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We investigate the η ′N two-body interaction in the context of the η ′ meson mass modification
in the nuclear medium. It has been argued in several articles that the masses of η ′ and the other
pseudoscalar mesons (π , K, η) should degenerate in the chiral-symmetric phase. It is expected
that the reduction of the mass difference between η and η ′ would take place in the nuclear matter
if one assumes that the decrease of the quark condensate at the normal nuclear density occurs with
partial restoration of chiral symmetry. At low density, the in-medium self-energy giving the mass
modification by the medium effect can be obtained by the η ′N two-body T matrix. Thus, we also
estimate the η ′N interaction strength in vacuum with the linear sigma model which involves the
effect of partial restoration of chiral symmetry. In the view of the linear sigma model, we find
that the η ′N interaction is attractive and generated through the sigma meson exchange.We expect
that the interaction is enough strong and for the existence of a bound state of the η ′N system.
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1. Introduction

The mass spectrum of hadrons reflects the symmetry of its fundamental theory, Quantum Chro-
modynamics (QCD). If one considers simply, nine Nambu–Goldstone (NG) bosons would appear
according to the NG theorem when one assumes the axial part of U(3)L×U(3)R is spontaneously
broken down to U(3)V . Nevertheless, when one sees the pseudoscalar meson masses, one can-
not find the singlet pseudoscalar meson around the pion mass [1]. Taking account of the UA(1)
anomaly, we can regard the UA(1) symmetry as broken explicitly and the η ′ mass can be expained
with the UA(1) anomaly [2].

Other than the UA(1) anomaly, chiral symmetry breaking also plays an important role for
the generation of the η ′ mass. As discussed in Refs. [3], the pseudoscalar singlet meson and octet
meson degenerate when chiral symmetry is restored, e.g. at high temperature or high density, in the
chiral limit even if the UA(1) symmetry is broken explicitly. Taking account of the degeneracy of the
pseudoscalar flavor-singlet and octet meson in the chiral restored phase and the partial restoration
of chiral symmetry, we expect the reduction of the η ′ mass in the nuclear matter. Concerning the
chiral restoration in the nuclear matter, the 35% reduction of the quark condensate is suggested from
the analysis of the experimental data [4]. Recent experiments have suggested that the η ′-nucleus
optical potential could be attractive with certain strength and could hava a smaller imaginary part
[5]. We can interpret the η ′ mass reduction in the nuclear matter as the attractive potential of
η ′ in the nuclear matter. The existence of η ′-mesic nuclei is suggested theoretically [6] and the
experimental attempt to observe the η ′-mesic nuclei is discussed [7]. However, it is not known
well whether the interaction between η ′ and nucleon is attractive or repulsive despite the existence
of some experimental data [8]. Such a poor knowledge of the η ′N interaction makes it difficult to
analyze the η ′ properties in the nuclear matter.

In the below, we study the η ′N two-body interaction with the linear sigma model as a chiral
effective model. In the construction of the model, we assume the 35% reduction of the quark
condensate. In addition to the η ′N interaction, we calculate the in-medium η ′ mass, which is
expected to reduce in the nuclear matter. The detail of this work is shown in Ref. [9].

2. Method

For the calculation, we use the SU(3) linear sigma model as a chiral effective model [10, 11].
The linear sigma model can describe both the chiral restored phase and the spontaneously broken
phase. To describe the η ′N interaction, we introduce the nucleon degree of freedom explicitly
based on the chiral symmetry. The Lagrangian is given as

L =
1
2

tr∂µM∂ µM† − µ2

2
trMM† − λ

4
tr(MM†)2 − λ ′

4
(
trMM†)2

+Atr
(
χM† +Mχ†)+

√
3B

(
detM +detM†)

+N̄i /∂N −gN̄
(

σ0√
3

+
σ8√

6
+ iγ5

~τ ·~π√
2

+ iγ5
η0√

3
+ iγ5

η8√
6

)
N. (2.1)

Here, the meson field, the nucleon field, and the quark mass are given, respectively, by

M =
8

∑
a=0

σaλa√
2

+ i
8

∑
a=0

πaλa√
2

, N = (p,n)t, χ = diag(mq,mq,ms). (2.2)
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Figure 1: In-medium quark condensate. The
dashed and solid lines represent the in-medium
u, d and s quark condensates, respectively.
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Figure 2: In-medium meson mass. The solid,
dotted and dashed lines represent the η ′, η and
π masses, respectively.

The Lagrangian is constructed to possess the same global symmetry as QCD. The term proportional
to A expresses the effect of the current quark mass. Here, χ corresponds to the current quark mass
and we assume the isospin symmetry, mq = mu = md , and introduce the SU(3) flavor symmetry
breaking with mq 6= ms. The term proportional to B represents the effect of the UA(1) anomaly and
this term is not invariant under the UA(1) transformation.

The Lagrangian contains 6 free parameters which cannot be fixed from the symmetry. We fix
these parameters using the observed meson masses, the meson decay constants and the fact that
the 35% reduction of the quark condensate at the normal nuclear density. For the calculation of
the in-medium quantities, i.e. the meson masses, we introduce the effect of the symmetric nuclear
matter with the mean field approximation of nucleon.

In the linear sigma model, the vacuum expectation value of the sigma field 〈σ0〉 is an order
parameter of the chiral symmetry breaking. Now, we have non-zero 〈σ8〉 due to the explicit flavor
symmetry breaking. We determine 〈σ0〉 and 〈σ8〉 to minimize the effective potential.

3. Results

3.1 In-medium meson mass

First, we show the in-medium quark condensate in Fig. 1. As mentioned above, we assume
the 35% reduction of the quark condensate, so the value of the u,d quark condensate at the normal
nuclear density is the input value. Here, we have assumed the isospin symmetry, so the u, d quark
condensates coinside. Next, we discuss the in-medium meson mass. The in-medium self-energy of
the mesons comes from the diagrams shown in Fig. 3. Diagram (a) in Fig. 3 comes from the nucleon
mean field, while (b) and (c) come from the particle-hole excitation and the crossed channel of the
particle-hole excitation, respectively. In the chiral limit, the η ′ mass can be written as

m2
η ′ = 6B〈σ0〉 . (3.1)

B is the coefficient of the determinant term and represents the effect of the UA(1) anomaly. From
this expression, one can find the necessity of the UA(1) anomaly and the chiral symmetry breaking
for the generation of the η ′ mass, and the restoration of chiral symmetry, or the reduction of 〈σ0〉,
leads to the reduction of the η ′ mass. The calculated in-medium meson masses are shown in Fig. 2.
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(a) (b) (c)

Figure 3: The diagrams contributing to the in-
medium meson self-energy.

(a) (b) (c)

Figure 4: The diagrams which contribute to the
η ′N interaction

From the calculation, the η ′ mass reduces about 80 MeV and the η mass enhances about 50 MeV
at the normal nuclear density. The mass difference between the η and η ′ mass reduces about 130
MeV, going toward the degeneracy of η and η ′, as we have expected.

3.2 η ′N 2-body interaction

Here, we show the η ′N 2-body interaction evaluated with the same linear sigma model. In the
linear sigma model, the diagrams shown in Fig. 4 contribute to the η ′N interaction. The diagram
(a) in the Fig. 4 shows the contribution from the sigma meson exchange, while diagram (b) and
(c) in Fig. 4 are the contributions from the Born term which contain the nucleon intermediate state.
From these diagrams, we have obtained the low-energy η ′N 2-body interaction Vη ′N in the chiral
limit as

Vη ′N = − 6gB√
3m2

σ0

. (3.2)

Substituting the value of the fixed parameters, we find that the η ′N interaction is comparably strong
to the K̄N system. In the K̄N system, a bound state, Λ(1405), exists due to the strong K̄N attraction.
With the analogy to Λ(1405), we expect the existence of the η ′N bound state. For the investigation
of the possibility of the bound state, we analyzed the T-matrix of the η ′N system because the bound
state appears as the pole of the T-matrix. We obtain the T-matrix with solving the single-channel
Lippman-Schwinger equation,

T = V +V GT. (3.3)

Here, G is the loop integral of η ′ and nucleon,

G(W ) = 2mN

∫ d4q
(2π)4

1
(P−q)2 −m2

N + iε
1

q2 −m2
N + iε

, (3.4)

P = (W,0) is the 4-momentum of the η ′N in the center of mass system. As the interaction kernel
V , we use the η ′N interaction obtained with linear sigma model shown in Eq. (3.2). Now, the
interaction kernel is momentum-independent, so the equation can be solved with the algebraic
way,

T (W ) =
1

V−1 −G(W )
. (3.5)

The obtained T matrix contains a divergence in the loop integral G. Here, we regulate the diver-
gence with dimensional regularization and we fix the subtraction constant with the natural renor-
malization scheme, which excludes the other dynamics than η ′ and N [12]. We have found a η ′N
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bound state as a pole of the obtained T matrix. The binding energy is 6.2 MeV, the scattering length
is −2.7 fm and the effective range is 0.25 fm. The scattering length is the repulsive sign in our no-
tation. Here, we note that the obtained η ′N scattering length is somewhat larger value compared to
the value suggested in Ref. [8].

4. Conclusion

In this paper, we have calculated the in-medium meson mass and the η ′N 2-body interaction
with the SU(3) linear sigma model. The medium effect is introduced as one nucleon loop for the
calculation of the in-medium meson mass. We have obtained about 80 MeV reduction of the η ′

mass and 130 MeV decrease of the mass difference between η and η ′. Concerning the η ′N two-
body interaction, we have found the strong attraction of η ′N comparable to the K̄N system. The
η ′N interaction obtained from the linear sigma model is provided from the sigma meson exchange.
This is a different character from that of the ordinary NG boson, the Weinberg–Tomozawa interac-
tion which is energy dependent. With the analogy of Λ(1405), we have investigated the possibility
of the η ′N bound state. As a result, we found a η ′N bound state with the binding energy 6.2 MeV
and the scattering length −2.7 fm. The coupling between σ0 and η ′ is necessary for the generation
of the η ′ mass and the η ′-σ0 coupling leads to the attraction through the sigma meson exchange.
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