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Structure of the sigma meson from lattice QCD
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Our purpose is to obtain insights of structure of the sigma meson from the first principle cal-
culation, lattice QCD. At present we do not reach a conclusive understanding of nature of the
sigma meson. Currently it is considered as a usual two-quark state, four-quark states such as a
tetra-quark and mesonic molecules or superposition of them. At present we do not reach a con-
clusive understanding of nature of the sigma meson. Besides, the mixing with glueballs is one
of important and interesting ingredients for structure of the sigma meson. Furthermore, a discon-
nected diagram of the sigma meson plays an important role in the structure of the sigma meson.
However, to evaluate the disconnected part of the propagator is not an easy task in lattice QCD
calculation. To compute the disconnected part of the propagator, we use the Z2 noise method and
the time dilution for estimating the all-to-all quark propagators. Here, we focus on four-quark
states in the sigma meson. From investigation of two-quark and four-quark states with the inclu-
sion of disconnected diagrams, we will discuss the structure of the sigma meson and the mass of
it.
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Structure of the sigma meson from lattice QCD

1. Introduction

Since many light scalar mesons such as σ(600), κ(800), f0(980) and a0(980) were found in
experiments [1], a lot of theoretical studies have been devoted to investigation of their states. For
the structure of light scalar mesons, in addition to the conventional two quark state from the quark
model, several possibilities are proposed [2]; four-quark, molecular and scattering states. Because
the sigma meson is considered as a chiral partner of the pion in the mechanism of hadron mass
generation, it is interesting to investigate a roll of four-quark states in the mechanism. The study
of four-quark states in light scalar mesons gives us a chance to get an insight of important QCD
feature.

Investigations for the light scalar mesons from lattice QCD were done in Refs. [3, 4, 5, 6,
7, 8, 9, 10]. Recently using tetra-quark interpolators, not only ground states but also resonance
states of scalar mesons on the lattice were reported [8]. However there is no study including all
possible structures of the sigma meson at the same time. Here we will show the first full QCD
lattice calculation including two-quark, tetra-quark and molecular states in the sigma meson.

2. Propagators of the sigma meson

First we show the formulation of propagators of sigma meson in terms of two quarks. The
two-quark propagators of the sigma meson are given by

Gtwo(t) =
〈
O two(t)O two†(0)

〉
= −Gconn(t) + 2Gdisc(t) , (2.1)

where O two(t) are two-quark operators. The two-quark operators are given by

O two(t) =
1√
2 ∑

xaα

[
ūa

α(t,x)ua
α(t,x)+ d̄a

α(t,x)da
α(t,x)

]
. (2.2)

The two-quark propagators of sigma meson are composed of connected parts Gconn(t) and discon-
nected ones Gdisc(t). To calculate the connected diagrams we use the conjugate gradient method,
however we can not apply it to the calculation of the disconnected diagrams naively. To obtain the
disconnected part efficiently, we use the Z2 noise method in which we estimate the quark propaga-
tors stochastically with some noise vectors.

The sigma meson channel may have also overlap with four-quark states. As four-quark states,
we calculate molecular and tetra-quark propagators. Molecular operators consist of two color sin-
glet two-quark operators, whereas tetra-quark operators consist of a color anti-triplet diquark op-
erator and a color triplet anti-diquark operator. The molecular propagators of the sigma meson are
defined by

Gmolec(t) =
〈
Omolec(t)Omolec†(0)

〉
, (2.3)

where Omolec(t) are the molecular operators. The molecular operators are given by

Omolec(t) =
1√
3

[
Oπ+

(t)Oπ−
(t)−Oπ0

(t)Oπ0
(t)+Oπ−

(t)Oπ+
(t)

]
, (2.4)
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Figure 1: The diagrams for the propagator from the molecular state to the molecular state Gmolec(t).

where Oπ(t) are two-quark pion operators written as

Oπ+
(t) = −∑

xa
d̄a(t,x)γ5ua(t,x) , Oπ−

(t) = ∑
xa

ūa(t,x)γ5da(t,x) ,

Oπ0
(t) =

1√
2 ∑

xa

[
ūa(t,x)γ5ua(t,x)− d̄a(t,x)γ5da(t,x)

]
. (2.5)

We define the tetra-quark propagators of the sigma meson as

Gtetra(t) =
〈
O tetra(t)O tetra†(0)

〉
, (2.6)

where O tetra(t) are the tetra-quark operators. The tetra-quark operators are given by

O tetra(t) = ∑
a

[ud]a(t)[ūd̄]a(t) , (2.7)

where [ud]a(t) and [ūd̄]a(t) are the diquark and anti-diquark operators written as

[ud]a(t) =
1
2 ∑

xb,c
εabc

[
uT b(t,x) Cγ5 dc(t,x)−dT b(t,x) Cγ5 uc(t,x)

]
,

[ūd̄]a(t) =
1
2 ∑

xb,c
εabc

[
ūb(t,x) Cγ5 d̄T c(t,x)− d̄b(t,x) Cγ5 ūT c(t,x)

]
, (2.8)

where C is the charge conjugate matrix. These operators have a color index. The tetra-quark
operator is defined with the diquark and anti-diquark operators by constructing the color index.

The molecular and tetra-quark propagators are composed of the following diagrams,

Gmolec(t) = 2
[

D(t)+
1
2

C(t)−3A(t)+
3
2

G(t)
]

, (2.9)

Gtetra(t) = 2
[
2
(
D′

1(t)+D′
2(t)

)
−2

(
A′

1(t)+A′
2(t)+A′

3(t)+A′
4(t)

)
+

(
G′

1(t)+G′
2(t)+G′

3(t)+G′
4(t)

)]
, (2.10)

where D, C, A and G diagrams are shown in Fig. 1. The difference between D and D′ stands
for the difference way of the contraction in combination of color. We calculate the disconnected
diagrams with the Z2 noise method. We neglect the doubly disconnected diagrams G or G′ which
are suppressed by 1/Nc compared to singly disconnected diagrams [11].
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Structure of the sigma meson from lattice QCD

Figure 2: The time dependence of the two-quark (red open circles), molecular (blue solid diamonds) and
tetra-quark (orange solid triangles) propagators for κ = 0.1409 (left panel (a)), 0.1419 (center panel (b)) and
0.1429 (right panel (c)).

3. Results

The sigma propagators are calculated on the N f = 2 full QCD gauge configurations which
are generated with the Wilson gauge and the clover quark actions. The lattice size is 43 × 8. The
lattice coupling β , the clover coefficient cSW and the hopping parameter κ are set to be β = 1.8,
giving an inverse lattice spacing a−1 ∼ 1 GeV [12], cSW = 1.6 and κ = 0.1409, 0.1419 and 0.1429,
respectively. In the calculation of disconnected diagrams, we perform the Z2 noise method with
960 noise vectors per a quark propagator and the time dilution [13] in the Z2 noise method. We
measure observables on 8080 gauge configurations for the three different hopping parameters, κ =
0.1409, 0.1419 and 0.1429.

In Fig. 2, the two-quark, molecular and tetra-quark propagators for κ = 0.1409, 0.1419 and
0.1429 are shown. From analyses of the effective masses from the propagators, we can not find a
plateau in behavior of effective masses as a function of time, which suggests that the contamination
from the excited states is not removed completely. In particular, to remove the effect from the
excited states in four-quark states effectively we need a sufficient large lattice size. In spite of the
calculation on such a small lattice, we extract the masses of two-quark, molecular and tetra-quark
states from the propagators, and estimate the quark mass dependence of them. To suppress the
contamination from excited state as much as possible, we evaluate the masses mtwo, mmolec and
mtetra at t/a = 3, 4 in Fig. 2. At each kappa we obtain the following mass relation: mtwo < mtetra <

mmolec ∼ 2mπ . We find that the masses mtwo, mtetra and mmolec decrease with the hopping parameter.
Interestingly we observe that the mass reduction speed to the hopping parameter of tetra-quark state
is larger compared to other states, two-quark and molecular states. This suggests that at the chiral
limit the tetra-quark state could be the dominant grand state of the sigma meson. For the conclusive
results, calculations on a efficient larger lattice with light quark mass are indispensable.

4. Summary

We investigated the structure of the sigma meson with full QCD simulation. Here we estimate
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the dominant ground state of the sigma meson from two-quark, tetra-quark and molecular states.
In the diagrams for the propagators of each state we calculated not only the connected diagrams
but also the disconnected ones which are evaluated with the Z2 noise method. From propagators
of two-quark, tetra-quark and molecular states, we observed the following mass relation, mtwo <

mtetra < mmolec ∼ 2mπ at κ = 0.1409, 0.1419 and 0.1429. Furthermore we observed that mass
reduction speed to the hopping parameter of tetra-quark state is the fastest among the three states,
which suggests that at the chiral limit the dominant ground state of the sigma is dominated by
the tetra-quark state. This is the first full QCD lattice calculation for the sigma meson including
two-quark and four-quark states, though it was done on the small lattice with heavy quark mass.
Currently further analyses on a larger lattice with lighter quark mass are on going.
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