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The nucleon and its negative-parity excited states in nuclear matter are examined in a maximum

entropy method (MEM) analysis of QCD sum rules. We construct the parity projected nucleon

QCD sum rules with a phase-rotated Gaussian kernel. This sum rule in vacuum has the interesting

feature that it is dominated by the term of the chiral condensate. At the finite density, the positive

parity OPE data is strongly modified while negative parity OPE data are hardly changed. This

behavior is attributed to the fact that not only the chiral condensate term but also the⟨q†q⟩ term

has a large contribution in this sum rule. Analyzing this sum rule by MEM, we are able to study

the modification of both the positive and negative parity states.
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1. Introduction

The QCD sum rule method is a powerful tool for studying hadron properties directly from
QCD [1]. In this method, the correlation function of an interpolating field operator coupled to the
hadron of interest, which can be calculated in the deep Euclidean region by the operator product
expansion (OPE), is related to the hadronic spectral function in the physical region by a dispersion
relation. The non-perturbative contributions in the correlation function are expressed by vacuum
condensates such as the chiral condensate⟨qq⟩. Since⟨qq⟩ is an order parameter of the chiral
transition, we can investigate the relation between the hadron mass and chiral symmetry breaking.

In the traditional analysis, it is necessary to assume some specific functional form for the
spectral function such as the “pole + continuum"-ansatz, where the pole corresponds to the lowest
lying state of the hadron of interest and the continuum stands for contribution of other states.
Although it is not completely obvious that the actual form of spectral function is similar to “pole
+ continuum"-ansatz, the properties of many hadrons have been successfully investigated. On the
other hand, our approach with the help of the Maximum Entropy Method (MEM) is able to extract
the spectral functions without any assuming specific form [2, 3, 4, 5, 6]. This feature is suitable
for the analyses at finite density because the spectral function will be more complicated. We have
applied this analysis method of QCD sum rules to the nucleon and its negative parity excited state
in nuclear matter.

2. Nucleon QCD sum rules

In QCD sum rules of the nucleon channel in the nuclear matter, one usually studies the prop-
erties of the time ordered correlation function:

Π(q) = i
∫

d4xeiqx⟨Ψ0|T[η(x)η(0)]|Ψ0⟩= q/Π1(q)+Π2(q)+u/Πu(q) (2.1)

Here,η , u andΨ0 are a nucleon interpolating field, the velocity of nuclear matter and the ground
state of nuclear matter, respectively. Note that the nucleon interpolating field couples to both posi-
tive and negative parity states [7]. Therefore, when only the sum rule constructed from each com-
ponertΠ1(q), Π2(q) or Πu(q), the analysis is strongly disturbed by contributions of the opposite
parity states. To remedy this problem, we use the old-fashioned correlator [8]:

Πold(q) = i
∫

d4xeiqxθ(x0)⟨Ψ0|T[η(x)η(0)]|Ψ0⟩, (2.2)

where the essential difference to Eq.(2.1) is the insertion of the Heaviside step-functionθ(x0)

before carrying out the Fourier transform. Using the property that the old-fashioned correlator is
analytic in the upper half of the complexq0 plane, we get the parity projected sum rule:∫ ∞

−∞
dq0

1
π

Im
[
Π ±

OPE(q)
]
W(q) =

∫ ∞

0
dq0ρ±

Phys.(q)W(q). (2.3)

Here, Π ±
OPE(q) is calculated by the OPE in the deep Euclidean region,ρ±

Phys.(q) stands for the
physical spectral function of positive and negative parity states andW(q) is an arbitrary analytic
function in the upper half of the imaginary plane and real on the real axis. To construct the final
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Figure 1: (a) Gold ±
OPE (s,τ,θ), chiral condensate⟨qq⟩ and⟨q†q⟩ terms atτ = 0.5[GeV4] andθ = 0.108π in

the vacuum. The thick lines denoteGold ±
OPE (s,τ,θ) and the thin lines are⟨qq⟩ and⟨q†q⟩ terms. (b) Same as

for (a), but at the normal nuclear matter densityn0.

sum rule, we have to specify the kernelW(q). One usually use a Borel kernel:W(q) = exp(− q2

M2 )

or Gaussian kernel:W(q) = 1√
4πτ exp(− (q2−s)2

4τ ), which correspond to the Borel and Gaussian sum
rules, respectively. However, in these sum rules, theαs corrections for the perturbative and four
quark condensate terms and contributions of the continuum are large, which lower the reliability of
the analyses [9]. Following the method proposed by Ioffe and Zyablyuk [10], who have constructed
a new class of sum rules by using the phase rotated complex variableq2eiθ instead of the realq2,
we were able to improve this situation. One advantage of this approach lies in the possibility of
suppressing certain terms of the OPE by choosing some specific value ofθ . To apply this approach
to the parity projected sum rules, we use the phase-rotated kernel:

W(q,s,τ,θ)dq0 =
1√
4πτ

Re

[
(q0−|⃗q|)e−iθ exp

(
−(q2e−2iθ −s)2

4τ

)
e−iθ dq0

]
. (2.4)

We can obtain the specific form of the left hand side of Eq.(2.3) which is defined asGold ±
OPE (s,τ,θ):

Gold ±
OPE (s,τ,θ) =

(
C0(θ)+C0αs(θ)

)
+
(
C

′
3(θ)+C

′
3αs

(θ)
)
⟨q†q⟩+C4(θ)⟨

αs

π
G2⟩+ · · ·

±
[
(C3(θ)+C3αs(θ))⟨qq⟩+C5(θ)⟨qgσ ·Gq⟩+ · · ·

]
, (2.5)

whereCn are numerical coefficients andn stands for the dimension of the condensates and⟨⟩ rep-
resents the expectation value with respect to the ground state of nuclear matter. As for the density
dependence of the condensates, we use the linear density approximation, which is accepted as valid
up to the normal nuclear matter density. Using the phase rotation, the ratios ofαs corrections to
leading terms at dimension 0:C0αs

C0
is reduced from 90 % to 5 % atθ = 0.108π taking αs = 0.5,

which shows that the convergence of the perturbative expansion is significantly improved. The
chiral condensate term,⟨q†q⟩ term andGold ±

OPE (s,τ ,θ) in the vacuum and at finite density are given
in Fig. 1. It can be seen that in vacuum, the difference of the OPE data between the positive parity
and negative parity states is caused by the chiral condensate. We also find that at finite density, the
values of the positive parity OPE become small due to the decrease of the chiral condensate and
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Figure 2: The density dependence of the positive (left) and negative parity (right) spectral functions ex-
tracted from MEM analyses of the OPE dataGold ±

OPE (s,τ,θ). n0 stand for the normal nuclear matter density.

density vacuum 0.25n0 0.5n0 0.75n0

M∗
+[MeV] 910 850 760 620

Σv
+[MeV] 0 100 200 350

M∗
−[MeV] 1580 1580 1600 1620

Σv
−[MeV] 0 0 10 30

Table 1: The density dependence of the positive and negative parity effective masses and self energies. Here
n0 represents the normal nuclear matter density. The parity of the corresponding states is shown on the
subscript.

the increase of the⟨q†q⟩. On the other hand, the values of the negative parity OPE at finite density
are hardly changed because the in-medium modification of the condensates cancel each other.

3. Results

Carrying out the analysis using the OPE dataGold ±
OPE (s,τ ,θ) with MEM, we obtain the corre-

sponding spectral functions. The results are shown in Fig.2. For the positive and negative parity
spectral function in the vacuum, the peaks are found at 910 MeV and 1580 MeV, respectively.
At the finite density, the peak positions are hardly changed, which indicate that the energy of the
both states are almost density independent. To investigate the effective masses and self energy,
we consider a specific form of the nucleon propagator. Using the mean field approximation, the
propagatorG(q) can be described as

G(q) =
q∗/+M∗

(q∗)2− (M∗)2+ iε
. (3.1)

Here,q∗µ = qµ −uµΣv and the effective massM∗ is defined asM+Σs. Fitting the componentsΠ1,
Π2 andΠu, we derive the effective masses and the vector self energies. The results are shown in
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Table 1. For the positive parity state, as the density increase, the effective mass decreases while
the vector self energy increases. On the other hand, the effective mass and the vector self energy
of the negative parity state are scarcely changed. This behavior is a consequence of the density
dependence of the OPE data.

4. Summary

We have constructed parity projected nucleon QCD sum rule in the vacuum and at finite den-
sity taking into account the first orderαs corrections. Furthermore using the phase-rotated kernel,
we improve some technical problems of the usual nucleonic sum rules. This sum rule has the inter-
esting feature that in vacuum, the splitting between positive and negative parity states are caused by
the spontaneous symmetry breaking of the chiral symmetry since the term of the chiral condensate
which switches its sign depending on the parity is dominant in the OPE data. We also find that
the values of the positive parity OPE strongly depend on the density but its values of the negative
parity states are almost density independent.

We have analyzed the nucleon spectral function using the derived sum rules and the maximum
entropy method and extracted information of both the positive and negative parity states. For the
positive parity states at the finite density, we find that the effective mass decreases and the vector
self energy increases. For the negative parity states at the finite density, the effective mass and the
vector self energy are hardly changed. The detailed discussion of the relation between the behavior
of the OPE data and the spectral function will be given in a forthcoming publication [11].

References

[1] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl. Phys.B147, 385 (1979).

[2] P. Gubler and M. Oka, Prog. Theor. Phys.124, 995 (2010).

[3] K. Ohtani, P. Gubler and M. Oka, Eur. Phys. J. A47, 114 (2011).

[4] P. Gubler, K. Morita and M. Oka, Phys. Rev. Lett.107, 092003 (2011).

[5] K. Suzuki, P. Gubler, K. Morita and M. Oka, Nucl. Phys.A89728 (2013).

[6] K. Ohtani, P. Gubler and M. Oka, Phys. Rev. D87, 034027 (2013).

[7] Y. Chung, H.G. Dosch, M. Kremer and D. Schall, Nucl. Phys.B197, 55 (1982).

[8] D. Jido, N. Kodama and M. Oka, Phys. Rev. D54, 4532 (1996).

[9] D.B. Leinweber, Ann. Phys. (N.Y.)254, 328 (1997).

[10] B. L. Ioffe and K.N. Zyablyuk, Nucl. Phys.A687, 437 (2001).

[11] K. Ohtani, P. Gubler and M. Oka, preparation.

5


