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1. Introduction

Quark-hadron physics at finite baryon density is one of the central subjects in modern physics,
in connection to studies on neutron stars, quark-gluon plasma and the QCD phase diagram. The
AdS/CFT correspondence [1] is a useful method for non-perturbative computations in strongly
coupled gauge theories, and the Sakai-Sugimoto model [2] reproduces the properties of low-energy
physics of massless large-Nc QCD. Recently, there are several proposals to study the finite baryon
density system through the holographic QCD models which does not suffer from the sign problem
as opposed to the lattice QCD.

However, incorporation of baryons into a holographic model is not straightforward (see, for ex-
ample, [3]). One simple attempt toward a full-fledged model is to describe baryons by a fermionic
baryon field on the dual geometry. This idea has been employed in the holographic mean field
(HMF) approach in [3] to construct a holographic model of finite baryon density systems.

In the present work, we find that the original model of [3] does not contain rotationally invari-
ant states at finite density. We also point out that the original model is not parity invariant. Then
we extend the model in such a way that the model has parity invariance. This can be achieved by
introducing two baryon fields into the bulk with opposite signatures of the mass terms. We shall
show that the new model contains a rotationally invariant state at finite baryon density. This ob-
servation suggests that the idea of parity-doublet model [4] is naturally requested if we follow the
holographic mean field approach.

2. Holographic Mean Field theory and Its Ground State

In the Holographic Mean Field (HMF) theory proposed by Harada-Nakamura-Takemoto (HNT)
in [3], a five dimensional baryonic field is introduced to study the baryonic matters. For demon-
strating the idea of HMF approach, HNT used the model given in [5], where the baryon field is
introduced into the Sakai-Sugimoto model [2]. The action is given by

S = SΨ +SA,

SΨ =
∫

dx4dw

[
i
2

ΨΓMDMΨ− i
2
(DMΨ)ΓMΨ−m5(w)ΨΨ

]
,

SA =
∫

d4xdwLA =−C
∫

d4xdwU(w)1/4

√
det

(
gMN +

2πα ′

NC
FMN

)
, (2.1)

where we have employed a conformally flat metric given byds2
5d = H(w)

(
ηµνdxµdxν −dw2

)
.

Hereηµν = diag(+,−,−,−) andw is the radial coordinate on which the boundaries are located
at w = ±wmax. The explicit form ofH(w) andU(w) are given in [5]. DM = ∂M − iAM (M =

0,1,2,3,w) is a covariant derivative,m5(w) denotes the 5d mass (see [5] for the explicit form).

HereC = 1
(2π)7

4π2

3
1

l11/2
s

(
λ

2MKK

)1/4
Nf NC, and theAν(w) here isNc times Aν(w) in the standard

convention.MKK is the energy scale of the theory,λ is the’t Hooft coupling,Nf is the number of
flavors, andls is the string length which does not show up in the end of the calculation.

The holographic mean fields are introduced by the following replacement in the above action:
Ψ(x,w)→ Ψ(w) andAM(x,w)→ AM(w). Equations of motion for the mean fields are

iΓw∂wΨ(w)+ΓMAM(w)Ψ(w)−m5(w)Ψ(w) = 0, (2.2)
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∂w
∂LA

∂ (∂wAN(w))
−JN(w) = 0, JN(w) = Ψ(w)ΓNΨ(w). (2.3)

It should be noted, although the gauge transformation depending on the 4d coordinates has been
fixed by the above choice of the mean fields, we still have a residual gauge symmetry in which the
gauge transformation depends only on thew-coordinate. By using this gauge transformation we
takeAw(w) = 0 gauge in the following analysis. Note that equation (2.3) for N = w is Jw(w) = 0.
Ji (i = 1,2,3) may be non-zero in general. We assume that the possible non-zero component is
given byJ3 and we setJ1 = J2 = 0 without loss of generality. The conditionJw = J1 = J2 = 0 is
realized by takingΨ = (Ψ1,0,Ψ3,0)

T with real Ψ1 andΨ3. One can easily confirm that thisΨ
with A1 = A2 = 0 solves the coupled equations (2.2) and (2.3).

Now the equations of motion (EOM) forΨ1 andΨ3 are

(A0(w)−m5(w))Ψ1(w)+(A3(w)+∂w)Ψ3(w) = 0,

(A0(w)+m5(w))Ψ3(w)+(A3(w)−∂w)Ψ1(w) = 0. (2.4)

As we will show in the next section,Aµ(w) transform asA0(w)→ A0(−w) andAi(w)→−Ai(−w),
under the parity transformation. Using this we decompose the HMF into the parity-even component
A(e)

µ (w) and the parity-odd componentA(o)
µ (w) as

A(e)
0 (w) =

1
2
[A0(w)+A0(−w)] , A(o)

0 (w) =
1
2
[A0(w)−A0(−w)] , (2.5)

A(e)
i (w) =

1
2
[Ai(w)−Ai(−w)] , A(o)

i (w) =
1
2
[Ai(w)+Ai(−w)] . (2.6)

In the present analysis, we assume thatA(o)
µ (w) = 0, i.e., A0(w) is an even function andAi(w) is

an odd function ofw. Then, from (2.4), one can easily see thatΨ1 (Ψ3) is either an even (odd)
function ofw or an odd (even) function [3].

The physical solution is constrained by the boundary coconditions

Ψ(±wmax) = 0, A0(±wmax) = µ0, A3(±wmax) =±µ3, (2.7)

and by the regularity conditions∂wA0(0) =A3(0) = 0. Hereµ0 is the baryon chemical potential and
µ3 is the source of the axial baryon current. Note thatΨ(±wmax) = 0 guarantees that the one-point
function of the 4d fermionic operator associated withΨ vanishes [6].

We identify the action with the grand potential as discussed in [7, 8, 9]: S=−
∫

d4xΩ(µ,µ3) .

Once the solution of EOM is substituted,SΨ in (2.1) vanishes, whileSA is non-zero in which the
information of baryons are book-kept. Note thatΩ diverges since theLA goes infinity at the UV
boundaries. Thus we regularize the grand potentialΩ asΩreg = Ω−Ω0, whereΩ0 is the grand
potential at zero density limit:

∫
d4xΩ0 ≡−S

∣∣
nB=0.

In the present analysis we assume that the ground state forms a baryonic matter, which is
achieved by takingΨ1 to be an even function with no node. We solve the coupled equations of
motion at given values ofµ andµ3 to calculateΩreg. In Fig. 1, we plotµ3 dependence ofΩreg at
µ0/mB = 1.01, wheremB is the mass of the ground state baryon. The standard thermodynamics
tells that the slope ofΩreg gives the expectation value of the axial baryon number current operator
conjugate to the sourceµ3. Figure1 shows that a non-zero axial current remains even atµ3 = 0,
showing that the rotational invariance is broken. As far as we examined, we could not find any
rotationally invariant solution at finite baryon density.
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Figure 1: Ωreg as a function ofµ3 at
µ/mB = 1.01. The circular plots are
shared by both the original model and the
extended model whereas the box plots are
only for the extended model.

3. An Extended Model

Note that the action (2.1) is not constructed in a parity invariant way [10, 11]. Let us extend
our model to maintain the parity invariance. In order to construct a parity invariant theory, we need
to introduce two fermionic fieldsΨI andΨII with opposite signature of the mass terms [10, 11]1.

Let us coconsidern action of the baryon sector given bySΨ = SI
Ψ +SII

Ψ, whereSI
Ψ is the same

as (2.1) with Ψ replaced withΨI . The second term is defined as

SII
Ψ =

∫
dx4dw

[
i
2

ΨII ΓMDMΨII − i
2
(DMΨII )ΓMΨII +m5(w)ΨII ΨII

]
. (3.1)

Note thatΨI andΨII transform asΨI →−Γ0ΓwΨII andΨII →−Γ0ΓwΨI under the parity transfor-
mation, and one can confirm that the total actionSΨ is now parity invariant.

In this extended model, the currentsJN(w) in (2.3) are replaced with the contributions from
ΨI andΨII as follows:

JN(w) = JI
N(w)+JII

N(w), JI,II
N (w) = ΨI,II (w)ΓNΨI,II (w). (3.2)

We impose the conditionJw= J1= J2=0by takingΨI =
(
ΨI

1,0,ΨI
3,0

)T
andΨII =

(
ΨII

1 ,0,ΨII
3 ,0

)T

with realΨI,II
1 andΨI,II

3 . The equation of motion forΨI(w) is the same as (2.4) whereas the equation
of motion forΨII (w) is given by

(A0(w)+m5(w))ΨII
1 (w)+(A3(w)+∂w)ΨII

3 (w) = 0,

(A0(w)−m5(w))ΨII
3 (w)+(A3(w)−∂w)ΨII

1 (w) = 0. (3.3)

We should impose the boundary conditionΨII (±wmax) = 0, on top of the boundary conditions
(2.7) and the regularity conditions∂wA0(0) = A3(0) = 0 given in the previous section.

The numerical results from the extended model are shown in Fig.1. The solutions given by
the circular plots, which break the rotational invariance atµ3 = 0, remain solutions in the extended
model, whereas new solutions given by boxes appear. We can read the expectation value of the
axial current from the slope of the each plots, and we find that the new solutions give vanishing
current atµ3 = 0, restoring the rotational invariance.

1See also another model [12] based on a bottom-up approach [13].
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However the grandpotential of the new solution is greater than the rotationally non-invariant
solution. This suggests that the rotational invariance is still broken at zero temperature at small
baryon density corresponding toµ/mB = 1.01.

4. Discussions

We found that the original model proposed by [3] does not have rotationally invariant solution
at zero temperature at small baryon density. In the present work, we proposed a parity-invariant
extension of the model of [3] , and we found that the extended model has a rotationally invariant
state. The two baryon fields with opposite parity in the extended model remind us of the parity
doublet model [4]. A picture of parity doublet model is naturally requested in the holographic
mean field approach.

As far as we have examined within the present work, the rotationally invariant state turned
out not to be the ground state, suggesting a spontaneous breaking of the rotational invariance with
finite expectation value of the axial current operator. The finite expectation value of axial current
operator may be understood as a condensation of axial vector mesons.

However, we postpone a definite conclusion here. The main statement in the present work is to
show the presence of a rotationally invariant state in the extended model at finite baryon densities.
In order to reach the final conclusion, we think that we should relax the ansatz we have employed,
and we need to numerically survey wider range of the possible solutions. These issues remain to
be investigated in future work [6].
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