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We summarize our results on the ABJ(M) matrix model, which is the vacuum expectation value

of a supersymmetric Wilson loop operator in the M2-brane worldvolume theory. We first give a

Giambelli formula for the ABJ(M) matrix model. This formula implies that the fractional brane

can be interpreted as a composite state of string excitations. We also present an exact instanton

expansion of the ABJM partition function. This instanton expansion is especially interesting,

because the coefficients of the string worldsheet instanton are divergent at certain Chern-Simons

levels, though the divergences are completely cancelled by the divergences coming from the co-

efficients of the other membrane instanton. This is reminiscent of the lessons we learned in the

non-perturbative study of string theory: String theory is a consistent theory only after including

the non-perturbative branes.
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1. Introduction

In physics, it is standard to study the most special background first, where sometimes sym-
metry is enhanced and sometimes the model becomes simple or even solvable, and then proceed
to more general backgrounds by perturbation theory or other methods. In string theory, in some
sense, the five perturbative string theories on ten-dimensional flat spacetime served the role of the
special backgrounds. However, when the non-perturbative effects in string theory became clearer
about two decades ago, the situation changed drastically. We found that, in the strong coupling
limit, both the type IIA string theory and the heteroticE8×E8 string theory become a theory
with an enhanced Lorentz symmetry dubbed M-theory, whose low energy effective action is the
eleven-dimensional supergravity. Hence, the most special background would be M-theory from
this non-perturbative viewpoint.

Since the number of the supercharges is also maximal if we take the superconformal symme-
try into account, it is equivalently fundamental to study the backgrounds, type IIB string theory
on AdS5×S5, M-theory onAdS4×S7 and M-theory onAdS7×S4, whose gauge theory duals are
D3-branes, M2-branes and M5-branes respectively. Even though these theories share the special
property of the maximal supersymmetry, they are still some of the most mysterious theories. There-
fore, we are far from satisfied with our understanding of M-theory or non-perturbative string theory.
One strategy to attack this situation would be to clarify the mathematical structures of these special
backgrounds first and try to read off as much physical implication as possible.

Here let us concentrate on the M2-brane case. We shall obtain some physical insights by
studying the worldvolume theory deeply. It was proposed in [1, 2] that the worldvolume theory of
min(N1,N2) M2-branes with|N2−N1| fractional M2-branes on the geometryC4/Zk is described
by N = 6 supersymmetric Chern-Simons theory with gauge groupU(N1)×U(N2) and levels
k,−k. It was also found that, due to the localization techniques [3], partition function and vacuum
expectation values of BPS Wilson loops, originally defined by an infinite-dimensional path integral,
are reduced to a finite-dimensional matrix integration [4, 5, 6]. This matrix model is called the
ABJ(M) matrix model. In the following sections, we shall first present our results on this matrix
model in a rather mathematical language, so that the statements look clearer, and then proceed to
discuss their physical implication.

2. Half-BPS Wilson loop in arbitrary representations

Let us first summarizes our result of [7, 8]. We define the ABJ(M) matrix model in canonical
ensemble as

〈sλ 〉k(N1,N2) =
(−1)

1
2N1(N1−1)+ 1

2N2(N2−1)

N1!N2!

∫
dN1µ

(2π)N1

dN2ν
(2π)N2

sλ (eµ1, . . . ,eµN1 |eν1, . . . ,eνN2)

×
(

∏i< j 2sinhµi−µ j

2 ∏a<b2sinhνa−νb
2

∏i,a2coshµi−νa
2

)2

e
ik
4π (∑i µ2

i −∑a ν2
a). (2.1)

This matrix model was obtained by computing the partition function or the vacuum expectation
value of a half-BPS Wilson loop in the ABJ(M) theory with the localization techniques [4, 9, 10].
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To reduce the explanation, here let us simply accept it as a definition and explain its structure in the
following.

Let us first understand this matrix model from the group-theoretical viewpoint. The most
fundamental matrix model is probably the Gaussian matrix model

1
N!

∫
dNµ

(2π)N sλ (eµ1, . . . ,eµN1)

(
∏
i< j

(µi−µ j)

)2

e−
k

4π ∑i µ2
i . (2.2)

There are two natural ways to deform this model. One deformation is the supersymmetrization:
We can replace theU(N) invariant measure by the invariant measure of the supergroupU(N1|N2).
Another is the Chern-Simons deformation or the so-calledq-deformation. We replace the integra-
tion variableµ by its exponential functioneµ . The ABJ(M) matrix model can be regarded as the
Gaussian matrix model with the two simultaneous deformations. Therefore, it is suitable to call the
ABJ(M) matrix model the supersymmetric Chern-Simons matrix model as well.

Heresλ (eµ1, . . . ,eµN1 |eν1, . . . ,eνN2) is the supersymmetric Schur polynomial depending on the
partitionλ . The supersymmetric Schur polynomial is the character of the supergroupU(N1|N2) in
a representationλ .

As a special case, when the representation is trivial,sλ=· = 1, the matrix integration cor-
responds to the partition function, while for a non-trivial representation, the matrix integration
corresponds to the vacuum expectation value of a half-BPS Wilson loop. WhenN2 = N1, let us
call the ABJ(M) matrix model the ABJM matrix model, while whenN2 6= N1 we call it the ABJ
matrix model. In this sense, the ABJM partition function withN2 = N1 andsλ=· = 1 is the most
fundamental matrix integration here.

Hereafter, without loss of generality, we assumeM = N2−N1≥ 0 andk> 0.

2.1 Generalized Giambelli compatibility

Let us also define the ABJ(M) matrix model in grand canonical ensemble as

〈sλ 〉GC
k,M(z) =

∞

∑
N=0

zN〈sλ 〉k(N,N +M), (2.3)

and define the one normalized by the ABJM partition function with a double bracket,

〈〈sλ 〉〉GC
k,M(z) =

〈sλ 〉GC
k,M(z)

〈1〉GC
k,0(z)

. (2.4)

Then, we find a theorem [7, 8, 11] stating that the normalized grand canonical vacuum expec-
tation value can be expressed by a determinant

〈〈sλ 〉〉GC
k,M(z) = det

((
Hlp,−M+q−1(z)

)
1≤p≤M+r

1≤q≤M

∣∣(H̃lp,aq(z)
)

1≤p≤M+r
1≤q≤r

)
, (2.5)

whereHp,q(z) andH̃p,q(z) are given by

Hp,q(z) = Ep•
[
1+zQQQ◦PPP•]−1

Eq, H̃p,q(z) = zEp•
[
1+zQQQ◦PPP•]−1

QQQ◦Eq. (2.6)
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(a) (b)

Figure 1: Frobenius notation for the ABJM case (a) and for the ABJ case (b). The same Young diagram is
expressed as(a1a2a3|l1l2l3) = (641|410) in the ABJM case while(a1a2|l1l2l3l4l5) = (31|74320) in the ABJ
case(M = 3). It is also convenient to regard the first three inverse horizontal arrows in (b) as additional arm
lengths(−1,−2,−3).

In the above expression,PPP, QQQ andE j are regarded as “matrices or vectors” withcontinuousindices
µ, ν , whose components are given by

(
PPP
)

µ,ν =
1

2coshµ−ν
2

,
(
QQQ
)

ν ,µ =
1

2coshν−µ
2

,
(
E j
)

ν = e( j+ 1
2)ν . (2.7)

In (2.6) the matrix multiplications◦ and• are defined by “contracting” thesecontinuousindicesµ,
ν, in the sense of integration with the following measures

∫
dµ
2π

e
ik
4π µ2

,
∫

dν
2π

e−
ik
4π ν2

. (2.8)

In (2.5) the non-negative integersaq and lp are the numbers appearing in the modified Frobenius
symbol(a1 · · ·ar |l1 · · · lr+M), which is defined by

aq = λq−q−M, lp = λ ′p− p+M, (2.9)

with

r = max{s|λs−s−M ≥ 0}= max{s|λ ′s−s+M ≥ 0}−M. (2.10)

Pictorially these are the numbers of boxes counted from the diagonal line shifted byM. (See figure
1.)

As a corollary [7], for the special case of the ABJM matrix modelM = 0, we find the relation

〈〈s(a1,··· ,ar |l1,··· ,lr )〉〉GC
k,0(z) = det

(
〈〈s(aq|lp)〉〉GC

k,0(z)
)

1≤p≤r
1≤q≤r

. (2.11)

It is a classical mathematical result stating that the Schur polynomial itself (and its supersymmetric
generalization) satisfies the Giambelli formula

s(a1,··· ,ar |l1,··· ,lr ) = det
(

s(aq|lp)

)
1≤p≤r
1≤q≤r

. (2.12)
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(a) (b)

Figure 2: The hook representation(a|l) can be regarded as the fundamental excitation of a fermion, where
the fermion in the (l + 1)-st state below the sea level of the Dirac sea is excited to the (a+ 1)-st state above
the sea level.

Hence, our relation (2.11) claims that we can put the normalized grand canonical expectation values
〈〈 · 〉〉GC

k,0 to all of the characters appearing in the Giambelli formula (2.12). In other words, the
formula (2.11) can be stated that the normalized grand canonical expectation values of the half-
BPS Wilson loop in the ABJM matrix model is Giambelli compatible and the original formula
(2.5) shows the Giambelli compatibility in a more general sense.

Notice that, even for the ABJ partition function (N2 6= N1) where there is no Young diagram,
the effect of shifting the diagonal line in the Frobenius symbol still causes a non-trivial determinant,

〈1〉GC
k,M(z)

〈1〉GC
k,0(z)

= det
((

HM−p,−M+q−1(z)
)

1≤p≤M
1≤q≤M

)
. (2.13)

2.2 ABJ fractional branes from ABJM Wilson loop

Now let us present a physical interpretation for the generalized Giambelli formula (2.5), (2.13).

The Young diagram can be regarded as the fermion excitation. Namely, we place the Young
diagram on the upper left corner and trace its outline. We identify the vertical line as the states filled
by the fermions and the horizontal line as the states unfilled. With this rule, the hook representation
is identified as a fundamental excitation of a single fermion, while a non-hook one is as a collective
excitation of multiple fermions. (See figure2.) Here we also see that the diagonal line is interpreted
as the sea level of the Dirac sea. Hence, the shift of the diagonal line in the Frobenius symbol in
the ABJ matrix model (N2 6= N1) can be interpreted as a highly-complicated solitonic excitation of
fermions.

Since the Wilson loop in the fundamental representation has the same charge as a string, this
fermion can be interpreted as a string excitation. Compared with the ABJM theory, the new physi-
cal object appearing in the ABJ theory is the fractional brane. Hence, the formula (2.13) states that
the fractional brane can be considered as a highly-complicated solitonic excitation of strings.

This is similar to the excitations considered in the AdS/CFT correspondence [12]. As the
gauge theory operator becomes bigger and bigger, small fluctuating gravitational mode becomes a
heavier brane or even changes the background geometry.
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3. Instanton effects

So far we have considered a rather kinematical structure of the ABJ(M) matrix model. Let us
turn to a more dynamical instanton effect next.

3.1 Exact instanton expansions

For simplicity let us consider the ABJM partition function. From a series of works [13, 14, 15,
16, 11, 17, 18, 19, 20, 21, 22], we have found the grand potential of the ABJM partition function
defined by

eJk(µ) = 〈1〉GC
k,0(eµ), (3.1)

has the expansion

Jk(µ) = Jpert
k (µeff)+Jnp

k (µeff). (3.2)

The perturbative part is given by [15, 16, 11]

Jpert
k (µ) =

C
3

µ3 +Bµ +A, (3.3)

with the perturbative coefficients being

C =
2

π2k
, B =

1
3k

+
k
24
,

A =−1
6

log
k

4π
+2ζ ′(−1)− ζ (3)

8π2 k2 +
1
3

∫
dx

ekx−1

(
3

xsinh2x
− 3

x3 +
1
x

)
, (3.4)

while the non-perturbative part is given by [19, 20, 21, 22] (λs = 2/k)

J(np)
k (µeff) = Ftop(Teff

1 ,Teff
2 ,λs)+

1
2π i

∂
∂λs

[
λsFNS

(
Teff

1

λs
,
Teff

2

λs
,

1
λs

)]
, (3.5)

whereFtop(TTT,τ) andFNS(TTT,τ) are respectively defined by the free energy of the refined topological
string theory

Fref(TTT,τ1,τ2) = ∑
jL, jR≥0

∑
ddd

∞

∑
n=1

Nddd
jL, jRχ jL(qn

L)χ jR(qn
R)

n(qn/2
1 −q−n/2

1 )(qn/2
2 −q−n/2

2 )
e−nddd·TTT ,

χ j(q) =
q2 j+1−q−2 j−1

q−q−1 , qL,R = eπ i(τ1∓τ2), q1,2 = e2π iτ1,2, (3.6)

in the topological limit and in the Nekrasov-Shatashvilli limit,

Ftop(TTT,τ) = lim
τ1→τ

τ2→−τ
Fref(TTT,τ1,τ2), FNS(TTT,τ) = lim

τ1→τ
τ2→0

2π iτ2Fref(TTT,τ1,τ2). (3.7)

HereTeff
1,2 are two Kahler parameters identified with the chemical potential

Teff
1,2 =

4µeff

k
±π i, (3.8)

modified by [21]

µeff =





µ− (−1)k/22e−2µ
4F3

(
1,1, 3

2,
3
2;2,2,2;(−1)k/216e−2µ

)
,

µ +e−4µ
4F3

(
1,1, 3

2,
3
2;2,2,2;−16e−4µ

)
.

(3.9)
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3.2 Cancellation mechanism

In the above subsection, we have presented an exact instanton expansion of the ABJM grand
potential. After including all the instanton effects, we finally arrive at the very compact expression
(3.3), (3.5). However, to distinguish each instanton contribution, let us expand it slightly

Jk(µ) =
C
3

µ3 +Bµ +A+
∞

∑
`,m=0

(`,m)6=(0,0)

f`,m(µ)e−2`µ− 4mµ
k , (3.10)

where f`,m(µ) is a quadratic function ofµ for m= 0 and a constant function for other cases. We
call the terms with̀ = 0 as worldsheet instanton terms, those withm= 0 as membrane instanton
terms and those withm 6= 0, ` 6= 0 as bound state terms, since the` = 0 terms are identified as the
string worldsheet wrapping the holomorphic cycleCP1 ⊂ CP3 [23, 13] while them= 0 terms are
identified with D2-branes wrapping the Lagrangian submanifoldRP3⊂ CP3 [14].

From explicit numerical studies, we find that the coefficient is vanishing when both the level
k and the membrane instanton number` are odd integers. So for integersk, we obtain a schematic
expansion with all the finite coefficients omitted as in figure3. We first observe that when the
instanton number is smaller thank/2, the coefficients match correctly with those of the worldsheet
instanton predicted from the topological string theory. We further find that the coefficients of
the worldsheet instanton are divergent at certain levels. If we require that these divergences are
cancelled by the divergences of the coefficients in the membrane instanton, we can determine the
coefficients in the membrane instanton for generalk [19, 20], so that they also match with the WKB
analysis in [11].

This cancellation mechanism meets our expectation in string democracy. Namely, only the
string worldsheet instanton will cause a divergent theory. It is only after we include the membrane
instanton coming from the non-perturbative branes that the divergences cancel among them.

Note that the cancellation mechanism is not only important from the above aesthetic viewpoint,
but also for the practical reason. In fact, let us stress that the first few membrane instantons are
determined from this cancellation mechanism in [19, 20] and our exact instanton expansion (3.5)
is confirmed by this cancellation mechanism [22].

The analysis for the ABJM partition function was also extended to the case of the half-BPS
Wilson loop expectation values in [7] and the case of the ABJ partition function in [8].
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