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In order to develop a model that can describe both a single baryon and multi-baryon systems on the
same footing, we re-investigate the Skyrme model in a chiral Lagrangian derived from the hidden
local symmetry (HLS) up to O(p*) including the homogeneous Wess-Zumino terms. We use the
master formulas that connect the parameters of the HLS Lagrangian and a class of holographic
QCD models, which provides a controllable way to determine the low-energy constants of the
Lagrangian once the pion decay constant and the vector meson mass are given. Therefore, this
model allows us to study the role of vector mesons in the skyrmion structure. We find that the p
and o vector mesons have different roles in the skyrmion structure and that the @ meson has an

important role in the properties of the nucleon.
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1. Introduction

The Skyrme model is expected to provide a unified way to describe both a single baryon and
multi-baryon systems as suggested by Refs. [0, B]. Starting with a mesonic chiral Lagrangian, the
single baryon emerges as a skyrmion and the multi-baryon systems are simulated, for example, by
putting skyrmions on a crystal lattice.

However, the previous works along this line suffer from the ambiguities in determining the
form and the low-energy constants of the effective chiral Lagrangian. In fact, when we consider
higher-order chiral interactions or introduce more mesonic degrees of freedom in the Lagrangian,
there are too many parameters and it is not possible to control them to understand the role of each
meson in the skyrmion structure [3, #].

In a series of publications [B, B, @, B], we have investigated the properties of a single skyrmion
and the role of vector mesons in the skyrmion structure and in the skyrmion crystal that simu-
lates dense baryonic matter. In this article, we focus on the role of vector mesons in the single
skyrmion structure and our study on nuclear matter in this approach is reported in Ref. [A]. The
main idea of this approach is to start with holographic QCD models and integrate out infinite tow-
ers of mesons except a few low-lying mesons [[]. It then leads to a chiral Lagrangian whose
low-energy constants are fixed by a few inputs through the master formula. Therefore, we can con-
trol the parameters of the Lagrangian, which makes it possible to study the skyrmion structure in a
systematic way. In this work, we use the effective Lagrangian of pion and p/@ mesons up to O(p*)
in the hidden local symmetry (HLS) scheme. Thanks to the master formula we have only three
input parameters, namely, the pion decay constant, vector meson mass, and the HLS parameter a.
However, the physical quantities we are considering here are independent of a, so the number of
independent parameters is reduced to two.

Another point that should be addressed compared to other holographic QCD models [[T] is the
inclusion of the @ vector meson that can be introduced through the homogeneous Wess-Zumino
terms. In holographic QCD, this is equivalent to include the five-dimensional Chern-Simons term,
and there is no additional free parameters.

2. Soliton properties and the role of vector mesons

The basic building blocks of the HLS Lagrangian are the two 1-forms &, and &/, defined by

& = 5 (DuGei+Du&), = (Dukell-Du&gl). @1

i

with the chiral fields & and &g, which are written in the unitary gauge as & = &, = & = %/2/x,
The vector mesons, which are the gauge bosons of the HLS, are introduced through

D#&&L = (aﬂ - iVu)éR,L» (2.2)

where V), = %(wu + py) with g being the gauge coupling constant.
Then the chiral Lagrangian up to O(p*) can be written as

s = &2) +=a4) + ZLanom; (2.3)
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where %], and .Z 4, are the terms of O( p?) and O(p*), respectively, and Zynom is the homogeneous
Wess-Zumino terms. The explicit expressions for the interactions and the master formula that
determines the low-energy constants of this model can be found, for example, in Ref. [B]. In this
work, we use fr = 92.4 MeV and m, = 775.5 MeV, and we use the Sakai-Sugimoto model [[2].

The soliton wave functions can be obtained by solving the equations of motion of the meson
fields. For a single baryon that carries unit baryon number, the solitonic solution can be found by
using the following configurations,

F(r)

E(r)=exp {i‘c-i‘] . 0y =W(r)du, py=0, p=—=(FxT1) 2.4)

2
with the boundary conditions

In order to describe a realistic baryon of definite spin and isospin quantum numbers, the classi-
cal configuration should be quantized. In this work, we follow the standard collective quantization
method [[[3], which transforms the meson fields as

E(r) = &(r,t) = A1) §(r)AT (1),
Vu(r) = Vu(r,t) = A(t) Vy(r)A'(z), (2.6)

where A(t) is a time-dependent SU(2) matrix, which introduces the angular velocity Q of the
collective coordinate rotation as

it-Q = AT(1)dA(r). (2.7)

Under this rotation, the space component of the @ field and the time component of the p field get
excited and their most general forms are found as [[4]

pO(r.1) = A<r>§ T-Q& (1) + 1 FQFE(]AT(),

w'(r,) = <p5r) (Qx#), (2.8)
with the boundary conditions given by
§1(0) =&i() =0, &(0) =& () =0, ¢(0) = @(=) =0, 2.9)

In order to understand the role of vector mesons, we consider three models. The first is
the full model in this approach that contains 7, p, and @ mesons explicitly. We call this model
HLS (7, p,®). To see the role of the @ meson, we decouple the @ meson from the full model.
This can be achieved by neglecting the homogeneous Wess-Zumino terms. This is the model
HLS, (7, p). Finally, to see the role of the p meson, we consider the model HLS; () by integrating
out the p meson in HLS; (7, p). Then the soliton wave functions can be obtained by solving the
equations of motion. The obtained results are given in Fig. [l. (The solution for the @ meson wave
function can be found in Ref. [H].)

When the wave functions are obtained, it is straightforward to calculate the mass and radius of
a single baryon. In Table 0 we give the soliton mass, the mass difference between the nucleon and
the A, and the rms energy radius /(r?); obtained in three models.

From these results, we can know the followings.
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Figure 1: Comparison of the soliton wave functions F(r), G(r) &, (r), and &,(r) in the models of HLS (),
HLS(x,p), and HLS|(7,p, ®), which are represented by the solid line, dashed lines, and dotted lines,
respectively.

e The inclusion of the p meson reduces the soliton mass, which is consistent with the claim

made in Refs. [, [A] that the inclusion of isovector vector mesons makes the skyrmion
closer to the BPS soliton. However, we find that the inclusion of the isoscalar @ vector
meson increases the soliton mass. The different role of these mesons can be seen in Fig. 0
which shows that the p meson shrinks the soliton wave functions, while the @ meson has the
opposite effects.

In the moment of inertia, which determines the A-N mass difference Ay, in the standard
collective quantization, the p and @ vector mesons have the opposite role again, namely,
the p meson increases Ay, while the @ meson decreases it. As a result, in the absence
of the @ meson, Ay that is the quantity of O(1/N,) becomes even larger than the soliton
mass that is of O(N,), which then causes a serious problem in the validity of the standard
collective quantization method. Therefore, the inclusion of the @ meson is important not
only in phenomenology but also to justify the standard collective quantization method.

3. Discussion

In summary, we have investigated the role of vector mesons in the skyrmion structure using

HLS,(m,p,®) HLSi(m,p) HLS(x) [ O(p?) + w,B* [[@] O(p?) (]
M) 1184 834 922 1407 1026
Ay 448 1707 1014 259 1131
V2 0.608 0.371 0.417 0.725 0.422

Table 1: Skyrmion mass and size calculated in the HLS within the Sakai-Sugimoto model with a = 2. The
soliton mass M, and the A-N mass difference Ay are in unit of MeV while +/(r?) £ 1s in unit of fm. The
column of O(p?) + @, B! is “the minimal model” of Ref. [[A] and that of O(p?) corresponds to the model
of Ref. [[H].
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the HLS Lagrangian up to O(p*), which is matched by holographic QCD models by integrating out
the vector mesons other than the lowest p and @ vector mesons. The parameters of the effective
Lagrangian are determined by the master formula except the pion decay constant and the vector
meson mass. In particular, we have studied the role of the @ meson in this work by including
the anomalous parity terms. We find that the inclusion of the @ meson has an important role not
only in the properties of a single baryon but also in the justification of the use of the standard
collective quantization method. The crucial role of the @ meson is also seen in the properties of
baryonic matter in the skyrmion crystal calculation as reported in Ref. [B]. However, within a chiral
Lagrangian of pion only, it was shown in Ref. [[']] that the one-loop corrections are important to get
the correct nucleon properties with the physical input parameters. Thus the work in this direction
is desired to understand the soliton structure more rigorously.
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