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We discuss the properties of in-medium nucleons in the framework of the chiral solitonic ap-
proach. The approach is based on the in-medium modified version of the Skyrme model which
takes into account "outer shell" as well as "inner core" modifications of the in-medium nucleons.
The modifications of the in-medium properties of nucleons are performed in close connection
with nuclear matter properties.
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1. Introduction

The studies of hadron properties at finite density and temperature are important for under-
standing the properties of strongly interacting matter which may be formed during the relativistic
heavy-ion collisions. First observations of the structure changes of the in-medium nucleons by
European Muon Collaboration [1] initiated further experimental measurements and different theo-
retical approaches. Most of the theoretical approaches are based on in-medium nucleons perceiving
their individuality (for further references, see the recent work [2] ). In this context, the possible
in-medium modifications of the low energy constants of the truncated effective chiral Lagrangian
could reproduce nuclear matter properties [2]. The results are found to be in good agreement with
the results of successful phenomenological approaches [3, 4].

The basic idea behind of the approach developed in Ref. [2] was the structure changes of the
in-medium nucleons due to the influence of surrounding nuclear medium. In achieving nuclear
matter properties, it was taken into account the possible "outer shell" changes of the in-medium
nucleons at low densities with further inclusion of "internal core" changes at densities close to
the normal nuclear matter density ρ0 ∼ 0.16 fm−3, and at supra-normal nuclear matter densities.
Extensions of the model including the explicit vector mesonic degrees of freedom also gave the
satisfactory results in reproducing nuclear matter properties and predicted the possible changes in
the in-medium vector meson properties [5].

In this context, it will be interesting to revise the in-medium properties of the single nucleon in
a self-consistent way while nuclear matter properties already satisfactorily reproduced [2]. There-
fore, in the present work we will concentrate on the in-medium nucleon properties.

2. Lagrangian of the model

Our starting point is the in-medium modified Skyrme-model Lagrangian described in Ref. [2]
where we assumed that the pionic sector has the mass degeneracy, mπ0 = mπ± . Due to this ap-
proximation our calculations become very simple and transparent. The resulting Lagrangian has
form1

L ∗ = L ∗
2 +L ∗

4 +L ∗
m +L ∗

e ,

L ∗
2 =

F2
π

16
ατTr

(
∂0U∂0U†)− F2

π

16
αsTr

(
∂iU∂iU†) ,

L ∗
4 = − 1

16e2ζτ

Tr
[
U†

∂0U,U†
∂iU
]2
+

1
32e2ζs

Tr
[
U†

∂iU,U†
∂ jU

]2
,

L ∗
m = −F2

π m2
π

16
αmTr

(
2−U−U+

)
,

L ∗
e = −F2

π

16
mπαeεab3Tr(τaU)Tr

(
τb∂0U†) . (2.1)

Here the chiral SU(2) matrix U = exp(2iτaπa/Fπ) is defined in terms of the Cartesian isospin-
components of the pion field πa (a = 1,2,3). The density functionals entering into the Lagrangian
(ατ , αs, ζτ , etc.) represent the influence of surrounding environment to the single soliton properties.
Their relations to the low energy pion-nucleon scattering data and to nuclear matter properties, the

1Hereafter, "asterisk" in an expression means the explicit medium modification.
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minimization procedure, the quantization of solution and other details can be found in Ref. [2].
Here we present only some final formulas and concentrate our attention to the outcome results
related to the in-medium nucleon properties.

In the single skyrmonic sector, the input parameters of the model have the following values:
Fπ = 108.783 MeV, e = 4.854 and mπ = 134.976 MeV. They correctly reproduce the experimental
values of the nucleon mass mN = 938 MeV and ∆-isobara mass m∆ = 1232 MeV in free space, i.e.
if ατ = αs = αm = ζτ = ζs = 1 and αe = 0.

While our aim is the analysis of in-medium properties of the nucleons in homogeneous and
infinite nuclear matter, all medium functionals become the functions of density or simple the
free parameters. In this approximation one can use spherically symmetric hedgehog ansatz U =

exp{i~τ~nF(r)} and the mass of classical soliton at a given density takes form

M∗ =
√

αs

ζs

(
πFπ

e

) ∞∫
0

dxx2
{

2β
2(1− cosF)+

F2
x

2
+

sin2 F
x2 +

2sin2 F
x2

[
2F2

x +
sin2 F

x2

]}
. (2.2)

Here we introduced the notation Fx = ∂F/∂x and the scaled variable x = eFπr(αsζs)
1/2. The

parameter β contains the density functions and has form

β
2 =

(
m2

π

e2F2
π

)
αm

(αs)2ζs
≡ β

2
0

αm

(αs)2ζs
. (2.3)

The minimization of the mass functional (2.2) with the corresponding boundary conditions (e.g.,
baryon number equal to one B = 1 condition) gives the in-medium-solitonic solutions.

3. Quantization, in-medium nucleons and nuclear matter

Considering the time dependent isospin rotations

U →U(t) = A(t)UA†(t) , A = exp
{

i~τ~ω
2

}
, (3.1)

and defining the canonical conjugate variables Ti = ∂L∗/∂ωi one obtains from the time-dependent
Lagrangian the following Hamiltonian

Ĥ = M∗+
Λ∗2e

2Λ∗
+

~̂T
2

2Λ∗
− Λ∗e

Λ∗
T̂3 , (3.2)

where the in-medium moments of inertia are given by expressions

Λ
∗ = (αsζs)

−3/2(ατΛ2 +ζ
−1
τ αsζsΛ4) , Λ

∗
e = (αsζs)

−3/2mπαeΛ2 . (3.3)

Here Λ2 and Λ4 are schematically keeping their free space forms

Λ2 =
2π

3e3Fπ

∞∫
0

x2 sin2 F dx , (3.4)

Λ4 =
8π

3e3Fπ

∞∫
0

(
F2

x +
sin2 F

x2

)
x2 sin2 F dx . (3.5)
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The sandwiching of the Hamiltonian between the appropriate baryon states |T,T3;J,J3〉 deter-
mines the in-medium masses of baryons. For example, an in-medium nucleon mass has form

m∗N(ρ,δρ) = m∗N,s(ρ,δρ)−2m∗N,v(ρ,δρ)T3, (3.6)

m∗N,s(ρ,δρ) ≡ M∗(ρ)+
Λ∗2e (δρ)

2Λ∗(ρ)
+

3
8Λ∗(ρ)

, m∗N,v(ρ,δρ)≡ Λ∗e(δρ)

2Λ∗(ρ)
, (3.7)

where T3 is the third component of isospin, ρ = ρn +ρp and δρ = ρn−ρp are the isoscalar and
the isovector density distributions of the surrounding nuclear medium, respectively. One can see
that due to the isospin asymmetry of environment the in-medium masses of neutrons and protons
do not degenerate anymore. Note, that in free space the nucleons degenerate in mass.

Further, using one simplifying condition ατ = ζ−1
τ αsζs and parametrizing the four combina-

tions of medium functions

f1 =

√
αs

ζs
= 1+C1λ , f2 =

√
αm

(αs)2ζs
= 1+C2λ , f3 =

ατ

(αsζs)3/2 = 1+C3λ ,

αe

ατ

≡ f4δ =
C4λ

1+C5λ
δ , (3.8)

one can easily reproduce the symmetric and asymmetric matter properties [2, 6]. Here Ci, i = 1,5
are the variational parameters, λ = ρ/ρ0 is the density parameter and δ = δρ/ρ is the asymmetry
parameter. More details can be found in Refs. [2, 6].

4. Results and discussions

Defining the binding energy per nucleon in symmetric nuclear matter as

εV (λ ) = m∗N(λ ,0)−mN , (4.1)

one can fit the values of parameters C1, C2 and C3 from the depth of binding energy ε(ρ0) =

−16 MeV, the stability condition (pressure zero condition) and the compressibility value of sym-
metric matter K0 at saturation density ρ0. The density dependence of the binding energy per nu-
cleon in symmetric matter is shown in Figure 1. One can see that the results are very close to the
APR (Akmal-Pandharipande-Ravenhall) predictions in Ref. [3]. Analogously, defining the binding
energy per nucleon in asymmetric matter as

εV (λ )+ εA(λ ,δ )≡
Zm∗p(λ ,δ )+Nm∗n(λ ,δ )

A
−mN = m∗N,s(λ ,δ )+δ m∗N,v(λ ,δ )−mN , (4.2)

where N is the number of neutrons, Z is the number of protons and A is the number of nucleons,
one can also reproduce asymmetric matter properties. The results are consistent with the results of
successful phenomenological approaches [3, 4] and more discussions can be found in Refs. [2, 6].

At this stage we are ready to make the predictions about the structure changes of the in-medium
nucleons. For example, the isoscalar (I = 0) and isovector (I = 1) electric (E) charge densities have
the following forms [6]

ρE,I=0(x) = − 2
π

s2Fx = B̃(x) , (4.3)

ρ
∗
E,I=1(x) =

Λ̃(x)
Λ

+2
(

Λ̃
∗
e(x)−Λ

∗
e

Λ̃(x)
Λ

)
. (4.4)
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Figure 1: (Color online) The volume energy as a function of normalized density λ = ρ/ρ0. Solid curve
corresponds to the value of compressibility K0 = 240 MeV. The variational parameters have values C1 =

−0.279, C2 = 0.737 and C3 = 1.782. Akmal-Pandharipande-Ravenhall predictions [3] are marked by stars.

Here the quantities with a "tilde" are the corresponding integrands, e.g. Λ =
∫

∞

0 Λ̃(x)dx. Conse-
quently, the mean-square-electric-charge radii are given as

〈r〉∗2E,I=0 =

(
f1

αs

)2 1
e2F2

π

∫
∞

0
B̃(x)x2dx , (4.5)

〈r〉∗2E,I=1 =

(
f1

αs

)2 1
e2F2

π

∫
∞

0
ρ
∗
E,I=1(x)x

2dx. (4.6)

Analogously, the normalized magnetic (M) moment densities have forms [6]

ρM,I=0(x) =
B̃(x)x2∫

∞

0 B̃(x)x2dx
, ρM,I=1(x) =

Λ̃(x)
Λ

(4.7)

and the mean-square-magnetic-charge radii are given as

〈r〉∗2M,I=0,1 =

(
f1

αs

)2 1
e2F2

π

∫
∞

0
ρM,I=0,1(x)x2dx. (4.8)

The outcome results are presented in Table 1, where it has been used the simple parametriza-
tion αs = exp{−0.65x}. This parametrization is consistent with the parametrizations from the
pionic atoms data up to normal nuclear matter densities (for more explanations, see Ref. [6]).

One can see that the sizes of the nucleons are increased in nuclear matter. The changes in
isoscalar-root-mean-square radii are large in comparison with the changes in isovector-root-mean-
square radii. In neutron matter, only the isovector-electric-charge-radius values change in compari-
son with the values in symmetric matter. In symmetric matter the changes in isovector-electric and
isovector-magnetic radii are same, while in asymmetric matter the changes in isovector-electric
radius are more pronounced due to the additional medium effects (see Eq. (4.4)). The results are
consistent with the phenomenological indications [1].

In summary, we have discussed very simple five parametric model of asymmetric nuclear mat-
ter based on the in-medium modified Skyrme Lagrangian. The reproduced properties of symmetric
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Symmetric matter Neutron matter

ρ/ρ0

√
〈r2〉∗E,I=0
〈r2〉∗E,I=0

√
〈r2〉∗E,I=1
〈r2〉∗E,I=1

√
〈r2〉∗M,I=0
〈r2〉∗M,I=0

√
〈r2〉∗M,I=1
〈r2〉∗M,I=1

√
〈r2〉∗E,I=1
〈r2〉∗E,I=1

0 1 1 1 1 1
0.2 1.047 1.016 1.038 1.016 1.057
0.4 1.093 1.027 1.077 1.027 1.085
0.6 1.138 1.032 1.114 1.032 1.094
0.8 1.180 1.033 1.150 1.033 1.093
1.0 1.219 1.036 1.182 1.036 1.090

Table 1: The ratio of the in-medium-root-mean-square radii of the nucleons to those in free space as a
function of normalized density λ = ρ/ρ0. The variational parameters have values: C1 =−0.279, C2 = 0.737,
C3 = 1.782, C4 = 1.541 and C5 = 0.113. The results in neutron matter are same as in symmetric matter except
the isovector-electric-root-mean-square radius.

and asymmetric matter are found to be very reasonable and consistent with other model calcula-
tions and the experimental indications (for more discussions, see Refs. [2, 6]). The basic future of
the present model is a treatment of the properties of many nucleonic systems and the single nucleon
properties in nuclear matter at same footing starting from the same Lagrangian. The model can be
applied to the studies of nucleon properties in finite nuclei as well as to the analysis of finite nuclei
properties.
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