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Figure 1. (Color) (a) Hermitian case with anticrossing betweétimand jth eigenstates with variation of
A € R. Indices of lines are explained in the text. (b) Non-Heramitcase o€i(A) andej(A) with variation
of A € R on complex energy plane.

1. Introduction

The parameter dependence of quantum states has been extensiviely istwdrious physics.
An interesting example is the solar neutrino conversion: electron neutrindsiged in the center
of the sun via nuclear fusion reaction can become muon neutrinos arausdrtace of the sun [1],
so that less amount of electron neutrinos can be observed by a watem&bwe detector on the
earth, formerly known as “solar neutrino puzzle” [2]. To analyze sp@tameter dependence, a
Hermite model Hamiltoniai (A) with a real parametext is usually adopted. Let us assume that
the eigenstateq (i =1,2,---) of F|(x\) at A = 0 can have clear characters. The full eigenstates
(M) (i=1,2,--) of H(A) coincide withg atA =0, i.e., i (0) = @. The Neumann-Wigner non-
crossing rule [3] tells us that, if the energy expectation vakigs) = (@|H(A)|@) (i=1,2,--)
cross with each other at = A; € R, the energy eigenvalu&s(A ) of (A ) can have anticrossing
at A; (see Fig. 1(a)). At this point, the overlap ¢f(A) with @ is found to be exceeded by that
with ¢ (i # |) as|(@|Wi)|? < |{@|@)|?. Thatis, due to orthogonality (A ) andy;(A) exchange
their characters in terms @f andg; at A = A;. We call such phenomena as “nature transition”.
In fact, knowinga priori the critical valueA; is very useful to inclusively discuss the parameter
dependence of the internal structure of the quantum states.

In our work, we consider the open quantum systems having dissipationeotty &hannels
outside of the model space. These systems can be effectively desbyilvemh-Hermite model
HamiltonianH (A) accompanying with “complex energy eigenvalues” for “resonance &talies
this caseg(A) can move two dimensionally on the complex energy plane (see Fig. 1(b)) withou
having degeneracy at a certain valuelof Therefore the criterion of nature transition between
resonance states becomes completely uncertain. To solve this problemmwate the complex
two-dimensional (2D) matrix model. (Two dimensions represent two levelssafrrances.) We
found that the geometry with “exceptional points” in the complex-parametaresgan play a key
role for such parameter dependence within real-parameter subspace [4

We apply the model to the hadron physics with\NL expansion. We discuss the typiddl-
dependence of the internal structures of hadrons from the geometing @omplexN. plane [4].
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2. Complex 2D matrix model

First we consider a two-level problem in an open quantum system. Weiltlesesonance
states irbi-orthogonal representation as|@)(i = 1,2), where its bra-state is the complex conjugate
of the Dirac bra-statég| = (@°| [5]. We assume that), the eigenstates ¢f(A) atA =0, are an
appropriate basis with clear characters. Then we consider the Hamilton inatrig basis:

HA) = (mmnm (%I'j(/‘)l@)) _ ( e1(A) v12<A>>. 21)
(@[HA)|on) (@/H(A)]e2) V21(A) €2(A)

& (e C) is the energy of@) andVj(€ C) are the interaction satisfying;(0) =0. A(e R) is a
parameter, controlling the development of the two eigenstgiga )) which can be decomposed
by |@) as|¢i(A)) = Cii(A)|@) +Ci2(A)|@) (i = 1,2). Cij(A) carry the information about the
internal structure of the eigenstate(A)) in terms of|@). Due to bi-orthogonality, the norms
(Yi|yr) = C3 +C3 can become complex, while we simply assume the modBlgA )|, to be the
component weights, being suitable for narrow resonances.

Now let us consider the condition of the nature transition, j@&:(A)|? = |Ci2(A)|?, where
the two basis componenig ) and|g) are equally mixed in each eigenstaig(A )) as a character
exchanging point. We found that tigeometry on complex-A plane gives simple criterion of nature
transition within the reak subspace as follows. The transition conditj@n (A)|? = [Ci2(A)|? is
equal to the two conditions:

REAA)*V(A)] =0, (2.2)
AP < V()P (2.3)

whereA(A) = {g1(A) — £2(A)}/2 andV(A)? = Vi2(A)Va1(A). The “transition line” is defined as
the region satisfyingCi1(A)|? = |Ci2(A)|?, i.e., both conditions (2.2) and (2.3) on the complex-
plane. The line (2.2) is named as “line 1”, which includes the transition line. bbuedary of
the region (2.3) is named as “line 2”, which selects the proper part for #msition line from
line 1. If the transition line crosses the reabxis, the nature transition occurs at the crossing point
A = A € R (see Fig. 2).

We can show thadll of the crossing points between line 1 and 2 correspond to the “excep-
tional points” [6], where two energy eigenvalues coincides with eachr.offtee significance of
the exceptional points has been investigated in the context of quanturs [laohere the dense
exceptional points on the compléxyplane indicates the development of quantum chaos in the
energy-level statistics. In fact, the exceptional point correspond®tptthse singular point of the
Berry phase [8]. In our study, we can newly show that line 1 and 2sonath each other at all
exceptional points, so that these points should always benthpoints of the transition lines. In
this way, the exceptional points tell us not only the global information like ldgweent of quantum
chaos, but also the information about internal structure of each qudetem

3. Nc-dependence of hadron structures

We employ the complex 2D matrix model (2.1) to the analysis ofNkelependence of the
internal structure of hadrons. For a demonstration, we consider the edimature of the; (1260
meson carrying|q and rtp-molecule components.
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Figure 2: (Color) (a) Schematic figure of geometrical map with trdosilines and exceptional points on
complexA plane. Roles of Line 1 and shaded area with boundary of line gjigen in the text. Points (n)
denote the exceptional poimé’)'(). Transition lines are shown by the solid curves, satisfyhmgtransition
condition: |Ciz(A)|? = |Ci2(A) %

First, we analyze the scattering equation forthe propagator in thd® = 1 channel. Then,
by reducing the relativistic eigenvalue equation to the Schrodinger equatibe model (2.1) in
a non-relativistic approximation, we can get the geometrical map on the coiNplagane for the
a; meson [4]. The complex 2D matrix model far meson withN. dependence factored out Ry
becomes

%ﬁ ﬁVal o ma1
A = ¥/3/Ne. (3.2)

Sp is the pole mass afp-molecule state andis its pole residuevy, rp is a three-point coupling and
M= ,/,/SpMy, is the typical mass scale of the problem. These constants are numerically estimate
by perturbative resummation for the chiral Lagrangian induced by hapdge QCD [9, 10] as
V/Sp =~ 1012221, V/Z ~ 84— 21i, Vg rp ~ —6493, andm,, = 1189 in MeV unit.

By applying the conditions (2.2) and (2.3) to the Hamiltonian (3.1), we candigut the
geometrical map on the complé¥-plane for thea; meson in Fig. 3. The transition line as the
solid curve is found to cross the realxis betweed =0 (N; = «) andA =1 (N, = 3). A critical
color number of the nature transition can be calculated by the crossingasdint /3/N. ~ 0.93,
i.e.,N: ~ 4.0. That is, with continuous variation ®f. from « to 3, the internal structures of two
hadronic states are exchanged in terms of appropriate asisad rTp-molecule at the critical
color number:N; ~ 4.0. Such a critical color number with character exchange foath@eson
is also suggested by analyzing the pole residues in Ref. [11]. In thishyagking into account
the existence of nature transition from the geometry on the conifigtane, we can discuss the
typical Nc-dependence of the hadron structures fildga= o to 3.

H()\) — ( /\712\/57’ ﬁﬁﬁvalﬂp> 7 (3.1)

4. Summary

In this work, we discuss the parameter-dependence of the internals&ot resonances from
the geometry of a complex-parameter space. By applying the model to halaysits with ¥ N,
expansion, we consider the typiddd-dependence of hadrons from the geometry on the complex-
N; plane. Wide applications of the model to resonance physics are expectearifuture.



Complex 2D Matrix Model and Its Application to Nc-dependence of Hadron Structures

Kanabu Nawa

3 T T T T T
@ ]
2 ‘\ B -
s \ %\
] et
e ® 0 @
(é ok ________ E::::’:"::_ﬁj ....... _
= (§) i @)
[ S '.‘ ............... _
linel:l‘\‘
N line2 ™. @)
-3 1 1 |‘ 1 L
3 -2 -1 0 1 2 3

Figure 3: (Color) (a) Geometrical map on the complsi-plane withA = {/3/N;. (b) Close-up figure
around a blank square in (a).
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