

Probing the Gas Distribution of Ly α Emitting Galaxies through their Spectrally Resolved Ly α Emission

Taylor S. Chonis*

Department of Astronomy, University of Texas at Austin E-mail: tschonis@astro.as.utexas.edu

Guillermo A. Blanc

Observatories of the Carnegie Institution for Science E-mail: gblancm@obs.carnegiescience.edu

Gary J. Hill

McDonald Observatory, University of Texas at Austin E-mail: hill@astro.as.utexas.edu

We present the preliminary results of Magellan/IMACS deep, multi-object spectroscopic observations of 25 Ly α emitting galaxies (LAEs) at $2 \leq z \leq 3.5$ that were drawn primarily from the HETDEX Pilot Survey in the COSMOS field. With a spectral resolution of 150 km s⁻¹ FWHM, we resolve the Ly α emission line profiles of these galaxies and observe an assortment of velocity and spatial structure due to the resonant scattering of Ly α photons in the H I gas of the galaxies' interstellar and circumgalactic media. The spectral structure includes varying degrees of asymmetry, a range of line widths, and a varying number of emission peaks with different velocity separations. Through parametric fitting of the Ly α line profiles, we quantify the observed structure and find evidence of a correlation between parameters describing the shape of the strongest emission line component and its velocity offset from z_{sys} , the galaxy's systemic redshift. Recent simulations have predicted a similar trend that is driven by the neutral hydrogen column density $N_{\rm HI}$ as a general property of Ly α radiative transfer in various H I distributions and kinematic configurations.

Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas

*Speaker.

Figure 1: IMACS spectra of HPS-306, a double-peaked and extended LAE. *Left: HST* F814W image. The IMACS slit is shown in red. The blue diamond (circle) is the Ly α centroid (positional error) from [2]. *Middle Left*: IMACS 2D spectrum. *Middle Right*: IMACS 1D spectrum plotted in velocity relative to the peak Ly α emission ΔV_{peak} . Note the "asymmetric Gaussian" fit in red. *Right*: Spatial profiles plotted along the length of the slit Δl for the Ly α and continuum emission relative to the IMACS PSF.

1. Background and Observations

Ly α photons (1215 Å) are produced in the H II regions of star-forming galaxies due to hydrogen recombination after ionization by the UV radiation of young stars. The resonant scattering nature of the Ly α transition in H I results in frequency and spatial diffusion as photons random-walk out of the galaxy. This makes Ly α radiative transfer dependent on the distribution and kinematics of the H I gas, as well as the galaxy's dust content. The shape of the emergent Ly α spectrum thus encodes the physics of the scattering gas in a non-trivial way (e.g., [1]). We attempt to obtain a global perspective of the processes governing the escape of Ly α by comparing observed trends among the Ly α emission properties for a large sample of LAEs. We have obtained multi-slit Ly α spectra with Magellan/IMACS of 25 LAEs at $2 \leq z \leq 3.5$ in COSMOS, drawn from the HETDEX Pilot Survey [2, 3] and a narrowband survey for LAEs at $z \approx 2.25$ [4]. The spectra have 150 km s⁻¹ FWHM spectral resolution, 0.9'' FWHM spatial resolution along the slit (7.3 kpc at z = 2.75), and a 1D 5 σ line flux limit of 2×10^{-18} erg s⁻¹ cm⁻² in 5.25 hours of exposure at 4500 Å.

2. Ly α Classification and Spectral Line Profile Fitting

Fig. 1 shows an example of our IMACS data. Excluding two broad-line AGN, we classify the remaining 23 LAEs into three categories based on the 1D Ly α spectral line profiles: single peaks (48% of the sample), double peaks (43%), and LAEs with greater than two Ly α peaks (9%). These results are consistent with previous work [5]. The Ly α spectra are also collapsed spectrally to yield a spatial profile along the slit. To compare the spatial Ly α extent to that of the continuum, we convolve COSMOS F814W *HST* images (~ 2200 Å in the rest-frame) with the IMACS PSF and collapse the resulting image along the width of the slit. We find five LAEs with Ly α emission that is extended significantly beyond that of the continuum. Six LAEs are resolved in Ly α and continuum, while the majority (11 LAEs) are completely unresolved. Although our sample is small when subdivided in this way, we find no significant connection between the Ly α spectral classification and whether or not an LAE displays extended Ly α emission.

To quantify the spectral morphology of the Ly α line, we fit an "asymmetric Gaussian" function [6] to the 1D data, including an instrumental correction. For the double-peaked Ly α subsample,

Figure 2: *a*) The relation between ΔV_{tot} and $\Delta V_{0,\text{red}}$ for double-peaked Ly α showing that ΔV_{tot} scales with $\Delta V_{0,\text{red}}$ on average (but is offset from the unity relation). The data was compiled from the sources listed to the right of the plot. *b*) The correlation between ΔV_{tot} and 3FWHM_{red}/ α_{red} , as derived from our Ly α line profile fitting for the double-peaked subsample, similar to the theoretical result shown in Fig. 16 of [7]. The blue region corresponds to the range of 3FWHM_{red}/ α_{red} covered in that work. Measurements of z_{sys} may result in a reduction of the scatter in the ordinate axis by allowing us to plot $\Delta V_{0,\text{red}}$ directly rather than ΔV_{tot} .

the measured parameters that are relevant here are the peak-to-peak velocity separation ΔV_{tot} , and the width (FWHM_{red}) and asymmetry (α_{red} ; defined in [6]) of the strongest emission component (i.e., the red peak for our sample). Currently, we do not have measurements of z_{sys} for these LAEs, so the Ly α velocity zero-point is unknown. However, data compiled from the literature shows that ΔV_{tot} scales with the absolute velocity offset of the red Ly α peak $\Delta V_{0,red}$ (see Fig. 2*a*), albeit with significant scatter. With this in mind, we find a correlation between ΔV_{tot} and 3FWHM_{red}/ α_{red} , a parameter defined by [7] that describes the shape of the strongest Ly α emission peak (see Fig. 2*b*).

According to radiative transfer simulations by [7], LAEs with large $\Delta V_{0,\text{red}}$ (here, ΔV_{tot}) and large 3FWHM_{red}/ α_{red} have high N_{HI} . Deviations from this correlation can indicate different kinematic/spatial configurations of the H I gas. If the observed relation between 3FWHM_{red}/ α_{red} and $\Delta V_{0,\text{red}}$ is sufficiently tight, it can also be used to predict z_{sys} based on observations of only Ly α . This could be powerful for studies that employ spectral stacking techniques to probe the UV continuum of LAEs. To properly explore this, we plan to obtain z_{sys} for our sample by observing their non-resonant nebular emission lines (e.g., [O III] λ 5007), which may reduce the scatter in Fig. 2*b* by allowing us to plot $\Delta V_{0,\text{red}}$ directly. Additional observations of Ly α , particularly for LAEs with large ΔV_{tot} (i.e., $\Delta V_{0,\text{red}}$) and 3FWHM_{red}/ α_{red} , will also help to increase the statistical significance of the correlation shown in Fig. 2*b*. This work will be featured in a future unabridged publication.

References

- [1] A. Verhamme, D. Schaerer, & A. Maselli, 2006, A&A, 460, 397
- [2] J.J. Adams, G.A. Blanc, G.J. Hill, et al., 2011, ApJS, 192, 5
- [3] G.A. Blanc, J.J. Adams, K. Gebhardt, et al., 2011, ApJ, 736, 31
- [4] K.K. Nilsson, C. Tapken, P. Møller, et al., 2009, A&A, 498, 13
- [5] T. Yamada, Y. Matsuda, K. Kousai, et al., 2012, ApJ, 751, 29
- [6] T.S. Chonis, G.A. Blanc, G.J. Hill, et al., 2013, ApJ, 775, 99
- [7] Z. Zheng & J. Wallace, 2013, ApJ submitted, arXiv:1308.1405