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We obtain the width of the ω meson in dense nuclear matter by taking into account (i) the free
decay of the ω into three pions, which is dominated by ρπ mode, (ii) the processes induced by
a vector-baryon interaction dominated by vector meson exchange, and (iii) the ω → KK̄ mecha-
nism in matter. The ω meson develops an important width in matter, coming from the dominant
ω → ρπ decay mode, with a value of 121± 10 MeV at normal nuclear matter density for an
ω at rest. At finite momentum, the width of the ω meson increases moderately with values of
200 MeV at 600 MeV/c.
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1. Introduction

The interaction of vector mesons with nuclei has been a matter of much attention over the past
decades. One of the more thoroughly investigated vector mesons is the ω meson.

From the experimental point of view, there are several investigations on the properties of the ω

meson in matter with proton beams on nuclei at KEK by E325 Collaboration [1], photoproduction
on nuclei by CBELSA/TAPS [2], photonuclear reactions looking for dileptons in the final state by
CLAS [3] or dilepton production in p+p and p+Nb at HADES [4]. These experiments seem to
point to the existence of a large width of the ω meson in the medium.

Different scenarios are present in the theoretical determination of the ω properties in matter.
The obtained mass shifts range from an attraction of the order of 100-200 MeV [5, 6], through no
changes in the mass [7], to a net repulsion [8]. As for the in-medium width of an ω meson at rest,
the models of [5, 9] reported a value of about 40 MeV, while the width was found to be around
60 MeV in [10]. All these studies show a considerable increase of the ω width in the medium.

In this paper we study the ω width in dense matter, similary to the K̄∗ meson [11, 12], paying
a special attention to the decay of the ω into three pions via the dominant ρπ decay mode [13].

2. Formalism: The ω self-energy in matter

+

K̄

K

ω

+ +

ω V

B

N

Figure 1: The ω self-energy from the ω → K̄K channel in the nuclear medium including vertex corrections
(left plot) and from the s-wave ωN interaction with vector mesons and baryons (right plot).

(a)

k

(b) =

(c) = ++ RPA+

+ + vertex corrections

P

ω

ρ

π

P − k

Figure 2: The ω meson self-energy from its decay into the ρπ (a), where the ρ meson decays into two pions
(b) and the π is dressed by its coupling to particle-hole and ∆-hole including short-range correlations (c).

A free ω meson decays predominantly into three pions, most of the strength associated to the
ω → ρπ process with the subsequent decay of the ρ meson into two pions. The ω width is small,
Γ
(0)
ω = 8.49±0.08 MeV, with 89.2% of this value corresponding to the 3π decay channel. This is

due to the fact that the ω → ρπ mechanism proceeds through the tail of the ρ-meson distribution.
The situation, however, changes drastically in the nuclear medium.

First, the ω→ KK̄ mechanism is energetically open in matter when the medium modifications
of the K̄ and K mesons are incorporated (see left plot of Fig. 1). The K̄ self-energy in matter is
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Figure 3: In-medium contribution to the width of the ω meson at zero momentum due to its coupling to KK̄
(left plot) and the s-wave ωN→V B interaction (right plot), at ρ0 and as a function of the ω energy P0.

obtained from the K̄N interaction within a chiral unitary approach [14, 15, 16]. For K, due to the
much weaker KN interaction, we use the low-density approximation [17, 18]. Moreover, because
of gauge invariance of the model, it is necessary to include vertex corrections.

Second, the ω properties are modified due to quasielastic and inelastic vector-baryon processes
dominated by vector meson exchange. The contribution to the ω self-energy coming from the s-
wave ωN interaction with vector mesons and baryons is depicted on the right plot of Fig. 1. The
ωN interaction is constructed within the hidden gauge formalism in coupled channels [19]. The
vector meson-baryon scattering amplitudes are then obtained from the coupled-channel on-shell
Bethe-Salpeter equation by incorporating medium modifications on the intermediate states [13].

Finally, the most important contribution to the ω width in matter comes from its decay into
ρπ in the nuclear medium due to the increase of the phase space available as compared to the free
case. The self-energy for the ω → ρπ process is depicted in Fig. 2(a), where the ρ- and π-meson
lines correspond to their medium propagators shown in Figs. 2(b) and (c), respectively. The pion
in matter is dressed via its self-energy which is strongly dominated by the p-wave coupling to
particle-hole and ∆-hole components and also contains a small repulsive s-wave contribution, as
well as short-range correlations and contributions from 2p-2h excitations. For the ρ-meson we
employ three different self-energy models, as we will see.

Note that in our calculation in matter we do not consider interference terms between the dif-
ferent physical states ρ+π−, ρ+π− and ρ0π0. While in free space, we miss an important part of
the free ω width, the interference terms are negligible in matter [13]. Moreover, we also need to in-
corporate the contribution of uncorrelated three pions. This contribution can be supplied by either
introducing a contact term that provides a background to be added to the ω→ ρπ process, as done
in Ref. [20], or by adjusting the coupling of ω → ρπ to reproduce the complete free ω → πππ

width directly from the ρπ mechanism. We analyze both mechanisms in the following.

3. Results: The width of the ω meson in matter

In left plot of Fig. 3 we show the in-medium ω width correction coming from its coupling to
KK̄ states in matter. At normal nuclear saturation density, ρ0 = 0.17fm−3, and around the free ω

mass, this amounts for 2.9 MeV for an ω meson at rest. This correction to the width mainly comes
from the ωN−KY processes, with Y = Λ(Σ), that result from the p-wave coupling of K̄ to Y N−1.
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Figure 4: Left plot: The spectral function of a ρ-meson of zero momentum at ρ0 for the three prescriptions
employed in this paper. Right plot: Width of the ω meson from ω → 3π at ρ0 and ~P = 0 as a function P0.

We also present in the right plot of Fig. 3 the ω width correction associated to the elastic and
inelastic processes from the s-wave interaction of ωN with vector mesons and baryons as a function
of the ω energy. We observe that this contribution produces a very small ω width correction, about
0.5 MeV, for energies around the free ω mass and at ρ0. The small ω width correction is associated
to the ωN→ ωN and ωN→ ρN processes. Note that the implementation of pseudoscalar mesons,
hence opening vector-baryon to pseudoscalar-baryon transitions such as ωN→ πN, might also add
some width to the ω decay in matter. For that purpose, we adopt the model independent view of
Ref. [21], based on detailed balance and unitarity, and add 9 MeV to the width of the ω meson.

In the right plot of Fig. 4 we show the in-medium width of an ω meson at rest for ρ0 as a func-
tion of the energy, from the ω→ 3π mechanism, which corresponds to absorption processes of the
type ωN → ππN and ωNN → πNN. Results are shown for three different prescriptions of the ρ

spectral function, displayed on the left of Fig. 4, corresponding to using a phenomenological width
(dash-dotted line); employing the tρN→ρN model from the coupled channel unitary model within the
local hidden gauge formalism of Ref. [19] but replacing the I = 1/2,JP = 3/2− amplitude by the
N∗(1520)N−1 contribution of Ref. [22] (dashed line); and taking the complete tρN→ρN amplitude
from Ref. [19] (solid line). The ω → ρπ coupling of G = 15.7 GeV−1 has been adjusted to repro-
duce the complete free ω → 3π width directly from the ρπ mechanism. The in-medium ω width
increases smoothly with energy for all the ρ-dressing models employed, the phenomenological one
(thick dash-dotted line) presenting a stronger dependence. In this case, results are also shown for
the model that uses a contact term without adjusting the coupling ω → ρπ of G = 11.9 GeV−1

(thin dash-dotted line). We observe that, up to the free ω mass, both models present a similar be-
havior. We conclude that the in-medium width correction at the free ω mass is 101.2 ± 10 MeV
for the most complete ρ self-energy model adjusting the ω → ρπ coupling (solid line), the error
associated to reasonable variations in the parameters of the π meson self-energy [13].

In summary, we find [13] that the width of the ω meson at rest in nuclear matter at saturation
density is Γω(ρ0,mω)= 7.6 MeV (free width)+101.2 MeV (ωN→ ππN,ωNN→ πNN)+2.9 MeV
(ωN→ KY )+0.5 MeV (ωN→ K∗Y → ρN)+9 MeV (ωN→ πN)= 121 ± 10 MeV. We note that
one could add one more MeV to account for the other free decay channels of the ω meson, ω→ π0γ

and ω → π+π−. With regards to the mass shift, no clear conclusion can be drawn due to the un-
controlled high-momentum components of the π and ρ propagators [13].

Our value of the width of the ω meson at rest in nuclear matter is larger than that found by
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other works [5, 9, 10], and similar to more recent calculations [23]. In order to compare with the
experimental determination of the ω width, we need to extend our calculation to finite momentum.
We find that Γω→3π rises smoothly with momentum, and it can reach values of about 200 MeV
at P = 600 MeV/c. The experimental width is quoted to be Γω ≈ 130− 150 MeV for an average
3-momentum of 1.1 GeV/c [2]. We obtain a good agreement within errors for 400 MeV/c and
600 MeV/c reported in Fig. 4 of Ref. [2], where our results should be more accurate.
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