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We study the relation between quark confinement and spontaneous chiral-symmetry breaking

directly in QCD. In lattice QCD formalism, we derive an analytical gauge-invariant relation be-
tween the Polyakov loofLp) and the Dirac eigenvalue, i.e., (Lp) O 5, AN"1(n|U4|n), on a
temporally odd-number lattice, where the temporal lattice Bizes odd. Here|n) denotes the
Dirac eigenmode, i.el|n) = iA|n), andUy the temporal link-variable operator. We here use an
ordinary square lattice with the normal periodic boundary condition for link-varidlygs) in

the temporal direction. Because of the fackidt—* in the analytical relation, the contribution of

low-lying Dirac modes to the Polyakov loop is negligibly small in both confined and deconfined
phases, while the low-lying Dirac modes are essential for chiral symmetry breaking. Also, in
lattice QCD simulations, we numerically confirm the analytical relation, non-zero finiteness of
(n|Ug4|n) for each Dirac mode, and negligibly small contribution of low-lying Dirac modes to the
Polyakov loop. Thus, we conclude that low-lying Dirac modes are not essential for confinement,
which indicates no direct one-to-one correspondence between confinement and chiral symmetry
breaking in QCD.
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1. Introduction: Are color confinement and CSB one-to-one in QCD?

QCD has two outstanding nonperturbative phenomena of color confinement and spontaneous
chiral-symmetry breaking (CSHJ]. However, their relation is not yet known directly from QCD,
and to clarify their precise relation is one of the important problems in theoretical pHZJB .

For quark confinement, the Polyakov lodp-) is one of the typical order parameters, and it
relates to the single-quark free enefgyas(Lp) O e E/T at temperaturd. Also, its fluctuation
is recently found to be important in the QCD phase transifnfor CSB, the order parameter is
the chiral condensat@|q), and low-lying Dirac modes play the essential r{@ [

A strong correlation between confinement and CSB has been suggested by almost coincidence
between deconfinement and chiral-restoration temperaffedthough slight difference of about
25MeV between them is pointed out in recent lattice QCD stu@esTlheir correlation has been
also suggested in terms of QCD-monopo@s, which topologically appear in QCD in the
maximally Abelian gauge. By removing the monopoles from the QCD vacuum, confinement and
CSB are simultaneously lost in lattice QOB B]. (See Fig.1.) This indicates an important role of
QCD-monopoles to both confinement and CSB, and thus these two phenomena seem to be related
via the monopole. However, the direct relation of confinement and CSB is still unclear.

Then, we have a questiorif only the relevant ingredient of CSB is carefully removed from
the QCD vacuum, how will be quark confinemeim2his study, we derive an analytical relation
between the Polyakov loop and the Dirac modes in temporally odd-number lattice QCD, where the
temporal lattice size is odd, and discuss the relation between confinement an8,d8B [
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Figure 1: In the MA gauge, QCD-monopoles topologically appear. By removing the monopole from the
QCD vacuum, confinement and CSB are simultaneously®B] [ This means essential role of monopoles
to both confinement and CSB. However, the direct relation between confinement and CSB is unclear.

2. Lattice QCD formalism for Dirac operator, Dirac eigenvalues and Dirac modes

Note that, in our studie@[[10], we just consider the mathematical expansion by eigenmodes
In) of the Dirac operatol = y,,D;, using the completeness §f, |n)(n| = 1. In general, instead of
[, one can consider any (anti)hermitian operator, ©§ D,Dy, and the expansion in terms of
its eigenmodes. In this paper, to consider CSB, we alagutd the expansion by its eigenmodes.
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We use an ordinary square lattice with spacingnd sizeV = N2 x N, and impose the nor-
mal periodic boundary condition for the link-varialilg (s) = €29%( (A,: gluon fields) in the
temporal direction. In lattice QCD, the Dirac operalbe= y;, D, is expressed with,(s) as

1 4
Dsy = E‘u21 Vi [Un(9)8sips —U—_u(9)8spis] (2.1)

wherefl is the unit vector inu-direction in the lattice unit, and_,(s) = UJ(S— [t). Adopting
hermitiany-matrices a:yﬁ = Yu, the Dirac operatdp is anti-hermitian and satisfiel%;s =—Dsy.
We introduce the normalized Dirac eigen-staeand the Dirac eigenvalud, (An € R),

B|n) =iAn|n), (m|n) = dmn, Z|n><n\ =1 (2.2)

The Dirac eigenfunctio(s) = (s|n) satisfiesy ¢ Bss Yn(S) = iAnn(S) and gauge-transforms as
Wn(s) — V(s)Yn(s), which is the same as the quark field, apart from an irrelevant global lase [
Now, we define the link-variable operauagtu [4] by the matrix element of

(S|01pls) =Usp(9)3sips- (2.3)

With the link-variable operator, the Dirac operator and covariant derivative are simply expressed,

1 - A

D= Z yuUu—U_p),  Dy= i(uu —U_p). (2.4)

The Polyakov loop is also simply written as the functional tradéﬁf i.e.,(Lp) = ,\‘Ci\,(TrC{OP‘}),
where, “T” denotes the functional trace of ;&=  stre with the trace t over color index.

3. Direct relation between Polyakov loop and Dirac modes on odd-number lattice

Now, we consider a temporally odd-number latti€[IQ], where the temporal lattice size
N; is odd. The spatial lattice sidd; is taken to be larger than;, i.e.,Ns > N;. Note that, in the
continuum limit ofa— 0 andN; — o, any number of largdl; gives the same physical result. Then,
it is no problem to use the odd-number lattice.

In general, only gauge-invariant quantities such as closed loops and the Polyakov loop survive
in QCD, according to the Elitzur theorei|[ All the non-closed lines are gauge-variant and their
expectation values are zero. Note here that any closed loop needs even-number link-variables on
the square lattice, except for the Polyakov loop. (See Fig.2.) On the temporally odd-number lattice,
we consider the following functional trace and its expectation v@LE]:

| =Trey@aD™ ), (1) = (Trey (D™ ). (3.1)

Here, Tg, = S stretry includes tg and the trace jrover spinor index. The expectation val(l¢ is
obtained as the gauge-configuration average in lattice QCD. In the case of enough largewolume
one can expegiO) ~ Tr O/Tr 1 for any operato© at each gauge configuration.

From EqlZ), U, ™1 is expressed as a sum of productdpfink-variable operators, since
the Dirac operatoB includes one link-variable operator in each directiont@f. Then,U, N1
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Figure 2: An example of the temporally odd-number lattice. Only gauge-invariant quantities such as closed
loops and the Polyakov loop survive in QCD. Closed loops have even-number links on the square lattice.
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Figure 3: Examples of the trajectories stemming frgh = (Trcﬁy(04 ™-1)). For each trajectory, the total
length isN, and the “first step” is positive temporal direction correspondirigoAll the trajectories with

the odd-number lengtly; cannot form a closed loop on the square lattice, so that they are gauge-variant and
give no contribution, except for the Polyakov loop. Thus, only the Polyakov-loop ingredient surviitgs in

includes many trajectories with the total lengdh(in the lattice unit) on the square lattice, as shown
in Fig.3. Note that all the trajectories with the odd-number legtbannot form a closed loop on
the square lattice, and thus give gauge-variant contribution, except for the Polyakov loop.

Hence, among the trajectories stemming frgin= (Tr. (U, BN1)), all the non-loop trajec-
tories are gauge-variant and give no contribution, according to the Elitzur the@e®rily the
exception is the Polyakov loop. (See Fig.3.) Thus(lin only the Polyakov-loop ingredient can
survive as the gauge-invariant quantity, dhdis proportional to the Polyakov loofbp).

Actually, we can mathematically derive the following relati [

(1) = (Troy(UaB™ ™)) = (Trey {Ua(yaDa) 1) (" only gauge-invariant terms survive
= 4(Tre(UsD) ) (T - )
4 (04 —0 A 1 -~ .
- W(Trc{u4(u4—U74)Nﬁl}> (" Dg= %-(U4—U,4))
- (2a;4r\lr—1<TrC{04’1\h}> = (2;2;1‘/_1<LP>- (" only gauge-invariant terms surviug.2)

On the other hand, we calculate the functional trace in&Ed).(sing the complete set of the
Dirac-mode basif) satisfyingy ,|n)(n| = 1, and find the Dirac-mode representation of

(1) =3 (0 BN ) =N AN (naln). (3.3)
n n
Combing Eqgs[Z.2) and B.3), we obtain the analytical relation betwegp) andA, in QCD B [IJ:
_(a)™ Tt o NC1o
(Lp) = EEVYAR Z)‘n (N[U4[n). (3.4)
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This is a direct relation between the Polyakov logp) and the Dirac modes in QCD, and is

mathematically valid on the temporally odd-number lattice in both confined and deconfined phases.

From Eq[B.9), we can investigate each Dirac-mode contribution to the Polyakov loop individually.
Remarkably, due to the factaf—*, low-lying Dirac-mode contribution is negligibly small

in RHS of EqB.4), compared to the other Dirac-mode contribution. In fact, the low-lying Dirac

modes give little contribution to the Polyakov loop, regardless of confined or deconfined@hase [
Here, we give several comments on the relati®d)(in order.

1. Eq.B3) is manifestly gauge invariant, becauggUa|n) = S (n|s)(s|Us|s+ ) (s+f]n) =
5 s W (S)Ua(S) n(s+f) is gauge invariant under the gauge transformatjgiis) — V () gn(S).

2. In RHS of EqlB.9), there is no cancellation between chiral-pair Dirac eigen-statgsnd
¥5n), becauséN; — 1) is even, i.e.(—A,)N 1 = AN—1 and(n|yUsys|n) = (n|Us|N).

3. The relationf8.9) is correct regardless of presence or absence of dynamical quarks, although
dynamical quark effects appear(iop), the Dirac eigenvalue distributigmA ) and(n|Ug|n).

4. The relation[®.9) is correct also at finite density and temperature for any color nuidber

In lattice QCD simulations, we also numerically confirm Bdd{ and quite small contribution
of low-lying Dirac modes to the Polyakov loop in both confined and deconfined pH&&3.[

From the analytical relatiofB(4) and the numerical confirmation, we conclude that low-lying
Dirac-modes give negligibly small contribution to the Polyakov loop, and are not essential for con-
finement, while these modes are essential for chiral symmetry breaking. This conclusion indicates
no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD:
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