Hidden beauty molecules with the local hidden gauge approach and heavy quark spin symmetry

Chu-Wen Xiao*
Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain
E-mail: xiaochwdific.uv.es

Altug Ozpineci

Physics Department, Middle East Technical University, 06531 Ankara, Turkey
E-mail: bzpineci@metu.edu.tr

Eulogio Oset

Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain
E-mail: bsetajfic.uv.es

Using a coupled channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-meson interaction with hidden beauty. We have investigated both $I=0$ and $I=1$ states, and obtain several new states of isospin $I=0$: six bound states, and weakly bound six more possible states which depend on the influence of the coupled channel effects. But there is no state found in the $I=1$ sector since the interactions are too weak to create any bound states within our framework.

[^0]

Figure 1: Diagrams for the hidden beauty systems.

1. Introduction

The world of heavy quarks, charm and beauty, is experiencing a fast development, with a plethora of new states being found in facilities as BABAR, CLEO, BELLE, BES. Recently, the discovery of the hidden beauty $Z_{b}(10610)$ and $Z_{b}(10650)$ states [[$]$, has driven more attention to the beauty sector [[$]$, []] .

In this work, we investigate the hidden beauty system of meson-meson interaction [$[\square],[\boxed{6}]$. We take into account the heavy quark spin symmetry (HQSS) [$\mathbb{Z}, \mathbb{\square}, \mathbb{\square}, \mathbb{\pi}]$ for the hidden beauty sector, and then, under the lower order HQSS constrain, we use the local hidden gauge approach [【] , [2] to determine the interaction potentials.

2. Formalism

In our work, we use the coupled channel approach to study the meson-meson interaction in the hidden beauty sector, with the coupled channels of $B_{(s)}^{(*)} \bar{B}_{(s)}^{*)}$: (1) $J=0, I=0, B \bar{B}, B_{s} \bar{B}_{s}, B^{*} \bar{B}^{*}$, $B_{s}^{*} \bar{B}_{s}^{*}$; (2) $J=0, I=1 B \bar{B}, B^{*} \bar{B}^{*}$; (3) $J=1, I=0, B \bar{B}^{*}\left(B^{*} \bar{B}\right), B_{s} \bar{B}_{s}^{*}\left(B_{s}^{*} \bar{B}_{s}\right), B^{*} \bar{B}^{*}, B_{s}^{*} \bar{B}_{s}^{*}$; (4) $J=1, I=1, B \bar{B}^{*}\left(B^{*} \bar{B}\right), B^{*} \bar{B}^{*}$; (5) $J=2, I=0, B^{*} \bar{B}^{*}, B_{s}^{*} \bar{B}_{s}^{*}$; (6) $J=2, I=1, B^{*} \bar{B}^{*}$.

In our case, all the hidden beauty systems are made by a meson $(M)-\operatorname{antimeson}(\bar{M})$ state, which are shown in Fig. ㄴ. Then, with the HQSS constrain [[0]], we use the local hidden gauge formalism to evaluate the interaction potential (more details, seen in our recent paper [[3 l$]$), following development of Refs. [[$4, ~ \boxed{\boxed{W}}]$. In principle one is using $S U(4)$ symmetry to evaluate the couplings. However, recently we have shown in [[6, [7] that the leading terms respecting HQSS correspond in our approach to having the beauty quarks as spectators. In this case all couplings can be obtained using $\mathrm{SU}(3)$.

3. Results

We use the Bethe-Salpeter equation in coupled channels to evaluate the scattering amplitudes,

$$
\begin{equation*}
T=[1-V G]^{-1} V \tag{3.1}
\end{equation*}
$$

For the G function，we take

$$
\begin{equation*}
G(s)=\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} f^{2}(\vec{q}) \frac{\omega_{1}+\omega_{2}}{2 \omega_{1} \omega_{2}} \frac{1}{P^{02}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \varepsilon} ; \quad f(\vec{q})=\frac{m_{V}^{2}}{\vec{q}^{2}+m_{V}^{2}} \tag{3.2}
\end{equation*}
$$

where $f(\vec{q})$ is the form factor，which comes from the light vector meson exchange．
Our results of the poles and the couplings for the $J^{P C}=2^{++}$channel with $q_{\max }=415 \mathrm{MeV}$ （left panel）and $q_{\max }=830 \mathrm{MeV}$（right panel），are shown as Table $⿴ 囗 ⿰ 丨 丨 丁 口$ ．When ignoring the coupled channel effect，the results are shown in Table \square ．

Table 1：The poles and couplings for the $J^{P C}=2^{++}: q_{\max }=415 \mathrm{MeV}$（left panel）and $q_{\max }=830 \mathrm{MeV}$ （right panel），all units in MeV ．

10613	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$	10469	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$
g_{i}	86168	45864	g_{i}	174393	92843

Table 2：The poles and couplings for the $J^{P C}=2^{++}$ignoring coupled channels（two panels and units the same as before，also the same for below．

10616	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$	10500	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$
g_{i}	81595	0	g_{i}	159102	0
10828	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$	10812	$B^{*} \bar{B}^{*}$	$B_{s}^{*} \bar{B}_{s}^{*}$
g_{i}	0	19787	g_{i}	0	44102

For the $J=1, I=0$ sector，the results with coupled channels and without coupled channels are shown in Tables［ 3 and \boldsymbol{G} ．

Table 3：The poles and couplings for the $J^{P C}=1^{+-}$and $J^{P C}=1^{++}$．

10568	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．	10425	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．
g_{i}	85433	45560	g_{i}	172908	92232

Table 4：The poles and couplings for the $J^{P C}=1^{+-}$and $J^{P C}=1^{++}$ignoring coupled channels．

10571	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．	10455	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．
g_{i}	80884	0	g_{i}	157691	0
10783	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．	10768	$B \bar{B}^{*} \pm$ c．c．	$B_{s} \bar{B}_{s}^{*} \pm$ c．c．
g_{i}	0	19611	g_{i}	0	43776

Finally，we get results for the $J^{P C}=0^{++}$sector as listing in Tables $\sqrt[\square]{ }$ and 6 ．

Table 5: The poles and couplings for the $J^{P C}=0^{++}$.

10523	$B \bar{B}$.	$B_{s} \bar{B}_{s}$	10380	$B \bar{B}$	$B_{s} \bar{B}_{s}$
g_{i}	85045	45257	g_{i}	172046	91591

Table 6: The poles and couplings for the $J^{P C}=0^{++}$ignoring coupled channels.

10526	$B \bar{B}$.	$B_{s} \bar{B}_{s}$	10410	$B \bar{B}$	$B_{s} \bar{B}_{s}$
g_{i}	80528	0	g_{i}	156968	0
10738	$B \bar{B}$	$B_{s} \bar{B}_{s}$	10723	$B \bar{B}$	$B_{s} \bar{B}_{s}$
g_{i}	0	19441	g_{i}	0	43443

Figure 2: The wave functions of $B \bar{B}$ state, Left: $q_{\max }=415 \mathrm{MeV}$; Right: $q_{\max }=830 \mathrm{MeV}$.

4. Discussions

For a resonance or bound state, the sum rule [[区]] is fulfilled: $P_{p}=-\sum_{i} g_{i}^{2}\left[\frac{d G_{i}}{d E}\right]_{E=E_{p}}=1$. For $B \bar{B}$ state, taking $q_{\max }=415 \mathrm{MeV}$, we get $P_{B \bar{B}}=0.985$, which means that the bound state is mostly made by $B \bar{B}$ with a minor $B_{s} \bar{B}_{s}$ component. This $B \bar{B}$ state is stable and independent of the free parameters of our formalism, which can be seen in Table \boldsymbol{D}.

Table 7: The poles in the $J^{P C}=0^{++}$channel when the cut off is changed (units in MeV).

$q_{\max }$	450	500	600	700	800
pole	10513	10498	10464	10427	10389

We also investigate the wave function and radius of the state. By performing some derivation, we get

$$
\begin{equation*}
\phi(\vec{r})=\frac{1}{(2 \pi)^{3 / 2}} \frac{4 \pi}{r} \frac{1}{C} \int_{q_{\max }} p d p \sin (p r) \frac{\Theta\left(q_{\max }-|\vec{p}|\right)}{E-\omega_{1}(\vec{p})-\omega_{2}(\vec{p})} \frac{m_{V}^{2}}{\vec{q}^{2}+m_{V}^{2}} \tag{4.1}
\end{equation*}
$$

where we take $m_{V}=m_{\rho}=775 \mathrm{MeV}$. For the $B \bar{B}$ state, using Eq. (4.ل. ${ }^{(1)}$), we show the results of wave function in Fig.[]. The radii of the states are given in Table [\mathbb{Z}, which are of the same order of magnitude as Refs. [【, [10].

Table 8: The radii of the states.

states	$q_{\max }=415 \mathrm{MeV}$	$q_{\max }=830 \mathrm{MeV}$
$B^{*} \bar{B}^{*}$	1.46 fm	0.72 fm
$B \bar{B}^{*}$	1.46 fm	0.72 fm
$B \bar{B}$	1.46 fm	0.72 fm

5. Conclusions

In our work, combining the local hidden gauge symmetry with heavy quark spin symmetry, we investigate the hidden beauty sector: $B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}$. In the $I=0$ sector, we obtain 6 hidden beauty resonances with binding energies $34 \mathrm{MeV}(178 \mathrm{MeV})$ for $q_{\max }=415 \mathrm{MeV}(830 \mathrm{MeV})$, and 6 hidden beauty-hidden strange states with binding energies $2 \mathrm{MeV}(18 \mathrm{MeV})$. But, for the $I=1$ sector, the interaction is too weak to form any bound states. We hope that these states can be found in experiments in the future.

References

[1] A. Bondar et al. [Belle Collaboration], Phys. Rev. Lett. 108, 122001 (2012).
[2] Z. -F. Sun, J. He, X. Liu, Z. -G. Luo and S. -L. Zhu, Phys. Rev. D 84, 054002 (2011).
[3] M. Cleven, Q. Wang, F. -K. Guo, C. Hanhart, U. -G. Meissner and Q. Zhao, Phys. Rev. D 87, 074006 (2013).
[4] Y. -J. Zhang, H. -C. Chiang, P. -N. Shen and B. -S. Zou, Phys. Rev. D 74, 014013 (2006).
[5] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh and A. Hosaka, Phys. Rev. D 86, 034019 (2012).
[6] M. T. Li, W. L. Wang, Y. B. Dong and Z. Y. Zhang, J. Phys. G 40, 015003 (2013).
[7] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989).
[8] M. Neubert, Phys. Rept. 245, 259 (1994).
[9] F. -K. Guo, C. Hanhart and U. -G. Meissner, Phys. Rev. Lett. 102, 242004 (2009).
[10] C. Garcia-Recio, V. K. Magas, T. Mizutani, J. Nieves, A. Ramos, L. L. Salcedo and L. Tolos, Phys. Rev. D 79, 054004 (2009).
[11] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985).
[12] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988).
[13] A. Ozpineci, C. W. Xiao and E. Oset, Phys. Rev. D 88, 034018 (2013).
[14] J. -J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010).
[15] J. -J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84, 015202 (2011).
[16] W. H. Liang, C. W. Xiao and E. Oset, arXiv: 1401.1441 [hep-ph], accepted by Phys. Rev. D.
[17] W. H. Liang, T. Uchino, C. W. Xiao and E. Oset, arXiv:1402.5293 [hep-ph].
[18] D. Gamermann, J. Nieves, E. Oset and E. Ruiz Arriola, Phys. Rev. D 81, 014029 (2010).
[19] M. T. Li, W. L. Wang, Y. B. Dong and Z. Y. Zhang, Int. J. Mod. Phys. A 27, 1250161 (2012).

[^0]: *Presenter
 ${ }^{\dagger}$ Thanks for the local support of the organizer.

