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Many things in current interstellar dust studies are taken as well understood givens by much of

the community. For example, it is widely held that interstellar dust is made up of only three

components,i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and

that our understanding of these is now complete and sufficient enough to interpret astronomical

observations of dust in galaxies. To zeroth order this is a reasonable approximation. However,

while these “three pillars” of dust modelling have been useful in advancing our understanding

over the last few decades, it is now apparent that they are insufficient to explain the observed

evolution of the dust properties from one region to another.Thus, it is time to abandon the “three

pillars” approach and to seek more physically-realistic interstellar dust analogues. The analy-

sis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the

Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports

the view that our current view of the interstellar dust composition(s) is indeed too naïve. The

aim of this review is to point out where our current views are rather secure and, perhaps more

importantly, where they are far from secure and we must re-think our ideas. To this aim ten as-

pects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the

current observational, experimental, modelling and theoretical constraints. It is concluded from

this analysis that we really do need to re-assess many of the fundamental assumptions relating to

what we think we really do ‘know’ about interstellar dust. Inparticular, it is clear that unravelling

the nature dust evolution in the interstellar medium is perhapsthekey to significantly advancing

our current understanding of interstellar dust. For example, the dust in the diffuse interstellar

medium, molecular clouds, photo-dissociation regions andHII regions is not exactly the same

but exhibits important evolution within and between these different regions. An understanding of

these evolutionary and regional variations exhibited by dust is now critical.
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0. Background

Interstellar dust has been the subject of dedicated studiesfor more than 80 years, ever since
the early measurements of interstellar reddening by Trumpler [1]. Dust models followed about a
decade or so after these early dust extinction measurementsand one of the earliest was the dirty ice
model of van de Hulst [2]. Oort & van de Hulst [3] then considered the processing of these dirty ice
particles in the interstellar medium (ISM) and estimated a dust lifetime of about 50 million years.
Some thirty years later dust modelling became more sophisticated when Mathiset al. studied
uncoated graphite, enstatite, olivine, silicon carbide, iron and magnetite particles as viable dust
materials to explain extinction in the ISM [4]. They concluded that graphite was a necessary dust
component of any viable mixture and that it could be combinedwith any of the other materials to
satisfactorily explain interstellar extinction. So were born our current ideas about interstellar dust
being composed of graphite and some form of silicate. Thus, and for almost forty years, graphite
and amorphous silicate materials have formed the basis of the most widely used dust models and
they have served us well. Nevertheless, it is perhaps to timeto re-visit our long-held views on the
nature of dust in the ISM and to re-examine some of our basic assumptions. Thus:

What do we know of dust? Currently we believe that we have a pretty good understanding of
the nature of interstellar dust in our own and also in distantgalaxies. The dust is evidently made of
“astronomical” amorphous silicates, graphite and polycyclic aromatic hydrocarbons (PAHs), and
our understanding of these is now complete and sufficient enough to allow for a good interpretation
of astronomical observations. This understanding has beensufficient to meet our needs for the last
few decades but we are now finding clear and systematic differences in the dust from one region to
another, differences that cannot be accounted for with the ‘standard’ astronomical silicate, graphite
and PAH model.

What do we really know of dust? Thus, and upon closer examination of the ‘facts’ it seems
likely that in many, if not most, cases we need to review our current understanding, push aside the
veil of complacency and to re-think our ideas. The major aim of this review is therefore to take a
careful and critical look at some of our fundamental ideas about dust in space.

Where do we go from here? One of the major conclusions of this close re-consideration
is that in interstellar dust studies we really need to adopt more physically-realistic models, which
means that from here on the dust physics gets much more interesting, but also much more complex.

In the following ten sections some aspects of the observableproperties of dust and what we
really know of cosmic dust are examined in some detail.

1. The UV-FUV extinction properties of dust

The interstellar extinction curves, normalised to the B andV bands asE(B−V) (in the stan-
dard manner) as shown in Fig. 1, seemingly indicate rather wide variations in the extinction curve
in the UV region (λ−1 > 4µm−1) [5]. However, normalising the extinction curve in this wayob-
viously introduces a strong lever effect because small variations in the extinction at the B and/or V
band wavelengths will lead to accentuated UV extinction variations. This is perhaps unavoidable
when presenting observational data because it is extremelydifficult to determine absolute extinc-
tion values.
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Figure 1: TheE(B−V)-normalised average galactic extinction curves (left) andthe observed UV extinction
bump position and width variations (right): Figs. 9 and 17 from [5] reproduced by permission of the AAS).

As shown by Greenberg & Chlewicki [6] normalising the extinction curve in the UV appears
to indicate that the FUV reddening is actually rather invariant in shape and intensity. They also
concluded that the particles responsible for the UV bump at 217 nm cannot make a significant
contribution to the FUV extinction and that these same particles can only make a small contribution
to the extinction long-wards of∼ 170 nm. From this work [6] it has also been inferred that the FUV
extinction carriers “remain fairly stable once the grains have emerged from the molecular cloud
phase of their evolution.” It was also shown that any dust model for which the FUV extinction is a
sum of carbonaceous/graphite and silicate contributions is inconsistent with observations [6].

Unfortunately, observational data over the entire near-IRto FUV wavelength range is rarely
available because of the relative paucity of dust extinction observations in the UV with respect to
the visible region. However, for a given dust model we can plot the calculated dust cross-sections
and hence the absolute or un-normalised extinction. One of the most recent dust models [7] shows
that the FUV extinction is practically invariant for a fixed dust mass and indicates that it is rather
the visible extinction and the UV bump that show variations,which depend upon the material
composition, and that then skew our interpretation when thedata are normalised byE(B−V).
Fig. 2 shows the standardE(B−V)-normalised extinction curve data compared to the dust cross-
sections for the Joneset al. dust model [7] and clearly illustrates the B and V band bias introduced
into normalised data.

As has been clearly demonstrated [7], changes in the carbonaceous dust optical properties,
characterised by the material band gap and particle size [8 –10], naturally lead to systematic vari-
ations in the extinction properties that are more apparent at visible/UV wavelengths than in the
FUV-EUV region, unless the abundance of the smallest radiusparticles (a . 3 nm) in the dust
size distribution is severely perturbed and/or depleted [7]. An invariance of the dust properties at
short wavelengths (FUV-EUV) reflects that fact that the UV extinction curve simply integrates the
summed cross-sections of the atoms incorporated into small(a< 5 nm) particles [7], whatever the
chemical composition of the particles.

Thus, following on from the suggestions of the work by Greenberg & Chlewicki [6] it would
be more informative to normalise the observed extinction data in the FUV region where the dust
cross-sections seemingly show only rather small variations.
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Figure 2: The modelled extinction:E(B−V)-normalised (left) and the actual dust cross-sections (right) as a
function of the optical properties, which can be characterised by the optical band gap,Eg (Figs. 6 and 7 from
[7] reproduced with permission from A&A). The orange line shows the normalised wavelength dependence
of the interstellar radiation field.

The bottom line: here is that care should be exercised in the interpretationof interstellar ex-
tinction variations based onE(B−V)-normalised extinction curves because these can be skewed
the assumed normalisation.

2. Extinction and the dust size distribution

Figure 3: The dust size distributions for the Joneset al. dust model components: large a-C:H/a-C particles
(black dotted), large a-SilFe/a-C particles (black triple-dot-dashed) and small a-C(:H) carbon particle (black
dash-dotted). Variations in the small a-C(:H) carbon particle power-law index,α, for fixed dust mass are
also shown (coloured lines, Fig. 8 from [7] reproduced with permission from A&A).

Here we reflect upon how useful it is to consider extinction asa meaningful and sufficient
measure of the dust properties in the ISM. In this context we use the recent Joneset al. dust model
[7] to illustrate how variations in the dust size distribution affect the extinction. Fig. 3 shows the
adopted dust size distribution for this diffuse ISM model and variants of it with differing small
a-C(:H) carbon particle power-law indices,α . We will also consider variations due to changing
the the minimum assumed particle radius,a−. As mentioned in the preceding section, it has been
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Figure 4: The dust extinction and spectral energy distributions (SEDs) as a function of the the small carbon
particle power-law index,α, and the minimum particle radius,a− (Figs. 7 and 12 from [7] reproduced with
permission from A&A).

shown that the FUV extinction variations are intrinsicallyrather limited [6] and only in the case of a
major depletion of small grains from the size distribution (due to the effects of erosion in energetic
regions or coagulation in dense regions) should larger variations in the extinction become apparent
[7].

Fig. 2 (right panel) and Fig. 4 show the dust cross-sections (upper panels) for a range of values
of α anda− and indicate that, for rather wide variations in the dust optical properties and size dis-
tribution, respectively, the extinction curve shows only relatively small variations. These changes
clearly do not reflect the model differences because of the degeneracy inherent in extinction-only
measurements. However, if we now consider the spectral energy distribution (SEDs) for the same
dust optical properties and size distribution variations (Fig. 4, lower panels) it is evident that they
show much greater divergence and therefore seem to better reflect and accentuate dust size distribu-
tion variations than the extinction data alone [7]. It is clear that a study considering only extinction
data does not enable us to sufficiently resolve the degeneracies inherent in extinction-alone dust
observations and modelling.

Thus, in order to best characterise the observed dust properties the constraints imposed on dust
models by, at least, the observed extinction and emission must be considered and should also take
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into account the observed linear and circular polarisation(e.g., [11]), albedo and scattering phase
function asymmetry (e.g., [12]).

The bottom line: is then that studies of extinction alone do not enable us to sufficiently re-
solve the inherent effect of the degeneracies in the dust size distribution as revealed by extinction
modelling alone. Dust extinction studies must therefore becoupled with at least dust emission stud-
ies and, ideally, also with complementary information frompolarisation, albedo, scattering phase
function asymmetry,etc.

3. The dust emissivity index ( β )

The absolute value of the dust emissivity and the slope (wavelength-dependence) of its emis-
sivity at FIR-mm wavelengths, usually indicated asβ , is a direct property of the dust optical prop-
erties. β is not a free parameter because arbitrarily changing its value, as is often done when
modelling dust emission at long wavelengths, implies a change in the dust optical properties and,
implicitly, in its composition and structure [13]. The dustemission at FIR to sub-mm wavelengths
is often modelled as a modified black-body emission of the form,

Iλ = τλ0
Bλ (Tdust)

(

λ0

λ

)β
, (3.1)

whereτλ0
is the dust opacity at the reference wavelengthλ0, Bλ (Tdust) is the dust blackbody emis-

sion at a temperatureTdustandβ is the dust emissivity index. This simple approach has some merit
in approximating the measured laboratory variations, which show temperature-dependent spectral
slope variations [14 – 16]. However, the most recent and mostcomprehensive measurements on
silicates to date, which show clear and significantβ −T tendencies, also show how the emissivity
slopes of Mg-rich amorphous silicates vary with wavelengthand do not exhibit simple power-law
behaviours [17]. Further, these authors show that, depending on the form of the Mg-rich silicate,
the slope at wavelengths longer than about 500− 800µm can be flatter (amorphous pyroxene-
type) or steeper (amorphous olivine-type) than at the shorter wavelengths [17, 18]. Models of
low-temperature processes in amorphous silicate materials are able to explain these laboratory-
measured variations [19]. However, further work is yet needed in order to ascertain if this same
range of emissivity behaviours also translates to Fe-rich silicates. Thus, it appears that we still
have much to learn about the low-temperature physics relating to interstellar amorphous silicate
grain analogues. We should therefore remain rather cautious in our interpretation of the emission
from the large cold grains in the ISM until such time as we havea better handle on their compo-
sition (olivine-type, pyroxene-type or other mineralogies) and structure (homogeneity, porosity or
mantling).

Recent observations of dust in the diffuse ISM with thePlanckmission [20] indicate a mean
dust temperature of 19.7±1.4 K and dust emissivity indexβ = 1.62±0.10. In comparison, lab-
oratory measurements [17] and dust modelling [7] show that single-valued dust emissivity slopes,
i.e., β constant, are unlikely and need to be replaced by some form ofsmoothly varying function
across the FIR to mm wavelength regime. Thus,β is not a single-valued, free parameter; changing
it changesκ(i,λ ) (the mass absorption coefficient of the materiali) because it depends upon the
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composition and structure of the dust material, its temperature and the wavelength under consider-
ation, i.e., in reality we haveβ (i,Tdust,λ , . . .). So, in retrospect it seems to have been a rather naïve
assumption thatβ would be constant and independent of material, temperatureand wavelength.

The bottom line: is that single-β modified blackbodies are not a good approximation to the
dust emission in the ISM and that any derivedTdustandβ values, or range of values, are unlikely to
be physically-meaningful in terms of real dust temperatures. They are also going to be something
of a compromised fit to real dust SED observational data. Also, our current knowledge of the ‘real’
nature of the large amorphous silicate grains in the ISM is far from complete but should perhaps
be better guided by the analysis of the pre-solar silicate grains extracted from primitive meteorites
[21].

4. The elemental composition of dust

Figure 5: The relative abundances of the elements (in ppm with respectto H) as a function of atomic
number. The most abundant silicate/oxide and solid (hydro-)carbon dust-forming elements (red), and the
minor (blue) and trace (grey) dust-forming elements are highlighted.

Fig. 5 summarises the abundances relative to hydrogen of themost important interstellar dust-
forming elements along with other, more volatile elements.Depletion studies [22, 23], indicate that
the dust elemental composition is dominated by C, O, Si, Mg and Fe with minor amounts of Na, Al,
Ca and Ni and traces of K, Ti, Cr, Mn, and Co. In addition, chemical considerations indicate that
these elements are probably bound into two major dust phases, one C-rich and the other O-rich. The
O-rich phase most likely consists of (amorphous) silicatesand/or oxides predominantly composed
of O, Si, Mg and Fe, while the C-rich phase is probably mostly of carbon but must also contains
some H atoms, most likely bound to C atoms in some form of hydrogenated amorphous carbon
solid (rather than graphite). While interstellar elemental depletion studies are able to indicate the
stoichiometric composition of the condensed solid phase inthe ISM they reveal nothing of the
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dust mineralogy. One rather intriguing conundrum relatingto the amorphous silicate/oxide phase
is that there is to date little, if any, clear IR spectroscopic evidence for the presence of Fe in dust
in the ISM, around evolved stars or in circumstellar discs. So, where exactly is the Fe hiding and
in exactly what solid form is it bound? The obvious Fe-incorporating candidate solids are silicate,
oxide, sulphide or metal particles. In most cases, where amorphous silicates have been crystallised
(around evolved stars or in circumstellar discs), their composition appears to be Mg-rich and there
is little direct evidence for Fe oxides, which leaves sulphides and metal as the best candidates. A
mix of Fe metal and sulphide could temptingly be identified with the thorny problem of the origin
of the GEMS (Glass with Embedded Metal and Sulphides) but this component of the interplanetary
dust particles (IDPs) has now been demonstrated to be of solar nebula origin [21]. The problem of
interstellar Fe is discussed again within the framework of interstellar silicates in § 9.

The bottom line: is that the absolute elemental abundances and the depletion of elements into
dust in the ISM gives us a measure of the dust stoichiometry but not its exact chemistry, structure
or composition

5. The cosmic carbon abundance

Figure 6: The column density of C in dust, N(Cdust), as a function ofE(B−V), with the uncertainties
on N(Cdust) andE(B−V) indicated. The linear least-squares fit to the correlation between N(Cdust) and
E(B−V) excludes the lower left data point and has a correlation coefficient of 0.71 (Fig. 4 from [24]
reproduced by permission of the AAS).

The latest measurements of the carbon abundance in the ISM estimate its total abundance to
be of the order of at least 470 ppm [24], which is considerablyhigher than previous measures and
thus eases this key abundance constraint dust models. In fact it seems that practically all of the
available dust models are consistent with these new data in low nH regions but that they do not use
enough carbon in dust in the highnH regions of the ISM [24]. As these same authors show (see
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Fig. 6), the column density of C in dust,N(Cdust), increases steadily up toN(Cdust)≃ 1018 cm−2

with increasing extinction up toE(B−V) ≃ 0.4. Thereafter, for 0.4 . E(B−V) . 0.6, the data
show a spread inN(Cdust) by about a factor of two (N(Cdust)≃ 1−2×1018 cm−2). This perhaps
indicates that C incorporates into dust in the denser regions into a more volatile carbonaceous dust
species and that this carbonaceous dust is different from the typical carbon-rich dust in the more
diffuse ISM (see § 6 for a more detailed discussion of this issue).

The bottom line: is that there is no and never was a carbon crisis,i.e., carbon now seems to be
so abundant in the ISM that all current dust models can be accommodated. However, in the denser
regions of the ISM it appears that none of the current models use enough carbon in dust.

6. Dust spectroscopic features

The chemical composition and mineralogical properties of dust can be constrained by char-
acteristic spectroscopic bands observed in absorption andemission throughout the ISM, which
indicate that it principally consists of amorphous silicates and aromatic-rich and/or aliphatic-rich
amorphous carbonaceous matter. One of the principal methods in the analysis of these spectral
bands has been to subtract some form of underlying continuumin order to extract the details of
the particular band shapes. However, independent of whether the bands are in absorption or emis-
sion, the removal of an underlying ‘continuum’ is less than ideal because essential information is
lost, especially if some or all of the underlying ‘continuum’ is actually due to emission from the
band carriers themselves. In order to illustrate the difficulty a particular example of interstellar ab-
sorption spectroscopy will now be considered; the interstellar aliphatic∼ 3.4µm absorption band
extending over the 3.2−3.6µm range.

The∼ 3.4µm absorption band is actually composed of many sub-bands, ofwhich the most
evident in the diffuse ISM occur at 3.38 and 3.42µm and are attributed to aliphatic CH3 and CH2

asymmetric C−H stretching modes, respectively (see the light grey data points in the top right
panel of Fig 7). In comparison, an analysis of the observed interstellar∼ 3.4µm absorption in the
dense, molecular ISM towards protostars appears to lack thesub-bands at≃ 3.38 and≃ 3.42µm
and instead exhibit two clear bands at≃ 3.25 and≃ 3.48µm with little absorption in between
(Fig 7, bottom panel, Fig. 2 from [25]). This result seems to implies that the carbonaceous material
along these lines of sight is very different from that in the diffuse ISM [25].

However, a close look at the curved baseline subtracted fromthe dust continuum towards the
protostar Mon R2/IRS3 (Fig 7, top left panel: Fig. 1 from [25]) shows that it closely follows
the shape of the absorption band, as compared to an alternative linear baseline. Given that the
∼ 3.4µm absorption feature actually lies on the red wing of the deepand much stronger∼ 3.1µm
ice absorption band [26], the adoption of a concave, rather than a linear or even convex baseline,
seems to remove key information from the original spectroscopic data. The removal of a linear
baseline (the dotted red line in Fig 7, top left panel) from the data leads to the∼ 3.4µm absorption
band profile, shown by the dark grey data points in the top right panel of Fig 7, that is rather
different from the band profile originally shown [25] and appears to be rather plateau-like between
the 3.25 and 3.48µm sub-peaks rather than falling to zero in the intervening region. Thus, the
observed∼ 3.4µm band profile in the dense, molecular regions is indeed clearly different from
that in the diffuse ISM. However, the long-held view that the≃ 3.38 and≃ 3.42µm features are
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absent in dense regions appears to be untenable. A better interpretation of the data would be that
these bands are still present in dense regions but that they are much weaker and lead to a more
plateau-like∼ 3.4µm absorption feature, which appears to consistent with slightly less aliphatic-
rich solid hydrocarbons with a band gap close to 2 eV (see Fig 7, top right panel) but is much more
aliphatic than the bulk of the carbonaceous dust in the diffuse ISM with a band gap close to 0 eV
[7 – 10].

Figure 7: Top left: The 3.1−3.7µm portion of the long wavelength wing of the 3µm ice absorption band
towards the protostar Mon R2/IRS3 (Fig. 1 from [25] reproduced by permission of the AAS) with the
assumed underlying continuum (black line). Also shown is analternative linear baseline (dotted red line).
Bottom: The continuum-subtracted 3.1−3.7µm spectrum (Fig. 2 from [25] reproduced with the permission
of the AAS). Top right: The same spectrum with the linear baseline shown in the top left panel subtracted
from the data (dark grey squares). For comparison the light grey squares show the diffuse ISM spectrum
towards the Galactic Centre sources IRS6E and Cyg OB2 No. 12 [27]. The blue (violet) line shows the
absorption spectrum of an aliphatic-rich a-C:H withEg = 2.25 eV (2.5 eV).

A related issue is that the observational data on interstellar amorphous silicates,e.g., the≃ 9.7
∼ 18µm absorption bands, are very often presented in the form of continuum-subtracted spec-
tra, which are then analysed in order to derive silicate compositional/structural data. However,
given that it is very hard to define the limits of these broad bands, it is likely that any continuum-
subtracted spectrum will not be the best approximation of the real band profiles.

Thus, and in conclusion, in the interpretation of IR spectrait is always preferable to undertake
full modelling studies because the observed bands and underlying continua will almost always have
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a common origin,i.e., the two are physically related and must therefore be treated together in a full
analysis.

The bottom line: is that extreme care must be exercised in the interpretation of the data yielded
by baseline-subtracted spectra because the adopted form ofthe baseline or underlying continuum
can lead to a removal of key spectral information and hence toa misinterpretation of the data. Thus,
full dust modelling is always to be preferred.

Further, a re-evaluation of the∼ 3.4µm absorption band profile through the molecular ISM
towards the protostar Mon R2/IRS3 indicates that the hydro-carbon dust in this dense region is
clearly different from that in the diffuse ISM but that it is consistent with the evolution of the IR
spectral properties of a-C:H materials.

7. The nature of interstellar carbonaceous dust

For more than 35 years graphite been used as the carbon material of choice in the most widely-
used interstellar dust models [4, 11, 28 – 31]; with a few exceptions [7, 32 – 34]. However, graphite
has never been detected in the ISM and it is not one of the most abundant pre-solar grain species (see
the paper by Scott Messenger in these proceedings). Thus, its usefulness as a carbon dust analogue
is questionable and it is perhaps now time to adopt somethingmore physical and all the complex
baggage that that entails. In this respect, amorphous hydrocarbon solids, a-C(:H) are intriguing
and present a challenge because of their surprising complexity [8, 35 – 39]. In particular, they are
susceptible to UV photo-processing and thermal annealing [8 – 10, 40, 41]. Further, incident ion
and electron collisions in shock waves, due to cosmic rays and in a hot gas can lead to the rapid
destruction of a-C(:H) nano-particles [42 – 46]. Amorphous(hydro)carbon materials have already
been considered as the primary carbon dust phase in a number of ISM dust models [7, 15, 33, 34,
47 – 49].

Hydrogenated amorphous carbon materials cover a wide rangeof compositions, from wide
band gap, H-rich, aliphatic-rich a-C:H to narrow band gap, H-poor, aromatic-rich a-C. The optical
properties of this suite of materials can, principally, be characterised by a single characteristic,
their band gap (Eg = −0.1 to 2.7 eV), which is directly proportional toXH, the H atom fraction,
i.e., Eg ≃ 4.3XH [50], whereXH = XH/(XC+XH) andXi is the elementi atomic fraction. Another
key characteristic, which is a function ofEg andXH, is the ratio,R, of thesp3 andsp2 C atomic
fractions,Xsp3 andXsp2, respectively. In random covalent network (RCN) models [51– 54] and
extended RCN (eRCN) models [8, 55]XH, Eg andRare related by the expressions,

R=
Xsp3

Xsp2
≈

(8XH −3)
(8−13XH)

∼
(0.6Eg−1.0)
(2.7−Eg)

; (7.1)

which is valid for a-C:H with 0.4 . XH . 0.6 or equivalently 1.5 eV . Eg . 2.7 eV. For more
highly-structured, aromatic-rich a-C materials the RCN models are not appropriate and other ap-
proaches based on defective graphite networks [50] or full size-dependent surface/network models
are required [8]. Note that Eq. (7.1) is only valid for a-C:H and is an approximation to the exact
relationship betweenEg, XH andR, which depend upon thesp2 aromatic domain sizes, the -CH3

methyl group concentration and the particle size [8 – 10].
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The recent Joneset al. model [7] is an attempt to harness the laboratory-constrained thermal
and optical properties of a-C(:H) solids, and the inherent variations in their optical properties, into
a new view of dust in the ISM. The result is a model that is coherent with many dust observables,
their variations and inter-correlations and, perhaps mostsignificantly, predicts that dust must evolve
in response to the local physical conditions, principally through the effects of UV photo-processing
(see Figs. 2, 4 and 7 [7, 10]).

The bottom line: is that graphite grains are not an important component of interstellar dust.
We must instead consider the interstellar carbonaceous dust to be primarily composed of the suite
of materials collectively known as hydrogenated amorphouscarbons, a-C(:H) or HAC.

8. Dust luminescence

In addition to the dust extinction, emission and polarisation observed in the ISM and in circum-
stellar regions some component of the dust luminesces in thered (extended red emission, ERE) and
in rare cases also in the blue (blue luminescence, BL). The Red Rectangle is an interesting proto-
planetary nebula that displays both ERE and BL. In its central regions an accretion disc around
a main sequence secondary star is fed by overflow from the post-AGB primary, giving rise to an
internal Lyman/far-UV continuum [56]. This inner system issurrounded by an optically thick,
edge-on disc, which attenuates forward-scattered radiation [57]. In the Red Rectangle the ERE is
observed to peak close to the central star (HD 44179) in the outflow cavity and walls, which are
exposed to the FUV photons from the central regions [57]. Conversley, the BL is extended and
associated with the outermost parts of the disc that are shielded from the internal FUV photons
[58 – 60] but are exposed to UV photons from the ambient interstellar radiation field.

It has been noted that the sharp emission lines superimposedon the ERE in the Red Rect-
angle region resemble the zero phonon lines of terrestrial diamonds [61], indicating thatsp3-rich,
wide band gap carbonaceous dust is an important dust component here. It is also clear that the
ERE is not strongly associated with the IR emission bands (usually associated with aromatic-rich
carbonaceous materials) but it does correlate with the FUV (E > 10.5 eV), which is required for
its excitation [62, 63]. It is noticeable that FUV photons are also required to de-hydrogenate and
aromatisesp3-rich carbonaceous solids,i.e., a-C:H [8 – 10].

The unusual configuration of the Red Rectangle region could help to explain the mutual exclu-
sivity of the inner ERE and outer BL spatial distributions. In the inner regions the FUV continuum
photons transformsp3-rich a-C:H dust intosp2-rich a-C dust and re-configure it into ERE carriers,
which are excited by UV photons. Further outsp3-rich a-C:H dust in the outer regions of the disc
is not transformed and it is this aliphatic-rich material that is responsible for the higher energy BL,
which is probably excited by the interstellar UV photons. After injection into the ambient ISM the
sp3-rich a-C:H to a-C transformation will occur over timescales of the order of 105−106 yr [10]
and so the BL is not expected to extend far beyond the bounds ofthe Red Rectangle region.

In the laboratory it has been seen that some thin films of tetrahedralsp3-rich, diamond-like
a-C:H, with and without incorporated nitrogen atoms (taC:Hand ta-C:N), exhibit a broad BL with
superimposed bands [64]. It is interesting that one of the superimposed bands in the taC:N blue
luminescence occurs at 442.8 nm, the same wavelength as the strongest diffuse interstellar band
(DIB). Thus, given the Red Rectangle observations, the photo-processing of N-doped a-C:H mate-
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rials could provide a route DIB carrier candidates [65, 66].A photo-processing scheme was indeed
proposed for the formation of the 580 nm emission line carrier in the Red Rectangle, which could
be related to the 579.7 nm DIB [67]. It is also of note that the carrier of the 579.7 nm DIB towards
χ Vel is more sensitive to the interstellar UV radiation field than to the local density [68]. Never-
theless, and despite the strong evidence for a-C:H photo-processing in the Red Rectangle, only two
weak DIBs (578.0 and 661.3 nm) have been observed, originating either in the Red Rectangle itself
or in the intervening diffuse ISM [69].

The bottom line: is that the properties ofsp3-rich (hydro-)carbon dust do seem to evolve
in a systematic way in response to FUV photon irradiation andthat the carbonaceous material
evolutionary sequence is from H-rich a-C(:H) to H-poor a-C as a result of photo-processing in the
ISM and circumstellar regions.

9. The interstellar ‘silicate’ composition

The idea that a significant fraction of the interstellar dustmass exists in the form of a special
kind of “astronomical” silicate has served us well for about30 years [28]. However, it should
be remembered that this material was constructed from and tofit observations [28] because the
appropriate laboratory data were not available at that time. Happily we now have abundant data
on laboratory analogues of likely interstellar silicate materials [14 – 17], which should enable us
to better constrain the likely properties of any interstellar silicate material. Unfortunately, the
interpretation of the measured variations in the absolute value and wavelength-dependence of the
emissivity of these silicate analogues is not straightforward [19, 18]. Additionally, these abundant
data appear to pose more questions about silicate optical properties than they can currently answer.
Hence, it is not yet sure how we can best to use these new laboratory data to interpret observations.

Following some interesting work on annealed iron-containing amorphous silicates [70], where
it was found that the iron in the silicate is reduced to metal in the presence of carbon it seems
reasonable to assume that some (significant) fraction of thecosmic iron is incorporated within
amorphous silicates in the form of metallic iron as nano-particle inclusions [70]. In the ISM it is
likely that the silicate and carbonaceous dust populationsare not completely segregated because
some ‘cross-contamination’ must occur. Thus, the interstellar amorphous silicates are almost cer-
tainly mixed with a carbonaceous dust component [71] probably in the form of mantles [7, 32].
Such an intimate mix of carbon and silicate in dust would thenprovide the ideal conditions for the
reduction of iron into metallic nano-inclusions within thesilicate phase. The optical properties of
an amorphous forsterite-type silicate with iron nano-inclusions are comparable to those for other
iron-containing amorphous silicates where the iron is incorporated into the silicate structure [7].
Thus, and on the basis of the optical properties alone, it is unfortunately not possible to discern the
nature of the solid state into which iron is incorporated.

X-ray absorption and scattering by interstellar dust [72] indicates that a significant fraction of
the cosmic iron is not in the form of silicates but rather in a metallic form [73, 74], consistent with
the above supposition about the nature of iron in dust in the ISM. Additionally, early analyses of
the handful of extra-solar system grains collected by the Stardust mission indicate the presence of
metallic Fe and also seem to hint at the presence of some iron sulphide.
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The bottom line: is that it is now time to abandon ‘astronomical’ silicate indust modelling
and to be constrained by the laboratory-measured properties of amorphous silicate dust analogues.
Unfortunately, these measurements are far from unambiguous.

Further, there is now very strong evidence from x-ray absorption and scattering data that a
large fraction of the cosmic Fe is in a metallic form.

10. Dust is the same everywhere

In the light of the discussions in the preceding sections it seems to be rather evident that
interstellar dust must evolve as it transits from region to region, with its properties reflecting its
response to its local environment (density, temperature, radiation field, . . . ). Dust models that do
not allow for the evolution of the dust composition, structure and optical properties would therefore
seem to be of limited use in the interpretation of present dayobservations (i.e., from theSpitzer,
HerschelandPlanckmissions). In the following several examples of observations revealing strong
dust evolution effects are considered.

There is now much intriguing evidence for dust evolution in photo-dissociation regions (PDRs),
regions where the dust accreted and/or coagulated in dense molecular clouds is exposed to the
intense radiation field of a star-forming environment. For example, there is evidence for dust
evolution in PDRs from the analysis of Spitzer and ISO observations of the Horsehead Nebula
and NGC 2023 North [75] and Herschel observations of the Orion Bar [76], which indicate lower
relative abundances of the IR band emitters and the small grains responsible for the mid-IR contin-
uum, by up to an order of magnitude compared to the dust size distribution typical of the diffuse
ISM. Further, the photo-fragmentation of the small carbon grains, responsible for the mid-IR con-
tinuum dust emission, into nano-particles (PAHs) has been shown to occur in relatively dense,
nH = [102,105] cm−3, and UV-irradiated PDRs,G0 = [102,5×104] [77] (G0 is the interstellar radi-
ation field intensity in units of the value in the solar neighbourhood),i.e., over a relatively narrow
range ofG0/nH = 0.5−1.

Other recent work shows that the intensity of the UV extinction bump at 217 nm does not
correlate with carbon depletion into dust or with the FUV extinction and therefore suggests car-
bonaceous dust evolves even in the neutral ISM [24], perhapsthrough the effects of accretion in
denser regions (c.f., the discussion in § 6) and towards protostars [25]. The carbon depletion is most
likely determined by accretion (i.e., by the cloud volume along the line of sight), whereas the UV
bump intensity and the FUV extinction reflect the abundance of UV photo-processed small grains
in the low density surface regions of the clouds. Thus, carbon depletion, the UV bump intensity and
the FUV extinction are somewhat de-coupled. It was also noted that the FUV extinction appears
to show a gradual decrease with decreasing gas density,nH, which was interpreted as due to the
preferential fragmentation of small grains in the diffuse ISM [24].

There is abundant evidence for dust evolution in the denser regions of the ISM, some of the
more recent work in this area, based on Herschel observations of the L1506 dense filament in the
Taurus molecular cloud complex [78], indicates an increasein the dust opacity at 250µm by a
factor of about two. This result was interpreted as due to grain coagulation into fluffy aggregates
in regions where the gas density is greater than a few×103 H cm−3 and forAV ≃ 2− 3 [78]. In
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contrast, the dust in the cloud outer layers is similar to that in the diffuse ISM. This observational
result is consistent with the results of recent dust accretion/coagulation models [79, 80].

The bottom line: is that dust is far from the same everywhere and that observations clearly show
that its properties evolves through photo-fragmentation in energetic PDRs but also by accretion in
the diffuse ISM and by accretion and coagulation in dense molecular clouds.

11. Concluding remarks

In the light of the above discussion it seems as though we really do need to take a much closer
look at many of our currently-held ideas about dust in the ISM, what it is made of, its structure
and its response to its environment. So, what do we really know of cosmic dust? By way of an
incomplete summary here are a few suggestions as to what a re-evaluation of some of our long-held
assumptions has led us to today:

• Dust extinction varies, most likely due to important changes in the carbonaceous dust optical
properties in the visible region. Thus, extinction must be studied in conjunction with the
more diagnostic full dust SED and, ideally, in conjunction with polarisation studies if we are
to gain a fuller insight into dust evolution.

• The absolute value and spectral slope of the dust emissivityat FIR-mm wavelengths arenot
free parameters and arenot fixed but vary with wavelength, composition and temperature.

• Carbon atoms appear to be more abundant in the ISM than previously assumed and pose no
under-abundance problem (a.k.a., carbon ‘crisis’) for dust models, except perhaps that the
current dust models do not use enough carbon to explain the dust composition in the denser
regions of the ISM.

• Dust is primarily composed of two distinct solid phases comprised of different elements,
but which can be intimately bound together: amorphous hydrocarbon solids (C, H), Mg-rich
amorphous silicates (Mg, Si, O), metallic iron (Fe) and perhaps also iron sulphide (Fe, S).
Carbon is probably to be found in isolated grains but also in mantles on amorphous silicate
grains. Additionally, most cosmic iron is probably presentas metallic nano-inclusions (in an
Mg-rich amorphous silicate phase).

• The solid phase carbon accreting as mantles onto grains in dense regions of the ISM and
towards protostars is probably significantly different from the bulk of the aromatic-rich car-
bonaceous dust present in the low-density diffuse ISM, in that it probably incorporates a
higher atomic hydrogen fraction and is aliphatic-rich.

• Carbonaceous dust luminesces in the red and blue. The red luminescence is widespread
throughout the ISM but the blue luminescence so far appears to be unique to the Red Rect-
angle region. These luminescent phenomena should reveal a wealth of critical information
about the UV photo-processing of dust in the ISM and circumstellar regions.

• Interstellar carbonaceous dust is not graphite or graphitic but is most likely an amorphous
hydrogenated carbon phase, with wide-ranging optical and thermal properties, that can in-
corporate a significant H atom fraction and possibly other elements as hetero-atoms.
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• Dust isnot the same everywhere but undergoes important evolution in response to the local
physical conditions (radiation field, density, temperature). PDRs and the outer regions of
dense molecular clouds appear to be the most promising environments to study and quantify
the processes at the core of dust evolution in the ISM.

In conclusion, it seems that only now and after some eight decades of study are we finally be-
ginning to make some important inroads into advancing our understanding of cosmic dust. Perhaps
we are, at last, beginning to peer under the extinguishing veil to glimpse the delights that lie ahead.
However, and as always in science, we will need to shoulder the burden of increased complexity if
we are to significantly advance beyond our current understanding of cosmic dust.

Acknowledgements.I wish to thank the organisers of the Taiwan dust life cycle meeting for their
invaluable help and for a warm welcome in Taipei. I also wish to thank many colleagues for the
innumerable and invaluable discussions over the years thathave helped me to distill my ideas into
the views presented in this review.

Disclaimer. The views in this review reflect the interests and biases of the author. The reader is
therefore advised to regard or disregard them as her/his ownpersonal biases dictate. However, it is
the author’s hope that the ideas discussed here might help todirect future cosmic dust studies.

References

[1] R. J. Trumpler,Absorption of Light in the Galactic System, Pub. Ast. Soc. Pacific,42 (Aug., 1930)
214.

[2] H. C. van de HulstNed. Tijdschr. V. Natuur10 (1943) 251.

[3] J. H. Oort and H. C. van de Hulst,Gas and smoke in interstellar space, Bull. Ast. Inst. Netherlands10
(Nov., 1946) 187.

[4] J. S. Mathis, W. Rumpl, and K. H. Nordsieck,The size distribution of interstellar grains, ApJ217
(Oct., 1977) 425–433.

[5] E. L. Fitzpatrick and D. Massa,An Analysis of the Shapes of Interstellar Extinction Curves. V. The
IR-through-UV Curve Morphology, ApJ663 (July, 2007) 320–341.

[6] J. M. Greenberg and G. Chlewicki,A far-ultraviolet extinction law - What does it mean?, ApJ272
(Sept., 1983) 563–578.

[7] A. P. Jones, L. Fanciullo, M. Köhler, L. Verstraete, V. Guillet, M. Bocchio, and N. Ysard,The
evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point, A&A 558
(Oct., 2013) A62.

[8] A. P. Jones,Variations on a theme - the evolution of hydrocarbon solids.I. Compositional and
spectral modelling - the eRCN and DG models, A&A 540 (Apr., 2012) A1.

[9] A. P. Jones,Variations on a theme - the evolution of hydrocarbon solids.II. Optical property
modelling - the optEC(s) model, A&A 540 (Apr., 2012) A2.

[10] A. P. Jones,Variations on a theme – the evolution of hydrocarbon solids:III. Size-dependent
properties – optEC(s)(a), the extended optEC(s) model, A&A 542 (2012) A98.

16



P
o
S
(
L
C
D
U
 
2
0
1
3
)
0
0
1

The physical and compositional properties of dust Ant Jones

[11] R. Siebenmorgen, N. V. Voshchinnikov, and S. Bagnulo,Dust in the diffuse interstellar medium.
Extinction, emission, linear and circular polarisation, A&A 561 (Jan., 2014) A82.

[12] K. D. Gordon,Interstellar Dust Scattering Properties, in Astrophysics of Dust(A. N. Witt, G. C.
Clayton, and B. T. Draine, eds.), vol. 309 ofAstronomical Society of the Pacific Conference Series,
p. 77, May, 2004.

[13] S. Bianchi,Vindicating single-T modified blackbody fits to Herschel SEDs, A&A 552 (Apr., 2013)
A89.

[14] N. I. Agladze, A. J. Sievers, S. A. Jones, J. M. Burlitch,and S. V. W. Beckwith,Laboratory Results on
Millimeter-Wave Absorption in Silicate Grain Materials atCryogenic Temperatures, ApJ462 (May,
1996) 1026.

[15] V. Mennella, J. R. Brucato, L. Colangeli, P. Palumbo, A.Rotundi, and E. Bussoletti,Temperature
Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20
Microns to 2 Millimeters, ApJ496 (Mar., 1998) 1058.

[16] N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny,Temperature
Dependence of the Submillimeter Absorption Coefficient of Amorphous Silicate Grains, ApJ633
(Nov., 2005) 272–281.

[17] A. Coupeaud, K. Demyk, C. Meny, C. Nayral, F. Delpech, H.Leroux, C. Depecker, G. Creff, J.-B.
Brubach, and P. Roy,Low-temperature FIR and submillimetre mass absorption coefficient of
interstellar silicate dust analogues, A&A 535 (Nov., 2011) A124.

[18] K. Demyk, C. Meny, H. Leroux, C. Depecker, C. Nayral, F. Delpech, W. S. Ojo, J.-B. Brubach, and
P. Roy,FIR and Submm Optical Properties of Astrophysically Relevant Minerals, in proceedings of
The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments,
PoS(LCDU2013)044.

[19] C. Meny, V. Gromov, N. Boudet, J.-P. Bernard, D. Paradis, and C. Nayral,Far-infrared to millimeter
astrophysical dust emission. I. A model based on physical properties of amorphous solids, A&A 468
(June, 2007) 171–188.

[20] Planck Collaboration, A. Abergel, P. A. R. Ade, N. Aghanim, D. Alina, M. I. R. Alves,
C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, and et al.,Planck 2013 results.
XXXI. All-sky model of thermal dust emission, ArXiv e-prints(Dec., 2013) [arXiv:1312.1300].

[21] S. Messenger,Dust in the Solar System ”Properties and Origins”, in proceedings ofThe Life Cycle of
Dust in the Universe: Observations, Theory, and LaboratoryExperiments,PoS(LCDU2013)040.

[22] E. B. Jenkins,A Unified Representation of Gas-Phase Element Depletions inthe Interstellar Medium,
ApJ700 (Aug., 2009) 1299–1348.

[23] E. B. Jenkins,Depletions of Elements from the Gas Phase: A Guide on Dust Compositions, in
proceedings ofThe Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory
Experiments,PoS(LCDU2013)005.

[24] V. S. Parvathi, U. J. Sofia, J. Murthy, and B. R. S. Babu,Probing the Role of Carbon in Ultraviolet
Extinction along Galactic Sight Lines, ApJ760 (Nov., 2012) 36.

[25] K. Sellgren, R. G. Smith, and T. Y. Brooke,The 3.2-3.6 micron spectra of monoceros R2/IRS-3 and
Elias 16, ApJ433 (Sept., 1994) 179–186.

[26] L. J. Allamandola, S. A. Sandford, A. G. G. M. Tielens, and T. M. Herbst,Infrared spectroscopy of
dense clouds in the C-H stretch region - Methanol and ’diamonds’, ApJ399 (Nov., 1992) 134–146.

17



P
o
S
(
L
C
D
U
 
2
0
1
3
)
0
0
1

The physical and compositional properties of dust Ant Jones

[27] Y. J. Pendleton and L. J. Allamandola,The Organic Refractory Material in the Diffuse Interstellar
Medium: Mid-Infrared Spectroscopic Constraints, ApJS138 (Jan., 2002) 75–98.

[28] B. T. Draine and H. M. Lee,Optical properties of interstellar graphite and silicate grains, ApJ285
(Oct., 1984) 89–108.

[29] B. T. Draine and A. Li,Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small
Grains, ApJ551 (Apr., 2001) 807–824.

[30] A. Li and B. T. Draine,Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium,
ApJ554 (June, 2001) 778–802.

[31] B. T. Draine and A. Li,Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH
Model in the Post-Spitzer Era, ApJ657 (Mar., 2007) 810–837.

[32] A. Li and J. M. Greenberg,A unified model of interstellar dust., A&A 323 (July, 1997) 566–584.

[33] V. Zubko, E. Dwek, and R. G. Arendt,Interstellar Dust Models Consistent with Extinction, Emission,
and Abundance Constraints, ApJS152 (June, 2004) 211–249.

[34] M. Compiègne, L. Verstraete, A. Jones, J.-P. Bernard, F. Boulanger, N. Flagey, J. Le Bourlot,
D. Paradis, and N. Ysard,The global dust SED: tracing the nature and evolution of dustwith DustEM,
A&A 525 (Jan., 2011) A103.

[35] J. Robertson,Amorphous carbon, Advances in Physics35 (Nov., 1986) 317–374.

[36] J. Robertson and E. P. O’Reilly,Electronic and atomic structure of amorphous carbon, Phys. Rev. B,
35 (Feb., 1987) 2946–2957.

[37] J. Robertson,Clustering and gap states in amorphous carbon, Philosophical Magazine Letters57
(Feb., 1988) 143–148.

[38] A. C. Ferrari and J. Robertson,Interpretation of Raman spectra of disordered and amorphous carbon,
Phys. Rev. B,61 (May, 2000) 14095–14107.

[39] A. C. Ferrari and J. Robertson,Raman spectroscopy of amorphous, nanostructured, diamond-like
carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A362 (2004) 2477–2512.

[40] A. P. Jones,The Cycle of Carbon Dust in the ISM, in Cosmic Dust - Near and Far(T. Henning,
E. Grün, & J. Steinacker, ed.), vol. 414 ofAstronomical Society of the Pacific Conference Series,
pp. 473–481, Dec., 2009.

[41] A. P. Jones and J. A. Nuth,Dust destruction in the ISM: a re-evaluation of dust lifetimes, A&A 530
(June, 2011) A44.

[42] L. Serra Díaz-Cano and A. P. Jones,Carbonaceous dust in interstellar shock waves: hydrogenated
amorphous carbon (a-C:H) vs. graphite, A&A 492 (Dec., 2008) 127–133.

[43] E. R. Micelotta, A. P. Jones, and A. G. G. M. Tielens,Polycyclic aromatic hydrocarbon processing in
interstellar shocks, A&A 510 (Feb., 2010) A36.

[44] E. R. Micelotta, A. P. Jones, and A. G. G. M. Tielens,Polycyclic aromatic hydrocarbon processing in
a hot gas, A&A 510 (Feb., 2010) A37.

[45] E. R. Micelotta, A. P. Jones, and A. G. G. M. Tielens,Polycyclic aromatic hydrocarbon processing by
cosmic rays, A&A 526 (Feb., 2011) A52.

[46] M. Bocchio, E. R. Micelotta, A.-L. Gautier, and A. P. Jones,Small hydrocarbon particle erosion in a
hot gas. A comparative study, A&A 545 (Sept., 2012) A124.

18



P
o
S
(
L
C
D
U
 
2
0
1
3
)
0
0
1

The physical and compositional properties of dust Ant Jones

[47] V. Mennella, L. Colangeli, E. Bussoletti, G. Monaco, P.Palumbo, and A. Rotundi,On the Electronic
Structure of Small Carbon Grains of Astrophysical Interest, ApJS100 (Sept., 1995) 149.

[48] V. Mennella, L. Colangeli, P. Palumbo, A. Rotundi, W. Schutte, and E. Bussoletti,Activation of an
Ultraviolet Resonance in Hydrogenated Amorphous Carbon Grains by Exposure to Ultraviolet
Radiation, ApJL464 (June, 1996) L191.

[49] V. Mennella, G. M. Muñoz Caro, R. Ruiterkamp, W. A. Schutte, J. M. Greenberg, J. R. Brucato, and
L. Colangeli,UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. II.
The case of hydrogenated carbon grains, A&A 367 (Feb., 2001) 355–361.

[50] M. A. Tamor and C. H. Wu,Graphitic network models of “diamondlike” carbon, Journal of Applied
Physics67 (Jan., 1990) 1007–1012.

[51] J. C. Phillips,Structure of amorphous (Ge,Si) (1 - x)Y(x) alloys, Physical Review Letters42 (Apr.,
1979) 1151–1154.

[52] G. H. Döhler, R. Dandaloff, and H. BilzJ. Noncryst. Solids42 (1980) 87.

[53] M. Thorpe,Continuous deformations in random networks, Journal of Non Crystalline Solids57
(Sept., 1983) 355–370.

[54] J. C. Angus and F. Jansen,Dense “diamondlike” hydrocarbons as random covalent networks, Journal
of Vacuum Science Technology6 (May, 1988) 1778–1782.

[55] A. P. Jones,Carbon atom clusters in random covalent networks: PAHs as anintegral component of
interstellar HAC, MNRAS247 (Nov., 1990) 305–310.

[56] A. N. Witt, U. P. Vijh, L. M. Hobbs, J. P. Aufdenberg, J. A.Thorburn, and D. G. York,The Red
Rectangle: Its Shaping Mechanism and Its Source of Ultraviolet Photons, ApJ693 (Mar., 2009)
1946–1958.

[57] U. P. Vijh, A. N. Witt, D. G. York, V. V. Dwarkadas, B. E. Woodgate, and P. Palunas,Optical
Emission Band Morphologies of the Red Rectangle, ApJ653 (December, 2006) 1336–1341.

[58] U. P. Vijh, A. N. Witt, and K. D. Gordon,Discovery of Blue Luminescence in the Red Rectangle:
Possible Fluorescence from Neutral Polycyclic Aromatic Hydrocarbon Molecules?, ApJL606 (May,
2004) L65–L68.

[59] U. P. Vijh, A. N. Witt, and K. D. Gordon,Blue Luminescence and the Presence of Small Polycyclic
Aromatic Hydrocarbons in the Interstellar Medium, ApJ633 (November, 2005) 262–271.

[60] U. P. Vijh, A. N. Witt, D. G. York, L. M. Hobbs, T. P. Snow, C. Barentine, R. McMillan, and B. J.
McCall, The Spectrum of the Blue Luminescence in the Red Rectangle, in IAU Symposium, vol. 235 of
IAU Symposium, p. 234P, 2005.

[61] W. W. Duley,Sharp Emission Lines from Diamond Dust in the Red Rectangle?, Ap&SS150 (1988)
387–390.

[62] A. N. Witt and R. E. Schild,Colors of reflection nebulae. II - The excitation of extendedred emission,
ApJ294 (July, 1985) 225–230.

[63] A. N. Witt, K. D. Gordon, U. P. Vijh, P. H. Sell, T. L. Smith, and R.-H. Xie,The Excitation of
Extended Red Emission: New Constraints on Its Carrier from Hubble Space Telescope Observations
of NGC 7023, ApJ636 (January, 2006) 303–315.

19



P
o
S
(
L
C
D
U
 
2
0
1
3
)
0
0
1

The physical and compositional properties of dust Ant Jones

[64] O. Panwar, M. Khan, B. Bhattacharjee, A. Pal, B. Satyanarayana, P. Dixit, R. Bhattacharyya, and
M. Khan,Reflectance and photoluminescence spectra of as grown and hydrogen and nitrogen
incorporated tetrahedral amorphous carbon films depositedusing an S bend filtered cathodic vacuum
arc process, Thin Solid Films,515 (May, 2006) 1597–1606.

[65] A. P. Jones,Heteroatom-doped hydrogenated amorphous carbons, a-C:H:X. ”Volatile” silicon,
sulphur and nitrogen depletion, blue photoluminescence, diffuse interstellar bands and ferro-magnetic
carbon grain connections, A&A 555 (July, 2013) A39.

[66] A. P. Jones,A framework for resolving the origin, nature and evolution of the diffuse interstellar band
carriers?, Planetary and Space Sci.(2014).

[67] W. W. Duley,Optical emission at 5800Angstroms in the Red Rectangle and the 5797-Angstroms
diffuse interstellar band, MNRAS301 (Dec., 1998) 955–959.

[68] K. T. Smith, S. J. Fossey, M. A. Cordiner, P. J. Sarre, A. M. Smith, T. A. Bell, and S. Viti,Small-scale
structure in the interstellar medium: time-varying interstellar absorption towardsκ Velorum, MNRAS
429 (February, 2013) 939–953.

[69] L. M. Hobbs, J. A. Thorburn, T. Oka, J. Barentine, T. P. Snow, and D. G. York,Atomic and Molecular
Emission Lines from the Red Rectangle, ApJ615 (November, 2004) 947–957.

[70] C. Davoisne, Z. Djouadi, H. Leroux, L. D’Hendecourt, A.Jones, and D. Deboffle,The origin of
GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing,
A&A 448 (Mar., 2006) L1–L4.

[71] J. S. Mathis and G. Whiffen,Composite interstellar grains, ApJ341 (June, 1989) 808–822.

[72] E. Costantini, C. de Vries, S. T. Zeegers, F. de Groot, H.Mutschke, C. Pinto, and L. B. F. M. Waters,
The X-ray side of the absorption by interstellar dust in the Milky Way, in proceedings ofThe Life
Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments,
PoS(LCDU2013)006.

[73] E. Costantini, M. J. Freyberg, and P. Predehl,Absorption and scattering by interstellar dust: an
XMM-Newton observation of Cyg X-2, A&A 444 (Dec., 2005) 187–200.

[74] J. Xiang, J. C. Lee, M. A. Nowak, and J. Wilms,Using the X-Ray Dust Scattering Halo of Cygnus X-1
to Determine Distance and Dust Distributions, ApJ738 (Sept., 2011) 78.

[75] M. Compiègne, A. Abergel, L. Verstraete, and E. Habart,Dust processing in photodissociation
regions. Mid-IR emission modelling, A&A 491 (Dec., 2008) 797–807.

[76] H. Arab, A. Abergel, E. Habart, J. Bernard-Salas, H. Ayasso, K. Dassas, P. G. Martin, and G. J.
White,Evolution of dust in the Orion Bar with Herschel. I. Radiative transfer modelling, A&A 541
(May, 2012) A19.

[77] P. Pilleri, J. Montillaud, O. Berné, and C. Joblin,Evaporating very small grains as tracers of the UV
radiation field in photo-dissociation regions, A&A 542 (June, 2012) A69.

[78] N. Ysard, A. Abergel, I. Ristorcelli, M. Juvela, L. Pagani, V. Könyves, L. Spencer, G. White, and
A. Zavagno,Variation in dust properties in a dense filament of the Taurusmolecular complex
(L1506), A&A 559 (Nov., 2013) A133.

[79] M. Köhler, V. Guillet, and A. Jones,Aggregate dust connections and emissivity enhancements, A&A
528 (Apr., 2011) A96.

[80] M. Köhler, B. Stepnik, A. P. Jones, V. Guillet, A. Abergel, I. Ristorcelli, and J.-P. Bernard,Dust
coagulation processes as constrained by far-infrared observations, A&A 548 (Dec., 2012) A61.

20


