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We study the infrared conformality of twelve-flavor QCD on the lattice, utilizing the Highly
Improved Staggered Quark action, which realizes the simulations with minimal discretization
error. The finite-size scaling test of the conformal hypothesis is performed for low-lying meson
spectra. Our result is consistent with the conformal hypothesis for mass anomalous dimension
γ ∼ 0.4−0.5. Furthermore, the flavor-singlet scalar is found to be lighter than the pion, in sharp
contrast to real-life QCD. This may be a hint to explain the Higgs boson mass as light as 125 GeV
in walking technicolor.
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1. Introduction

Strongly coupled gauge theories near the conformal phase boundary are of great interest with
regard to the walking technicolor model, having approximate scale invariance and a large anoma-
lous dimension γ ' 1 [1]. The SU(3) gauge theory with N f massless fermions in the fundamental
representation (Large N f QCD) is an attractive candidate of such a theory. In such a theory a
light flavor singlet scalar could emerge as a pseudo-Nambu Goldstone boson of the spontaneously
broken scale invariance, referred to as “technidilaton”. Thus the new bosonic particle of mass
mH = 125 GeV discovered at the LHC [2, 3] could be explained in the context of the walking tech-
nicolor model. Large N f QCD has been studied by many lattice groups with different lattice actions
and methods to probe the conformal dynamics and search for a realistic walking technicolor model.
For recent reviews, see Ref. [4] and references therein. We have been studying N f = 4,8,12, and
16 QCD using lattice simulations with a common setup. In this report, we focus on the study of the
conformal dynamics in N f = 12 QCD.

If the theory is in the conformal phase, the hyperscaling in the mass-deformed conformal
theory can be seen in various hadron spectra, such as the pseudoscalar mass Mπ , its decay constant
Fπ , and the vector meson mass Mρ . In Ref. [5] we found that N f = 12 QCD has behavior consistent
with hyperscaling, and the values of γ obtained from three quantities of Mπ , Fπ and Mρ were
reasonably consistent, with the exception of Fπ at the finer lattice. This exception may be due to a
sizable volume correction. In this report we provide a preliminary result with new data at a larger
volume, L = 36, by which the consistency to the conformal hypothesis appears much clearer. As for
the study of the flavor singlet scalar σ , we observe a mass lighter than the pseudoscalar in Ref. [6].
Although we regard the lightness of the scalar in N f = 12 as due to the conformal dynamics, it is
a promising signal for a walking theory, where similar conformal dynamics should be operative in
such a way that the scale symmetry breaking originates from the dynamically generated fermion
mass instead of the explicit breaking in the mass-deformed conformal theory.

In the followings, we explain the simulation setup and methods for a quantitative study of the
(finite size) hyperscaling relations for the hadron spectra. We then examine a hyperscaling test of
hadron spectra, including our preliminary result on larger volume. We also calculate the mass of
the flavor singlet scalar state, from which we discuss an additional possible signal of the conformal
dynamics.

2. Setup and primary result

The lattice gauge configurations are generated by the standard HMC algorithm using a tree-
level Symanzik gauge action and the Highly Improved Staggered Quark action [7]. We simulate
with various values for the fermion mass m f on three volumes of L = 24,30,36 with fixed aspect
ratio T/L = 4/3, at two lattice spacings of β = 6/g2 = 3.7 and 4.0. Several hadron spectra such as
the Mπ , Mρ and Fπ are calculated. The flavor symmetry breaking effects in the staggered fermion
are negligible for the theory in our simulation parameter region. For a primary study, dimensionless
ratios composed of these measurements will be plotted against Mπ . If the theory is in the conformal
phase, the hadron mass Mp and its decay constant Fp in the infinite volume limit obey the conformal
hyperscaling relations

Mp = cpm1/(1+γ)
f , Fp = dpm1/(1+γ)

f , (2.1)
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where γ denotes the mass anomalous dimensions at the IR fixed point. Thus the spectra obtained
in our lattice simulation will be tested against the conformal hypothesis.

The left panel of Fig.1 shows the ratio Fπ/Mπ at two bare gauge couplings β = 3.7 and 4.0.
The ratio on the larger volumes becomes flat towards the smaller Mπ region for both values of β .
The Mπ dependence of the ratio Fπ/Mπ at larger mass can be understood as a correction to the
hyperscaling, which may be different from one quantity to another. Thus, the scaling region can
only be seen in smaller mass and larger volume. In addition, the flat region at β = 3.7 seems to
be wider than the one at β = 4.0, which can be made possible if the lattice spacing decreases as β
increases, since in such a case the physical mass Mπ could be lighter for β = 3.7 than β = 4.0. In
fact, a crude analysis for the matching of two lattice spacings suggests the lattice spacing a(β = 3.7)
is larger than a(β = 4.0), which is consistent with being in the asymptotically free domain. Similar
observations can be made in the ratio Mρ/Mπ shown in the right panel of Fig.1. The flattening
region is observed for both values of β , but the range is wider than for Fπ/Mπ . These results
suggest that Fπ has larger mass and volume corrections to the hyperscaling, which will be discussed
in the next section.
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Figure 1: Dimensionless ratios Fπ/Mπ and Mρ/Mπ as functions of Mπ for N f = 12 at β = 3.7 (filled
symbols) and 4.0 (open symbols).

3. Finite size hyperscaling analysis

In the case of a finite volume, the renormalization group tells us the scaling behavior for low-
energy spectra: they should obey the universal scaling relations as

LMp ≡ ξp = fp(x), LFπ ≡ ξF = fF(x), (3.1)

where fp(x) and fF(x) are functions of the scaling variable x = Lm1/(1+γ)
f , and these functions

are unknown in general1. Here we introduce an evaluation function P(γ) to quantify how much
the data can be matched to the function of x. Take ξ j be a data for a measured observable p at
x j = L jm

1/(1+γ)
j and δξ j to be the error of ξ j. The label j identifies the set of parameters (L,m f ).

Now let K be a subset of data points {(xk,ξk)}, from which we construct a function f (K)(x) that
represents the subset of data (K). The evaluation function is defined as

P(γ) =
1

N ∑
L

∑
j 6∈KL

∣∣ξ j − f (KL)(x j)
∣∣2

|δξ j|2
, (3.2)

1For a review of hyperscaling behavior, see, e.g., Refs. [8, 9].
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where L runs through all the lattice sizes we have, the sum over j is taken for a set of data points
which do not belong to KL, which includes all the data obtained on the lattice with size L. N

denotes the total number of summations, the combinatorial number of L and j /∈ KL. Here, we
choose for the function f (KL) a linear interpolation of the data points of the fixed lattice size L. In
the evaluation function in Eq. (3.2), the data points need to be taken for a range of x = L ·m1/(1+γ)

f
in which there is an overlap of available data for all volumes within the x-range.

We calculate the evaluation function P(γ) for the three observables Mπ , Fπ , and Mρ , at two
lattice spacings β = 3.7, and 4.0 on three volumes L = 24,30,36. We take the value of xmin (xmax)
as the smallest (largest) m f for the largest volume L = 36, that is, the minimum (maximum) value
of m f is 0.03 (0.05) for β = 3.7 and 0.04 (0.08) for β = 4.0. The left panel of Fig. 2 shows the
result of P(γ) for the three observables at β = 3.7. We observe a minimal at which the optimal
alignment of the data is achieved. In order to systematically study how the range of fermion mass
affects the result, we consider three windows of the data for the combination of two data sets among
L = 24,30, and 36. The results with all the errors added in quadrature are summarized in the right
panel of Fig. 2. In case of Fπ , we have a large error in both β = 3.7 and 4.0 due to finite volume
(and mass) effects. If one restricts the volume range to the larger side, then the value of γ(Fπ)
becomes closer to that for the other observables. We also observe a β dependence of γ(Fπ), where
the value for β = 3.7 is closer to the one for other observables, while the values for Mπ and Mρ are
stable against changes of β and volume. These results may be understood from the observation in
previous section, that the scaling, in particular for Fπ/Mπ , is observed only in the small mass and
larger volume region. As a result, all the values are consistent with each other within 2σ . From
these analyses, we conclude that our data for the N f = 12 theory are reasonably consistent with the
finite size hyperscaling. The resulting γ from different quantities and two lattice spacings is also
reasonably consistent.
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Figure 2: (Left): The γ dependence of the evaluation function P for Mπ , Fπ , and Mρ at β = 3.7. The
vertical axis shows the central values of P using the data for the three volumes. (Right): The values of γ for
three observables at two β values are summarized, where the statistical and systematic errors are added in
quadrature. All the results are consistent with each other within 2σ .

4. Flavor singlet scalar mass

Here we explain the mass of the flavor singlet scalar obtained from fermionic bilinear opera-
tors in detail. We use the local staggered fermion bilinear operator OS(t) = ∑3

i=1 ∑x χ̄i(x, t)χi(x, t),
where i labels the staggered species. Using this operator we measure the two-point correlation
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function 〈OS(t)OS(0)〉 ∝ 3D(t)−C(t), where C(t) and D(t) are connected and the vacuum sub-
tracted disconnected corelators, respectively. The disconnected correlator D(t) can be calculated
by inverting the staggered Dirac operator at each space-time point. The computational cost of D(t)
is mitigated by using a stochastic noise method with a variance reduction technique which has pre-
viously been employed for other measurements [10, 11, 12, 13]. To extract the mass of the flavor
singlet scalar Mσ , we fit D(t) in the range t = 4 to 8 for all the parameters. A systematic error
is estimated by the difference of central values obtained with several fit ranges. We carry out the
measurement of the scalar correlation functions at β = 4.0 on three physical volumes L = 24,30,36
at four different masses m f = 0.05,0.06,0.08, and 0.10. For all the simulation parameters we have
used more than 4,000 configurations. The details of our results can be found in Ref. [6].

The observed m f dependence of Mσ is shown in Fig. 3. For Mσ on the largest two volumes
at each m f finite size effects are negligible in our statistics. For a check of consistency with the
hyperscaling, we fit Mσ on the largest volume data at each m f using the hyperscaling form in the
infinite volume limit with a fixed γ = 0.414 which is consistent with the one obtained from Mπ . The
fit result is also shown in Fig. 3, and gives a reasonable value of χ2/DOF = 0.12. This is consistent
with the theory having infrared conformality. It is also found that the ratio Mσ/Mπ for each m f

is smaller than unity. Such a light state can also be seen in the gluonic operators at small fermion
mass, as shown in Fig. 3. We regard the light scalar state observed for N f = 12 as a reflection of
the dilatonic nature of the conformal dynamics, since otherwise the p-wave bound state (scalar)
is expected to be heavier than the s-wave one (pseudoscalar). The scalar mass in N f = 12 QCD
sharply contrasts with real-life QCD.
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Figure 3: Mass of the flavor singlet scalar meson σ compared to the mass of the pseudoscalar and the mass
from gluonic operators G. Errors are statistical and systematics added in quadrature. The hyperscaling curve
is described in the text. The triangle and filled square symbols are slightly shifted for clarity.

5. Summary

We have studied the conformal dynamics in N f = 12 QCD on the lattice. Our present data for
Mπ , Fπ and Mρ are consistent with the conformal hypothesis. The mass anomalous dimension was
estimated through the finite size hyperscaling analysis; Our result, γ ∼ 0.4−0.5, is not as large as
γ ∼ 1, which is required for a realistic technicolor model. We have also performed the first study
of the flavor singlet scalar state. The most striking feature of the measured scalar spectrum is the
appearance of a state lighter than the pseudoscalar state. We infer that the lightness of the scalar
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state is due to IR conformality. This result sheds some light on the possibility of a light composite
Higgs boson in walking technicolor theories. It is thus interesting to investigate the scalar in N f = 8
QCD, which was shown to be a good candidate for a walking technicolor model [14]. An indication
of such a light scalar in N f = 8 QCD has already been observed [15].
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