Description of $\rho(1700)$ with the FCA method

M. Bayar, ${ }^{a b}$ W. H. Liang, ${ }^{a c}$ T. Uchino ${ }^{* a}$ and C. W. Xiao ${ }^{a}$
${ }^{a}$ Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain
${ }^{\text {b }}$ Department of Physics, Kocaeli University, 41380, Izmit, Turkey
${ }^{c}$ Department of Physics, Guangxi Normal University, Guilin, 541004, P. R. China
E-mail: melahat.bayar@kocaeli.edu.tr, liangwh@gxnu.edu.cn, uchino@ific.uv.es, chuwen.xiao@ific.uv.es

We study the $\rho K \bar{K}$ system with an aim to describe the $\rho(1700)$ resonance. The chiral unitary approach has achieved success in a description of systems of the light hadron sector. With this method, the $K \bar{K}$ system in the isospin sector $I=0$, is found to be a dominant component of the $f_{0}(980)$ resonance. Therefore, by regarding the $K \bar{K}$ system as a cluster, the $f_{0}(980)$ resonance, we evaluate the $\rho K \bar{K}$ system applying the fixed center approximation to the Faddeev equations. We construct the ρK unitarized amplitude using the chiral unitary approach. As a result, we find a peak in the three-body amplitude around 1739 MeV and a width of about 227 MeV . The effect of the width of ρ and $f_{0}(980)$ is also discussed. We associate this peak to the $\rho(1700)$ which has a mass of $1720 \pm 20 \mathrm{MeV}$ and a width of $250 \pm 100 \mathrm{MeV}$.

[^0]We study the $\rho K \bar{K}$ system in the sector $I\left(J^{P}\right)=1\left(1^{-}\right)$within the fixed center approximation (FCA) to obtain the $\rho(1700)$ resonance. A pair of $K \bar{K}$ is assumed to form the scalar cluster, the $f_{0}(980)$ resonance because the $K \bar{K}$ component in $f_{0}(980)$ is found to be dominant [1]. In order to obtain the unitarized ρK amplitude, we follow the schemes given by refs. [2, 3] and extend them to the isospin $I=3 / 2$ sector. Basically we follow the formalism given by refs. [4, 5, 6, 7].

To implement the Faddeev equation within the fixed center approximation, we need the $\rho K(\rho \bar{K})$ unitarized amplitude. Here we utilize the amplitude given in the previous work [2,3] as to the vector-pseudoscalar interaction in the sector with strangeness $S=1$ and isospin $I=1 / 2$. Following the Bethe-Salpeter approach, we have the $V P$ two-body scattering amplitude as

$$
\begin{equation*}
T=[1+V \hat{G}]^{-1}(-V) \vec{\varepsilon} \cdot \vec{\varepsilon}^{\prime} \tag{1}
\end{equation*}
$$

where V is an interaction kernel which will be discussed later, \hat{G} is $\left(1+\frac{1}{3} \frac{q_{l}^{2}}{M_{l}^{2}}\right) G$ being a diagonal matrix and $\vec{\varepsilon}\left(\vec{\varepsilon}^{\prime}\right)$ represents a polarization vector of the incoming (outgoing) vector-meson. Thanks to the on-shell factorization and the dimensional regularization, a loop function of pseudoscalar and vector mesons G_{l} can be expressed as a function of the energy \sqrt{s}

$$
\begin{align*}
G_{l}(\sqrt{s})= & \frac{1}{16 \pi^{2}}\left\{a(\mu)+\ln \frac{M_{l}^{2}}{\mu^{2}}+\frac{m_{l}^{2}-M_{l}^{2}+s}{2 s} \ln \frac{m_{l}^{2}}{M_{l}^{2}}\right. \\
& +\frac{q_{l}}{\sqrt{s}}\left[\ln \left(s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)+\ln \left(s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right. \\
& \left.\left.-\ln \left(-s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)-\ln \left(-s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right]\right\} \tag{2}
\end{align*}
$$

where a momentum q_{l} is determined at the center of mass frame and μ is a scale parameter in this scheme. Furthermore in accordance with ref. [3], we take into account the effect of the propagation of unstable particles in terms of the Lehmann representation. Instead of the original loop function eq. (2), we use

$$
\begin{equation*}
\tilde{G}_{l}(\sqrt{s})=\frac{1}{C_{l}} \int_{\left(M_{l}-2 \Gamma_{l}\right)^{2}}^{\left(M_{l}+2 \Gamma_{l}\right)^{2}} d s_{V} G_{l}\left(\sqrt{s}, \sqrt{s_{V}}, m_{l}\right) \times\left(-\frac{1}{\pi}\right) \operatorname{Im}\left\{\frac{1}{s_{V}-M_{l}^{2}+i M_{l} \Gamma_{l}}\right\} \tag{3}
\end{equation*}
$$

with the normalization for the l th component

$$
\begin{equation*}
C_{l}=\int_{\left(M_{l}-2 \Gamma_{l}\right)^{2}}^{\left(M_{l}+2 \Gamma_{l}\right)^{2}} d s_{V} \times\left(-\frac{1}{\pi}\right) \operatorname{Im}\left\{\frac{1}{s_{V}-M_{l}^{2}+i M_{l} \Gamma_{l}}\right\} \tag{4}
\end{equation*}
$$

with m_{l}, M_{l}, Γ_{l}, the mass of the pseudoscalar meson, mass of the vector and width of the vector respectively. We can obtain the interaction kernel V by the use of the WCCWZ approach $[8,9$, 10] where the interaction Lagrangian stems from a nonlinear realization of chiral symmetry. By projecting over s-wave, we have the $V P$ potential

$$
\begin{equation*}
V_{i j}(s)=-\frac{\vec{\varepsilon} \cdot \vec{\varepsilon}^{\prime}}{8 f^{2}} C_{i j}\left[3 s-\left(M_{i}^{2}+m_{i}^{2}+M_{j}^{2}+m_{j}^{2}\right)-\frac{1}{s}\left(M_{i}^{2}-m_{i}^{2}\right)\left(M_{j}^{2}-m_{j}^{2}\right)\right] \tag{5}
\end{equation*}
$$

where the index $i(j)$ represents the $V P$ channel of the incoming (outgoing) particles. The coefficients $C_{i j}$ in eq. (5) for the $I=1 / 2$ and $I=3 / 2$ sector are tabulated in tables 1 and 2 respectively.

	ϕK	ωK	ρK	$K^{*} \eta$	$K^{*} \pi$
ϕK	0	0	0	$-\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}}$
ωK	0	0	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
ρK	0	0	-2	$-\frac{3}{2}$	$\frac{1}{2}$
$K^{*} \eta$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$-\frac{3}{2}$	0	0
$K^{*} \pi$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-2

Table 1: Coefficients $C_{i j}$ in the $I=1 / 2$ sector.

	ρK	$K^{*} \pi$
ρK	1	1
$K^{*} \pi$	1	1

Table 2: Coefficients $C_{i j}$ in the $I=3 / 2$ sector.

In order to have an appropriate unitarized amplitude, we use the following parameter set chosen to reproduce $K_{1}(1270)$ in ref. [3] as $\mu=900 \mathrm{MeV}, a(\mu)=-1.85, f=115 \mathrm{MeV}$.

Under the fixed center approximation [4, 5, 6, 7], it is assumed that K and \bar{K} cluster together and the structure of the cluster is kept against the collision of ρ. This idea leads the three-body scattering amplitude T which can read a summation of the two following partition functions T_{1} and T_{2}

$$
\begin{align*}
T_{1} & =t_{1}+t_{1} G_{0} T_{2}, \\
T_{2} & =t_{2}+t_{2} G_{0} T_{1}, \tag{6}\\
T & =T_{1}+T_{2},
\end{align*}
$$

where the subscripts $i=1(2)$ of T_{i} and t_{i} represent the component particle $K(\bar{K})$ in the cluster and the diagrammatic sketches are depicted in fig. 1. In the present work, we can rewrite $t=$ $t_{1}=t_{2}$ and t is given as a mixture of the different isospin states of $I=1 / 2$ and $I=3 / 2, t=$ $\left(2 t_{\rho K}^{I=3 / 2}+t_{\rho K}^{I=1 / 2}\right) / 3$, where $t_{\rho K}$ is the ρK unitarized scattering amplitude given by eq. (1). By adopting the field normalization used in refs. [5, 6, 7], G_{0} of eq. (6) reads as a function of the energy \sqrt{s}

$$
\begin{equation*}
G_{0}(\sqrt{s})=\frac{1}{2 M_{f_{0}}} \int \frac{d^{3} q}{(2 \pi)^{3}} F_{f_{0}}(q) \frac{1}{q^{02}(s)-\vec{q}^{2}-m_{\rho}^{2}+i m_{\rho} \Gamma_{\rho}} \tag{7}
\end{equation*}
$$

where $M_{f_{0}}$ is the mass of the $f_{0}(980)$ resonance and the width of the ρ is taken into account in the above propagator. The energy of the propagator q^{0} is determined at the three-body rest frame, $q^{0}(\sqrt{s})=\left(s+m_{\rho}^{2}-M_{f_{0}}^{2}\right) / 2 \sqrt{s}$. Here we utilize the form factor $F_{f_{0}}$ to give the momentum distribution of f_{0} to the G_{0} function by the use of the formalism developed in refs. [11, 12, 13]

$$
F_{f_{0}}(q)=\frac{1}{\mathscr{N}} \int_{|\vec{p}-\vec{q}|<k_{\max }} d^{p<k_{\max }} d^{3} p\left(\frac{1}{2 \omega_{K}(\vec{p})}\right)^{2} \frac{1}{M_{f_{0}}-2 \omega_{K}(\vec{p})}
$$

Figure 1: Diagrammatic representation of the fixed center approximation for the $\rho K \bar{K}$ system.

$$
\begin{equation*}
\times\left(\frac{1}{2 \omega_{K}(\vec{p}-\vec{q})}\right)^{2} \frac{1}{M_{f_{0}}-2 \omega_{K}(\vec{p}-\vec{q})}, \tag{8}
\end{equation*}
$$

where the normalization \mathscr{N} is given by

$$
\begin{equation*}
\mathscr{N}=\int_{p<k_{\max }} d^{3} p\left[\left(\frac{1}{2 \omega_{K}(\vec{p})}\right)^{2} \frac{1}{M_{f_{0}}-2 \omega_{K}(\vec{p})}\right]^{2} \tag{9}
\end{equation*}
$$

From ref. [1], we take $k_{\max }=\sqrt{\Lambda^{2}-m_{K}^{2}}$ and $\Lambda=1030 \mathrm{MeV}$ for getting the $f_{0}(980)$ from the $K \bar{K}$ cluster. Considering the S-matrix, we have a simple expression of the three-body scattering amplitude

$$
\begin{equation*}
T(s)=2\left[\tilde{t}\left(s^{\prime}\right)+\tilde{t}\left(s^{\prime}\right) G_{0}(s) \tilde{t}\left(s^{\prime}\right)+\cdots\right]=2 \frac{\tilde{t}\left(s^{\prime}\right)}{1-\tilde{t}\left(s^{\prime}\right) G_{0}(s)} \tag{10}
\end{equation*}
$$

where t is replaced by $\tilde{t}=\left(2 m_{f_{0}} / 2 m_{K}\right) t$ coming from the normalization of the fields and note that the unitarized amplitude t is a function of $s^{\prime}=1 / 2\left(s+M_{\rho}^{2}+2 m_{K}^{2}-M_{f_{0}}^{2}\right)$. Finally we consider the width of f_{0} by replacing the mass of the cluster $M_{f_{0}}$ in eqs. (8) and (9) with $M_{f_{0}}-i \Gamma_{f_{0}} / 2$. The amplitude with the $f_{0}(980)$ and ρ width effect is shown in fig. 2 and the masses and widths of the dynamically generated state are listed in table 3 . It is shown that the inclusion of the $f_{0}(980)$ width induces a suppression of the magnitude of the peak and the peak becomes broader as the width of the $f_{0}(980)$ increases. Furthermore it is also a remarkable feature that the peak position is not so affected by this prescription.

Through this work, we construct the $\rho K \bar{K}$ three-body amplitude by means of the fixed center approximation. In our framework, a pair of $K \bar{K}$ is considered to form a scalar meson cluster $f_{0}(980)$, based on ref. [1]. We use the ρK unitarized amplitude provided by refs. [2, 3] in a manner giving a respect to chiral symmetry. In the three-body amplitude, we have a peak at the energy around 1748 MeV rather independent of the width of the $f_{0}(980)$. Besides, it is seen that the inclusion of the $f_{0}(980)$ width makes the peak wider and gives a good agreement with the

Figure 2: The $\rho K \bar{K}$ amplitude with the width effect for $\Gamma_{f_{0}}=0,40,70,100 \mathrm{MeV}$, respectively.

	$\Gamma_{f_{0}}=0$	$\Gamma_{f_{0}}=40$	$\Gamma_{f_{0}}=70$	$\Gamma_{f_{0}}=100$	PDG [14]
Mass	1748.0	1743.6	1739.2	1734.8	1720 ± 20
Width	160.8	216.4	227.2	224.6	250 ± 100

Table 3: The masses and widths of dynamically generated states with the width effects. (in MeV)
experimental data of the $\rho(1700)$, both for the position and the width. Since the ρ decays into $\pi \pi$ mostly, the above results might be related to the dominant decay mode of the $\rho(1700), \rho \pi \pi$ and 4π. Our approach to the $\rho K \bar{K}$ system provides the description of the $\rho(1700)$ as a dynamically generated state and then we conclude that the building block of the $\rho(1700)$ resonance are the ρ and $f_{0}(980)$.

References

[1] J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997) [Erratum-ibid. A 652, 407 (1999)].
[2] L. Roca, E. Oset and J. Singh, Phys. Rev. D 72, 014002 (2005).
[3] L. S. Geng, E. Oset, L. Roca and J. A. Oller, Phys. Rev. D 75, 014017 (2007).
[4] L. Roca and E. Oset, Phys. Rev. D 82, 054013 (2010).
[5] J. Yamagata-Sekihara, L. Roca and E. Oset, Phys. Rev. D 82, 094017 (2010) [Erratum-ibid. D 85, 119905 (2012)].
[6] C. W. Xiao, M. Bayar and E. Oset, Phys. Rev. D 86, 094019 (2012).
[7] W. Liang, C. W. Xiao and E. Oset, Phys. Rev. D 88, 114024 (2013).
[8] S. Weinberg, Phys. Rev. 166, 1568 (1968).
[9] S. R. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 (1969).
[10] G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B 223, 425 (1989).
[11] D. Gamermann, J. Nieves, E. Oset and E. Ruiz Arriola, Phys. Rev. D 81, 014029 (2010).
[12] J. Yamagata-Sekihara, J. Nieves and E. Oset, Phys. Rev. D 83, 014003 (2011).
[13] F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012).
[14] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).

[^0]: *Speaker.

