}=\frac{1}{3}\left(4 m_{K_{1 B}}^{2}-m_{b_{1}}^{2}\right) \tag{2.3}
\end{equation*}
$$

we obtain the following mass relations for the mixing angles $\theta_{1_{P_{1}}}$ and $\theta_{3_{P_{1}}}$ (for details, see [2])

$$
\tan \theta_{{ }_{3} P_{1}}=\frac{m_{3_{1}}^{2}-m_{f_{1}^{\prime}}^{2}}{\sqrt{m_{3 P_{1}}^{2}\left(m_{f_{1}}^{2}+m_{f_{1}^{\prime}}^{2}-m_{3 P_{1}}^{2}\right)-m_{f_{1}}^{2} m_{f_{1}^{\prime}}^{2}}}
$$

[^2]Table 1: The values of the $f_{1}(1285)-f_{1}(1420)$ and $h_{1}(1170)-h_{1}(1380)$ mixing angles in the quark flavor (upper) and octet-singlet (lower) bases calculated using Eq. (2.4) for some representative $K_{1 A}-K_{1 B}$ mixing angle $\theta_{K_{1}}$.

$\theta_{K_{1}}$	57°	51°	45°	33°	30°	28°
$\alpha_{3 P_{1}}$	16.5°	9.6°	2.4°	-13.7°	-18.9°	-23.5°
$\alpha_{1 P_{1}}$	-53.0°	-44.6°	-21.1°	-6.4°	-3.8°	-2.4°
$\theta_{3 P_{1}}$	52°	45°	38°	22°	16°	12°
$\theta_{1 P_{1}}$	-18°	-9°	14°	29°	32°	33°

$$
\begin{equation*}
\tan \theta_{P_{P_{1}}}=\frac{m_{1 P_{1}}^{2}-m_{h_{1}^{\prime}}^{2}}{\sqrt{m_{1 P_{1}}^{2}\left(m_{h_{1}}^{2}+m_{h_{1}^{\prime}}^{2}-m_{1 P_{1}}^{2}\right)-m_{h_{1}}^{2} m_{h_{1}^{\prime}}^{2}}} \tag{2.4}
\end{equation*}
$$

where f_{1} and $f_{1}^{\prime}\left(h_{1}\right.$ and $\left.h_{1}^{\prime}\right)$ are the short-handed notations for $f_{1}(1285)$ and $f_{1}(1420)\left(h_{1}(1170)\right.$ and $h_{1}(1380)$), respectively, and

$$
\begin{align*}
& m_{K_{1 A}}^{2}=m_{K_{1}(1400)}^{2} \cos ^{2} \theta_{K_{1}}+m_{K_{1}(1270)}^{2} \sin ^{2} \theta_{K_{1}} \\
& m_{K_{1 B}}^{2}=m_{K_{1}(1400)}^{2} \sin ^{2} \theta_{K_{1}}+m_{K_{1}(1270)}^{2} \cos ^{2} \theta_{K_{1}} \tag{2.5}
\end{align*}
$$

It is clear that the mixing angles $\theta_{3 P_{1}}$ and $\theta_{1 P_{1}}$ depend on the masses of $K_{1 A}$ and $K_{1 B}$ states, which in turn depend on the $K_{1 A}-K_{1 B}$ mixing angle $\theta_{K_{1}}$. Table 1 exhibits the values of $\alpha_{3 P_{1}}, \theta_{3 P_{1}}$ and $\alpha_{1_{1}}$, $\theta_{P_{1}}$ calculated using Eq. (2.4) for some representative values of $\theta_{K_{1}}$.

3. Discussion

We see from Table 1 that the $K_{1 A}-K_{1 B}$ mixing angle $\theta_{K_{1}} \approx 57^{\circ}$ corresponds to $\alpha_{1_{P_{1}}}=-53^{\circ}$ which is too far away from ideal mixing for the ${ }^{1} P_{1}$ sector. Indeed, it is in violent disagreement with the lattice result $\alpha_{1_{1}}= \pm(3 \pm 1)^{\circ}$ obtained by the Hadron Spectrum Collaboration [19]. Since only the modes $h_{1}(1170) \rightarrow \rho \pi$ and $h_{1}(1380) \rightarrow K \bar{K}^{*}, \bar{K} K^{*}$ have been seen so far, this implies that the quark content is primarily $s \bar{s}$ for $h_{1}(1380)$ and $q \bar{q}$ for $h_{1}(1170)$. Indeed, if $\theta_{K_{1}}=57^{\circ}$, we will have $h_{1}(1170)=0.60 n \bar{n}-0.80 s \bar{s}$ and $h_{1}(1380)=0.80 n \bar{n}+0.60 s \bar{s}$ with $n \bar{n}=(u \bar{u}+d \bar{d}) / \sqrt{2}$. It is obvious that the large $s \bar{s}$ content of $h_{1}(1170)$ and $n \bar{n}$ content of $h_{1}(1380)$ cannot explain why only the strong decay modes $h_{1}(1170) \rightarrow \rho \pi$ and $h_{1}(1380) \rightarrow K \bar{K}^{*}, \bar{K} K^{*}$ have been seen thus far. Therefore, it is evident that $\theta_{K_{1}} \approx 57^{\circ}$ is ruled out.

Can we conclude that $\theta_{K_{1}}$ is less than 45° ? Let's examine the mixing angle $\alpha_{3 P_{1}}$. There are some information available. First, the radiative decay $f_{1}(1285) \rightarrow \phi \gamma$ and $\rho \gamma$ yields $\alpha_{3 P_{1}}=$ $\pm\left(15.8_{-4.6}^{+4.5}\right)^{\circ}$ [7]. An updated lattice calculation gives $\alpha_{3 P_{1}}= \pm(27 \pm 2)^{\circ}$ [20]. A study of $B_{d, s} \rightarrow$ $J / \psi f_{1}(1285)$ decays by LHCb leads to $\alpha_{3 P_{1}}= \pm\left(24.0_{-2.6-0.8}^{+3.1+0.6}\right)^{\circ}$ [21]. Hence, $\alpha_{3 P_{1}}$ lies in the range $\pm(15 \sim 27)^{\circ}$. Unlike the ${ }^{1} P_{1}$ sector, the deviation of $f_{1}(1285)-f_{1}(1420)$ mixing from the ideal one is sizable. Nevertheless, the quark content is still primarily $s \bar{s}$ for $f_{1}(1420)$ and $q \bar{q}$ for $f_{1}(1285)$. Indeed, $K^{*} \bar{K}$ and $K \bar{K} \pi$ are the dominant modes of $f_{1}(1420)$ whereas $f_{1}(1285)$ decays mainly to the $\eta \pi \pi$ and 4π states. It is clear from from Table 1 that when $\theta_{K_{1}} \approx(28-30)^{\circ}$, the corresponding
$\alpha_{3_{P_{1}}}$ and $\alpha_{1_{P_{1}}}$ agree well with all lattice and phenomenological analyses. This in turn reinforces the statement that $\theta_{K_{1}} \sim 33^{\circ}$ is much more favored than 57°.

Two remarks are in order: (i) The K_{1} mixing angle $\theta_{K_{1}} \approx 57^{\circ}$ leads to acceptable $\alpha_{3 P_{1}}$ but too large $\alpha_{1_{P_{1}}}$. (ii) In the octet-singlet basis, the mixing angles are of order $\theta_{3 P_{1}} \sim 15^{\circ}$ and $\theta_{1_{P_{1}}} \sim 32^{\circ}$.

4. Conclusions

The K_{1} mixing angle $\theta_{K_{1}} \approx 57^{\circ}$ is ruled out as it will lead to a too large deviation from ideal mixing in the ${ }^{1} P_{1}$ sector, inconsistent with the observation of strong decays of $h_{1}(1170)$ and $h_{1}(1380)$ and a recent lattice calculation of $\theta_{{ }_{1} P_{1}}$. We found when $\theta_{K_{1}} \approx(28-30)^{\circ}$, the corresponding $\alpha_{3 P_{1}}$ and $\alpha_{1_{P_{1}}}$ agree well with all lattice and phenomenological analyses. This again implies that $\theta_{K_{1}} \sim 33^{\circ}$ is much more favored than 57°.

References

[1] H. Y. Cheng and R. Shrock, Phys. Rev. D 84, 094008 (2011) [arXiv:1109.3877 [hep-ph]].
[2] H. Y. Cheng, Phys. Lett. B 707, 116 (2012) [arXiv:1110.2249 [hep-ph]].
[3] M. Suzuki, Phys. Rev. D 47, 1252 (1993).
[4] L. Burakovsky and T. Goldman, Phys. Rev. D 56, 1368 (1997).
[5] H. Y. Cheng, Phys. Rev. D 67, 094007 (2003).
[6] F. E. Close and A. Kirk, Z. Phys. C 76, 469 (1997) [hep-ph/9706543].
[7] K. C. Yang, Phys. Rev. D 84, 034035 (2011) [arXiv:1011.6113 [hep-ph]].
[8] D.M. Anser et al. [CLEO Collaboration], Phys. Rev. D 62, 072006 (2000).
[9] G. Abbiendi et al. [OPAL Collaboration], Eur. J. Phys. C 13, 197 (2000).
[10] D. M. Li, B. Ma and H. Yu, Eur. Phys. J. A 26, 141 (2005) [hep-ph/0509215]; D. M. Li and Z. Li, Eur. Phys. J. A 28, 369 (2006) [hep-ph/0606297].
[11] L. Burakovsky and T. Goldman, Phys. Rev. D 57, 2879 (1998) [hep-ph/9703271].
[12] P.V. Chliapnikov, Phys. Lett. B 496, 129 (2000).
[13] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[14] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004) [arXiv:hep-ph/0310359].
[15] H. Y. Cheng and C. K. Chua, Phys. Rev. D 81, 114006 (2010) [arXiv:0909.4627 [hep-ph]].
[16] H. Hatanaka and K. C. Yang, Phys. Rev. D 77, 094023 (2008) [arXiv:0804.3198 [hep-ph]].
[17] A. Tayduganov, E. Kou and A. Le Yaouanc, Phys. Rev. D 85, 074011 (2012) [arXiv:1111.6307 [hep-ph]].
[18] F. Divotgey, L. Olbrich and F. Giacosa, Eur. Phys. J. A 49, 135 (2013) [arXiv:1306.1193 [hep-ph]].
[19] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon, D. G. Richards, and C. E. Thomas, Phys. Rev. D 83, 111502 (2011) [arXiv:1102.4299 [hep-lat]].
[20] J. J. Dudek, R. G. Edwards, P. Guo and C. E. Thomas, arXiv:1309.2608 [hep-lat].
[21] R. Aaij et al. [LHCb Collaboration], arXiv:1310.2145 [hep-ex].

[^0]: *Speaker.
 ${ }^{\dagger}$ Work supported in part by the National Science Council of Taiwan, R. O. C. under Grant No. NSC-100-2112-M-001-009-MY3.

[^1]: ${ }^{1}$ As discussed in [2] and many early publications, the sign ambiguity of $\theta_{K_{1}}$ can be removed by fixing the relative sign of the decay constants of $K_{1 A}$ and $K_{1 B}$. We shall choose the convention of decay constants in such a way that $\theta_{K_{1}}$ is always positive.

[^2]: ${ }^{2}$ Note that the mixing angle results in [5] based on CLEO [8] and OPEL [9] data differ from the the ones obtained in the CLEO paper [8].
 ${ }^{3}$ From the same radiative decays, it was found $\theta_{3_{P_{1}}}=\left(56_{-5}^{+4}\right)^{\circ}$ in [6]. This has led some authors (e.g. [10]) to claim that $\theta_{K_{1}} \sim 59^{\circ}$. However, another solution, namely, $\theta_{3 P_{1}}=\left(14.6_{-5}^{+4}\right)^{\circ}$ corresponding to a smaller $\theta_{K_{1}}$, was missed in [6].

