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The most important probes for the phase states of a four-dimensional gauge field theory are the
Wilson and t’Hooft line operatros that are defined on one-dimensional curves in the space-time.
For example, these line-operators define order parameters for the confinement-deconfinement
phase transition of the QCD vacuum. However, for more detail understanding of four-dimensional
gauge field theory dynamics and vacuum topology we need additional probes expressed by op-
erators defined on the subspaces with higher dimensions. Possible candidates are operators that
are defined on the two-dimensional surface in the four-dimensional space-time. In the present
work the surface operator in the lattice QCD is studied. The Witten parameter dependence on the
surface area and volume studied in confinement and deconfinement phases.
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1. Introduction

Confinement in the QCD is the fundamental property of hadron matter that define spectra of
hadrons. Quark confinement, in particular, is characterized by a linear potential interaction at large
distances. However, to date there is no clear understanding how the color gauge interaction leads
to this kind of quark potential. One of the promising explanations was obtained within the dual
superconductor model. In the model the condensation of electric charges to the Cooper pairs is
substituted by the chromomagnetic monopoles condesnation [1]. As the result, the chromoelectric
field between color charges is compressed to flux tubes, what leads to the linear quark potential at
the large distances. This explanation implies that the confinement-deconfinement phase transition
is accompanied by vacuum phase transition associated with the condensation of chromomagnetic
monopoles. Thus, one can assume existence of additional order parameters that are sensitive to
the monopoles condensation. One of the candidates is the surface operator [3] proposed by Witten
[4, 5]. It determined via divergence of the chromomagnetic field through closed surface. The pa-
rameter dependence on the surface area can reproduce the behavior of the Wilson loop. For example
an infinite temporal surface can be considered as spatial Wilson loop averaged over the imaginary
time component. It is expected, also, that the monople condensations affects the dependence on the
volume covered by the surface. Thus, study of the surface operator volume dependence can clarify
the role of the monopole condensation in the confinement-deconfinement phase transition.

In non-abelian pure gauge theories, expectation values of large surface operators is difficult to
compute through direct Monte-Carlo simulation, because the signal-to-noise ratio is very rapidly
decaying for increasing area surface. Using a multilevel scheme [6] for line operators, we adapted
it to deal with surface operators when area exceeds 1 f m2. The Witten parameter was numerically
studied within the SU (2) - gluodynamics using multilevel and multi-hit algorithms for the sake of
statistical confidence in our previous papers [7, 8]. It was shown that at the deconfinement phase
the temporal surface operator exhibits nontrivial area dependence. In the confinement phase the
operator is trivial with no area and volume dependence. It is shown also that the spatial surface
operator exhibits the same phase behavior.

In the present paper we study volume dependence of the surface operator within direct Monte-
Carlo simulation.

2. Surface operator on the lattice

In general case the surface operator can be defined by the following expression:

W = e
iκ

∫
S
Fi j dσ i j

(2.1)

where Fik - the gauge field tensor, dσik - surface element (here we do not distinguish between
upper and lower indexes, because all calculations are performed in Euclidean space-time after
Wick rotation), i, k = 1, 2, 3 - indexes of the space-time directions. The field flow through a lattice
plaquette can be related with the plaquette angle θp as follows:

κ
∫
S

Fi j dσ i j = θp (2.2)
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Thus, we define the surface operator on the lattice as follows:

Wp (S) = Re∏
S

eıθp , (2.3)

The phase of a wave function is changing by the plaquette angle value by moving along the contour
of the plaquette. This phase related with chromomagnetic field flow through plaquette surface as
follows:

κ
∫
S

H ·dS = κ
∮

A ·dl = θp, (2.4)

where integration over dl carried out on a path covering the area S. This equation provides a simple
connection of the surface and line operators in the trivial vacuum.

In this work we consider pure gauge field theory with SU (2) group symmetry broken up to
U (1). Thus the θp related with Fµν as follows:

Fp = 1̂cosθp + ıniσi sinθp, (2.5)

where ni - vector on the unit sphere, σi - Pauli matrices, Fp is a value of the gauge field tensor Fµν

on the plaquette. Thus, for the θp we can write the following expression:

θp = arccos
(

1
2

Tr Fp

)
. (2.6)

All phases are calculated on the surface of the three dimension cube in the space-time. The
function arccos(x) is defined within the range [0,π]. In the gauge group U (1) the range of variation
of the angle is [0,2π]. Thereby, on the one side of cube the phase is selected as arccos

(1
2 Tr Fp

)
, on

the opposite side as arccos
( 1

2 Tr Fp
)
+π .

In lattice calculations we use the link variable Ui j ∈ SU (2), where i, j is number of lattice sites,
located at the ends of the link. Variable Ui j related with Aµ as follows:

Ui j = eıgAµ a, (2.7)

where a is distance between sites and Aµ is taken at the middle of the link i j. According to Wilson
[9] action for pure gauge theory can be written as follows:

S = ∑
�

S�, (2.8)

S� = β
[

1− 1
2

ReTr
(
Ui jU jkUklUli

)]
, (2.9)

where β = 4/g2
 and � is a plaquette. The partition function is

Z =
∫

(dU) e−S(U). (2.10)

Any observed value of a physical quantity A we can calculated using following expression:

⟨A⟩= Z−1
∫

(dU) A(U) e−S(U), (2.11)

where A(U) is physical quantity calculated on the lattice configurations U and the integration is
over all configurations with weight equal e−S(U).
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Figure 1: Dependence of the volume coefficient γ on the lattice spacing. Solid line shows fit of the coeffi-
cient dependence in the confinement phase, dashed line is the fit in the deconfinement phase.

3. Results

To extract area and volume dependence of the surface operator we fit the obtained data by the
following expression:

Wp(S,V ) = e−σS−γV , (3.1)

where σ is area coefficient, γ is volume coefficient, S is the surface area, V is volume covered
by the surface. The parameter values are obtained with the help of minuit2 library from ROOT1

package. We parametrize the area and volume coefficients as follows:

σ (a) = σph +σdiv/a2,

γ (a) = γph + γdiv/a3 (3.2)

where σph and γph are the physical coefficients and σdiv and γdiv are the coefficients of the divergent
part of area and volume law.

Dependence of γ on lattice spacing a has different asymptotic at large a in different phases
(see figure 1). Numerical fit shows that γph ≃ 0 in confinement phase and γph ̸= 0 in deconfinement
case for spatial surface (see figure 2). It allows to consider γph as an order parameter for the
confinement-deconfinement phase transition, however large statistical errors do not allow to make
definite conclusion.

In conclusion we can say following: 1) volume law of the spatial surface operator points on
the possible phase transition associated with the chromomagnetic monopole condensation; 2) more
definite conclusion about volume dependence of the spatial surface needs more precise numerical
study.

1See http://root.cern.ch/drupal/
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Figure 2: Values of the volume coefficients γdiv and γph coefficients in the confinement and deconfinement
phases for the spatial surface
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