
P
o
S
(
H
a
d
r
o
n
 
2
0
1
3
)
1
5
9

Lattice QCD study of partial restoration of chiral
symmetry in the flux-tube

T. Iritani∗a, G. Cossua, and S. Hashimotoab

aHigh Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
bSchool of High Energy Accelerator Science, The Graduate University for Advanced Studies
(Sokendai), Ibaraki 305-0801, Japan
E-mail: iritani@post.kek.jp

Using the overlap-Dirac eigenmodes, we study the spatial distribution of the chiral condenste
around static color sources in lattice QCD. Between the color sources, there appears a color-
flux tube, which leads a linear confining potential. By measuring a local value of the chiral
condensate, we show that the magnitude of the condensate is reduced inside the flux-tube for both
quark-antiquark and three-quark systems. These results suggest that chiral symmetry is partially
restored in the flux-tube. The reduction of the condensate is estimated to be about 20 ∼ 30% at
the center of the flux.
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1. Introduction

Spontaneous chiral symmetry breaking is one of the most important properties of QCD. An
order parameter of the symmetry is the chiral condensate ⟨q̄q⟩, which has a large negative value in
non-perturbative vacuum, while it would be modified at finite temperature or density.

In addition to chiral symmetry breaking, quark confinement is also an important nature of the
QCD vacuum. Confinement is characterized by linear interquark potential, which is originated
from a flux-tube formation between quarks. This structure can be observed by the action/energy
densities around static color sources in lattice QCD simulation [1, 2, 3, 4].

Regarding a possible link between chiral symmetry breaking and confinement, it is interesting
to discuss the chiral symmetry in the confined system. Due to color electric and magnetic fields
inside the color flux, non-perturbative properties of QCD could be modified inside.

In this paper, we investigate the chiral condensate around the static color sources using the
eigenfunctions of the overlap-Dirac fermion operator in lattice QCD [5]. We discuss the change of
chiral symmetry breaking inside the color flux for both quark-antiquark and three-quark systems.

2. Partial restoration of chiral symmetry inside the flux-tube

2.1 Local chiral condensate

In order to discuss chiral symmetry inside the color flux, we define a local chiral conden-
sate q̄q(x), which is expressed by means of the Dirac eigenmodes. In this paper, we use the
overlap-Dirac eigenmodes on 2+1-flavor dynamical overlap-fermion configurations generated by
the JLQCD Collaboration [6]. The massless overlap-Dirac operator is given by

Dov(0) = m0 [1+ γ5sgn HW (−m0)] , (2.1)

using the hermitian Wilson-Dirac operator HW (−m0) = γ5DW (−m0) and a sign function [7]. This
formalism keeps the exact chiral symmetry on the lattice [8].

Using the overlap-Dirac eigenfunction ψλ (x), that satisfies Dov(0)ψλ = λψλ , a local chiral
condensate is defined as

q̄q(x) =−∑
λ

ψ†
λ (x)ψλ (x)

mq +(1+ mq
2m0

)λ
, (2.2)

with eigenvalues λ and a quark mass mq. The chiral condensate ⟨q̄q⟩ is given by an expectation
value of q̄q(x). On a given gauge configuration in the broken phase, the spatial distribution of q̄q(x)
show local clusters, which correspond to the location of the (anti-)instantons [9].

2.2 Chiral condensate in quark-antiquark system

First, we discuss quark-antiquark (QQ̄) system. Similar to the flux-tube measurement in lattice
QCD [1, 2, 3, 4], we analyze the spatial distribution of the chiral condensate q̄q(x) around two static
color sources as

⟨q̄q(x)⟩W ≡ ⟨q̄q(x)W (R,T )⟩
⟨W (R,T )⟩

−⟨q̄q⟩, (2.3)

where W (R,T ) is the Wilson loop with the size of R× T . Here, we use a low-mode truncated
condensate q̄q(N)(x) by truncating the sum in Eq. (2.2).
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Figure 1: (a) The spatial distribution of the local chiral condensate ⟨q̄q(x)⟩W around the Wilson loop
W (R,T ) with R = 8. The vertical bars denote the position of the color sources at (4,0) and (−4,0). (b) The
cross-section of the ratio r(x) along the tube (Y = 0), the circles denote the position of the color sources.

In this paper, we use 243 ×48 lattice at β = 2.3, which corresponds to a lattice spacing a−1 =

1.759(10) GeV. The dynamical quark masses are mud = 0.015a−1 and ms = 0.080a−1, and the
global topological charge is fixed at Q = 0.

Figure 1 (a) shows ⟨q̄q(x)⟩(N)
W at a separation R = 8 with a number of eigenmodes N = 160, the

color sources are located at (4,0) and (−4,0) on XY -plane, and the valence quark mass mq = 0.015
[6]. In order to improve the signal of the Wilson loop, we use the APE smearing for the spatial
link-variables. W (R,T ) is measured at T = 4, and the number of configuration is 50.

As can be seen in Fig. 1 (a), the change of the chiral condensate is positive between the color
sources. It implies that the magnitude of the condensate is reduced inside the flux-tube, since ⟨q̄q⟩
is negative in QCD vacuum.

Since q̄q is a divergent operator, we need to renormalize it for a quantitative analysis. Consid-
ering the mode truncation as a regularization method [10], the power divergence is parametrized
as

⟨q̄q⟩(N) = ⟨q̄q(subt)⟩+ c(N)
1 mq/a2 + c(N)

2 m3
q, (2.4)

according to the exact chiral symmetry of the overlap-Dirac operator. The subtracted condensate
⟨q̄q(subt)⟩ becomes finite up to logarithmic divergence, which can be obtained by fitting ⟨q̄q⟩(N) as
a function of mq [10]. The remaining divergence also cancels taking the ratio

r(x)≡ ⟨q̄q(subt)(x)W (R,T )⟩
⟨q̄q(subt)⟩⟨W (R,T )⟩

. (2.5)

Figure 1 (b) shows the cross-section of the ratio r(x) along the tube. The ratio r(x) clearly
shows that chiral symmetry is partially restored between the color sources. The reduction is about
20% at around the center of quark-antiquark system with a separation R ≃ 0.9 fm.

2.3 Chiral condensate in three-quark system

Next, we investigate the three-quark (3Q) system. The 3Q-Wilson loop W3Q is defined by

W3Q ≡ 1
3

εabcεa′b′c′Uaa′
1 Ubb′

2 Ucc′
3 , (2.6)
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Figure 2: (a) The schematic picture of the spatial distribution measurement of the chiral condensate q̄q(x)
in the 3Q system. (b) The local chiral condensate ⟨q̄q(x)⟩W3Q around the 3Q-Wilson loop W3Q. The color
sources are located at (X ,Y ) = (0,0),(6,0), and (0,6), which are denoted by the vertical bars.
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Figure 3: (a) A heat map of the chiral condensate around three color sources, a black line denotes a slice
shown in right figure. (b) The cross-section of the ratio r(x) along the line X = Y . One of the color sources
is located at the origin (X ,Y ) = (0,0).

with the path-ordered product Uk ≡
∫

Γk
eiagAk dx along the path Γk [11]. In a similar manner as the

QQ̄-system, we measure the chiral condensate around the 3Q-Wilson loop ⟨q̄q(x)⟩W3Q by replacing
W (R,T ) with W3Q in Eq. (2.3). The schematic picture of the measurement is shown in Fig. 2 (a).

Figure 2 (b) shows ⟨q̄q(x)⟩W3Q with color sources at (0,0), (6,0), and (0,6) on the XY -plane.
⟨q̄q(x)⟩W3Q becomes positive among the color sources, which indicates the partial restoration of
chiral symmetry like the QQ̄-system case.

Finally, we estimate the ratio of chiral condensate r3Q(x) by replacing W (R,T ) with W3Q in
Eq. (2.5). Considering a cross-section along a line which is depicted in Fig. 3 (a), we plot r3Q(x) in
Fig. 3 (b). In this case, the reduction of chiral condensate is estimated about 30% at the center of
the 3Q-flux.

3. Summary and Discussion

In this work, we investigate chiral symmetry breaking around the static color sources in lattice
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QCD. Using overlap-Dirac eigenmodes, we study the local chiral condensate around the Wilson
and the 3Q-Wilson loops. Among the static color sources, there appears a color-flux tube, which
produces a linear confining potential. By measuring the spatial distribution of the chiral conden-
sate, we find a reduction of the chiral condensate inside the flux for both quark-antiquark and
three-quark systems. These results may be interpreted as partial restoration of chiral symmetry
inside “hadrons.” Similar results are also reported by measuring the chiral condensate around the
Polyakov loop in lattice QCD [12], and the flux-tube effects using Nambu-Jona-Lasinio model
[13].
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