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In this talk we discuss about our recent work on nonstrange meson-baryon systems. Our objec-

tive is to study coupled channel meson-baryon interaction by considering the vector and pseu-

doscalar mesons and look for dynamically generated baryon resonances in such systems. For this

we solve the Bethe-Salpeter equation with kernels obtainedfrom chiral and hidden local sym-

metry Lagrangians. For the interactions between pseudoscalar mesons and baryons we rely on

the Weinberg-Tomozawa theorem. When dealing with vector mesons, we calculate thes-, t-, u-

channel diagrams and a contact term. Our study resulted in finding of resonances which can be

related toN∗(1535), N∗(1650), N∗(1895) and∆(1620). We find that these resonances can be, at

least partly, interpreted as dynamically generated resonances.
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1. Introduction

With the motivation to study the properties of the baryon resonances and their coupling to vec-
tor and pseudoscalar mesons, we have investigated interaction of these mesons with octet baryons
in Refs. [1, 2, 3]. In these works the vector meson-baryon (VB) interaction was obtained from the
Lagrangian based on the hidden local symmetry (HLS) which treats vector mesons as the gauge
bosons. Using this Lagrangian we calculated thes-, t- andu-channel diagrams and a contact inter-
action which comes directly from the two meson-field part of the Lagrangian, which is related to
the anomalous magnetic moment of baryons, and found all the amplitudes to be of similar order [1].
Further, we found that the contact interaction is also important to be considered in order to keep
the gauge invariance of the hidden local symmetry. Thus, unlike the case of pseudoscalar meson
where one can rely on the Weinberg-Tomozawa theorem, thet-channel interaction does not give
dominant contribution to the VB interaction. In fact, the VBt-channel interaction turns out to be
spin independent (as shown in Ref. [4]) while the addition ofother diagrams lifts this degeneracy
and leads to a spin-isospin dependent amplitude, as could beexpected from the interaction of two
particles with a similar mass and nonzero spin.

To include the pseudoscalar mesons in our formalism we use the Kroll-Ruderman theorem for
the photoproduction of pions and replace the photon by a vector meson which is introduced as the
gauge boson of the HLS [2, 3]. We obtain the pseudoscalar-baryon (PB) amplitudes by using the
lowest order chiral Lagrangians and by relying on the Weinberg-Tomozawa theorem.

We have earlier studied strangeness−1 meson baryon systems [2, 3] and found some useful
information related toΛ(1405), Λ(1670), Λ(2000), Σ(1750), Σ(1940), Σ(2000).

More recently we extended our study to the nonstrange meson-baryon systems [5]. Obtaining
reliable information on the properties of nonstrange baryon resonances is important for the low
energy nuclear-hadron physics. These resonances play an important role in understandingN−N
interaction [6, 7], in describing cross sections for the reaction with meson-nucleus final states (for
instance, see Refs. [8, 9, 10, 11]), in approaching some fundamental issues, like, existence of mul-
tiquark states [12], occurrence of OZI violating processes[13], etc. In fact a lot of work has been
done to study theN∗ and∆ resonances using partial wave analyses or different dynamical coupled
channel models [14, 15, 16, 17, 18, 19, 20, 21, 22]. The distinguishing features of our work are the
treatment of vector and pseudoscalar mesons in full coupledchannel formalism with the interac-
tion kernels obtained from the lowest order Lagrangians based on the HLS and the consideration of
diagrams beyond thet-channel interaction for the vector meson-baryon systems.We discuss some
important findings of our work in the next section.

2. Theoretical framework and results

To obtain the vector meson-baryon amplitudes we start with the SU(2) Lagrangian

LρN =−gψ̄
{

γµρ µ +
κρ

4M
σµνρ µν

}

ψ , (2.1)

and require that the nucleon fields (ψ) transform under the hidden local symmetry (HLS) asψ →

h(x)ψ , whereh(x) is an element of the HLS. We find that the condition of the gaugeinvariance is
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satisfied only when the commutator part of the tensor fieldρ µν ,

ρ µν = ∂µρν −∂νρµ + ig
[

ρµ ,ρν
]

, (2.2)

is taken into account. This term gives rise to a contact interaction which, in addition to being
important for the gauge invariance, turns out to be comparable, in magnitude, to thet-channel
amplitude. This Lagrangian has been generalized to SU(3) inRefs. [1, 2, 3] where amplitudes for
different diagrams have been obtained for different VB vertices.

Further, this formalism has been extended to study PB-VB coupled channels. To obtain the PB
↔ VB amplitudes we start by using the Kroll-Ruderman theorem to write the Lagrangian for the
γN → πN process and replace theγ by theρ-meson via the notion of the vector meson dominance.
This gives theπN → ρN amplitude

LπNρN = −i
ggA

2 fπ
N̄ [π,ρ µ ]γµγ5N, (2.3)

whereπ =~τ ·π andρ =~τ · ρ
2 . Generalizing the Lagrangian in Eq. (2.3) for the SU(3) case[2], we

get

LPBVB=
−ig
2 fπ

(

F〈B̄γµγ5
[[

P,Vµ
]

,B
]

〉+D〈B̄γµγ5
{[

P,Vµ
]

,B
}

〉
)

, (2.4)

where the trace〈...〉 has to be calculated in the flavor space andF = 0.46, D = 0.8 such that
F +D ≃ gA = 1.26. The amplitudes for the different nonstrange PB↔ VB transitions are given in
Ref. [5].

We obtain the remaining amplitudes, which are those for the PB channels, by calculating
Weinberg-Tomozawa terms using chiral Lagrangians.

With these kernels we solve the Bethe-Salpeter equation. The loop functions for this are
calculated using the dimensional regularization scheme and the required subtraction constants are
fixed by fitting the data on the isospin 1/2 and 3/2πNamplitudes and on the reactions:π−p→ ηn
andπ−p→ K0Λ. The resulting subtraction constants can be found in Ref. [5]. We show the results
obtained with these subtraction constants for the isospin1/2 and 3/2πN amplitudes, in Fig. 1,
as solid and dashed lines, respectively. The figure also shows the experimental data, taken from
Ref. [23], on the real (imaginary) part of theπN amplitudes, for comparison, as dotted (dash-
dotted) lines. We should mention here that the calculationshave been done for the spin-parity
1/2− configuration. The results on the 3/2− resonances can be found in Ref. [1], which we couple
to vector mesons only. In fact it was found in Ref. [24] that the PB-VB coupling is weak in the
3/2− case.

To study the properties of the resonances contributing to the PB-VB coupled channel scattering
in the 1/2− partial wave, we search for poles in the complex plane. As a result we find some poles
which can be related toN∗(1535), N∗(1650), N∗(1895) and∆(1620). The pole which we relate to
theN∗(1535) resonance is found at 1504− i55 MeV. We also calculate its branching ratios to the
πN andηN channels which turns out to be 43% and 55%, respectively. These results are in good
agreement with the known properties ofN∗(1535) [25].

In the case ofN∗(1650), we find a double pole nature for it, with positions 1668− i28 MeV and
1673− i67 MeV. We find that twin poles unavoidably appear in this energy region while minimizing
theχ2 to fit the data. Such a nature ofN∗(1650) has already been reported in Ref. [23].
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Figure 1: Real and imaginary parts of the isospin 1/2 (left panel) and 3/2 (right panel) amplitudes for the
πN channel.

Next, we find resonances at 1801− i96 MeV and 1912− i54 MeV in the isospin half case.
Although they do not show as a double hump in the amplitudes onthe real axis due to their over-
lapping large widths. For example, a bump, and not a double peak like structure, is seen around
1900 MeV in our results on the cross sections for theπ−p→ ηN reaction, which seems to be in
good agreement with the experimental data (as shown in Ref. [5]). This indicates that the identifi-
cation of these resonances in the experimental data can be difficult, and it could be the reason for
the large variation on the masses and widths found for 1/2− resonances around 1900 MeV (put
together underN∗(1895) [25]).

In the case of isospin 3/2 we find a pole at 1689− i56 MeV which we associate with the well
known∆(1620) resonance, for which the mass and the width are given in the range of 1600-1660
MeV and 130-150 MeV, respectively, in Ref. [25]. This shows that our state has a slightly higher
mass. Although other properties of∆(1620) found in our work seem to be in good agreement with
the known ones [25], like a significant branching ratio toρN and a smaller one to theπN channel
in spite of the presence of a larger phase space in the latter case (as also found in Ref. [26]).

Finally, we would like to mention that we have tried to interpret the nature of the resonances
found in our work on the basis of Ref. [27]. We find that with theaddition of vector mesons to
build the coupled channels we seem to move in the direction ofunderstanding the low-lyingN∗

and∆ resonances as dynamically generated states.
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