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1. Introduction

Quite precise cosmological observations such as Type la Supernovae have revealed the current
accelerated expansion of the universe. For the homogeneous and isotropic universe, there are
two representative ways of explaining this phenomenon. First is the introduction of dark energy
with negative pressure in general relativity. Second is the modification of gravity on the long
distance, e.g.F(R) gravity [1, 2, 3] (for reviews on dark energy and modified gravity, see, for
instance, 4, 5,16, [7]).

In this article, among various modified gravity theories, we concentrate(Bh gravity and
F(T) gravity with T the torsion scalar in teleparallelisi8] [and review the recent developments
on cosmological issues and their theoretical properties. We use ukis-o0€ = h= 1 and denote
the gravitational constaf®niG by k2 = 871/Mp? with the Planck mass dflp) = G /2 = 1.2 x
10*° GeV.

The article is organized as follows. In Sec. II, we review various cosmological subjéatRjn
gravity. First, we explain the action and derive the gravitational equations. We explore the con-
formal transformation from the Jordan frame to the Einstein frame and its inverse transformation.
After that, we investigat®? inflation, namely, the so-called Starobinsky inflation. Also, we present
a unified model of inflation and dark energy era, and describe the properties of the finite-time future
singularities. Moreover, we study neutron stars and the issue of hyperon. For the recent study of
stars in dilaton gravity, se®]. Next, in Sec. lll, we explain significant cosmological issueB {it)
gravity. To begin with, we present the formulation of teleparallelism. We state the impossibility of
the conformal transformation frof(T) gravity in the Jordan frame into pure teleparallel gravity
with a scalar field, which corresponds to the Einstein frame in the ordinary curvature gravity. In
addition, we examine the analogue of the Starobinsky inflation, Tieipflation. Furthermore,
we illustrate the unification of inflation in the early universe and the late time cosmic acceleration
at the dark energy dominated stage. We also mention the finite-time future singularities in loop
guantum cosmology (LQC). Moreover, we study a conformally invaigiit) gravity theory. We
further explore trace-anomaly driven inflation. In Sec. IV, we review our main resulEs(dn
gravity theories from the Kaluza-Klein (KK) and Randall-Sundrum (RS) theories in [R@if. [n
Sec. V, summary are described.

2. F(R) gravity

We present the brief review &f(R) gravity. The action describing(R) gravity with matter
is represented by

F(R
S= /d4Xv _gZE<2)+/d4xgmattel(guv,q)matter)- (2.1)

Here,g is the determinant of the metric tenspr, , Zmatteris the Lagrangian of matter, ameh,atter
denotes matter fields. Variation of the action in E211( with respect tay,,, leads to the gravita-
tional equation

1 1
F'(R) (R,w — zgwR> = KPRt >0 (F'(RR-f) +0,0F (R —gwOF'(R), (2.2)
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where the prime means the derivative with respe® &sF'(R) = dF(R)/dR, 0, is the covariant
derivative,[] = g*V 0,0y is the covariant d’Alembertian, alﬂf\‘,a“erthe energy-momentum tensor
of matter.

We suppose the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) nufrie- —dt? +
a’(t)y3, (d)d')2 with a(t) the scale factor. In this background, if matter is a perfect fluid, it follows
from Eq. 2.2) that the gravitational field equations read

3F/(R)H? = K?Pmatter+ % (F'(RR—F(R)) —3HF'(R), (2.3)
—2F'(RH = K (Pmatter+ Pmatie) + F'(R) —HF'(R). (2.4)

Here,H = &/ais the Hubble parameter, and the dot denotes the time derivative. Morppues:
andPnagerare the energy density and pressure of matter, respectively.

2.1 Conformal transformation

We make conformal transformation on the action in 2al){ Using an auxiliary fieldy, the
action in Eq.2.]) is expressed as

S= /ol“x\/?gzi2 [F(X)+(R—X) d(ig?()] + /d“xzmaue(guvmmaner). (2.5)

Varying this action with respect tp leads to(R— x) d?F (x)/dx? = 0. Assumingd?F (x)/dx? #
0, we haveR = x. By substituting this relation into the action in EG.%), we see that the original
action in Eq. 2.1) is recovered. Through the conformal transformatign — Guv = Q?gy, with
Q? = o7, wheres/ = dF(x)/dx we acquire1,[12,13]

/R 1. 1
S:/d“x\/—g (M—zg“vduwdvtp—v(cp)) +/d4x.$maner(d 'Guv, Pmatte),  (2.6)

AR—F 31
V((p)zW, Q= \[ZKIn%. (2.7)

Here, the hat shows quantities in the Einstein frame.

Next, by following the investigations in Refl4], we explore the inverse conformal transfor-
mation from the Einstein frame to the Jordan frame. Here, for simplicity, we consider the system
consisting of gravity and a scalar field parts without other matter. From the action ig.E}jwe
have

/R 1 oy
S:/d4x\/jg <2K2—2w<4’)9u auwde—w(‘ﬂ)) ; (2.8)

with the coefficient functioro() for the kinetic term of the scalar fielgf andW () the potential

of . We introduce other scalar field, defined byo = [dy+/|w(y)|, and represent the ac-
tion in Eq. 2.8) asS= [ d*x/—§[R/ (2k?) ¥ (1/2) §*Vd,00,0 —\W(0)]. Here, for the positive
(negative) sign otu(y), that of the kinetic term is~’ (* +'), namely, the action describes the non-
phantom (phantom) phase, at{o) is the potential ofo. We examine the action with the-'

sign Kinetic term, i.e.g is a canonical scalar field. We make the inverse conformal transformation:
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Guv — exp(i« /2/3KO') Ouv, SO that the kinetic term af can be removed from the action shown
above. Accordingly, we obtain

S:/d4x\/jg exp(j: 2/3KU> R-exp(iz\/gKo) W(a)] . (2.9)

2K?2

This is considered to be the action in the Jordan frame. Moreover, the equation of motion for
o is given byR = 2k exp(i\/2/73Ko> (ZKW(U) + \/3/72dv~\/(0)/d0>. This can be solved as

o = o(R). As a consequence, we acquire the action foF&R) gravity theory in Eq. 2.])
without matter action, where the form Bf(R) is expressed as(R) = exp(i\/ﬁKa(RD R—

2K2exp(j:2« /2/3Ko(R)) W(o(R)).
It is important to point out that in the presence of matter, we have matter which couples with
some function oR, and then it may be impossible to get a solutiompafs @(R), as it will depend

also Oniﬂmatter(guv, Drmatter)-

2.2 R? inflation (the Starobinsky inflation)

The action for arR? theory without matter is written as

ol 1 1
S_/d G5 <R+6M§R2) , (2.10)

with Mg a mass scale. F&? inflation model[L5], from Eq. 2.7) we obtain L1, 12, 13]

2
3Mm2 2
V(p) = 4K§ [1— exp(—\/;K(p>

The PLANCK analysis shows the spectral inagx= 0.9603+ 0.0073(68% CL) for the scalar
mode of curvature perturbations and the tensor-to-scalarmratio.11 (95% CL) [16]. Provided
that @ > @, whereg is the value ofp at the end of inflation = t;. When the number of-folds
Nar = [ Hdt = (3/4) exp(\/2/73K(p> = 50from the end of inflation to the time when the curvature
perturbation with the comoving wave numbdet kgrosscrossed the horizon, for the super-horizon
modes, i.e.k < aH, we havens = 1+dInAZ,(k)/dIn k‘k:kcross: 1-66+2n ~1—2/Ny=0.96
andr = 16e = 12/N2 = 4.8 x 103, the value of which is much smaller than the upper limit
(r < 0.11) suggested by PLANCK. Heré&% is the amplitude of scalar modes of the primordial
curvature perturbations &t= 0.002Mpc ™! [17,18].

It is remarkable to note that in the presence of matter, through the conformal transformation,
the matter Lagrangian in Ec2.() would transformed into the form in ER.€).

In Ref. [19], referring to the success &% inflation (the Starobinsky inflation), the reconstruc-
tion of anF(R) gravity theory from a scalar field theory in the Einstein frame, which has an ap-
propriate potential to realize inflation satisfying the observational constraints found by PLANCK.
As an exampley (@) = by -+ by exp(y/1/3k @) + bpexp(2,/1/3k @) with b (i = 0,1,2) constants.

By combining this expression with the first relation &.9), we find F(R) = [—b1/ (2bg)| R+
[1/ (4bo)] R? + € with ¢ = b2/ (4bo) — b,. For R? inflation, sinceF (R) = R+ [1/ (6M3)]| R?, we
have—by/ (2bg) = 1 andbg = b,. As aresult, ifo, = 3M3/ (4«?), the potential of the correspond-
ing scalar field theory t& inflationV (¢) in Eq. (2.11) can be obtained.

(2.11)
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2.3 Unified scenario of inflation and dark energy era and finite-time future singularities

The first proposal of unification of inflation and dark energf {iR) gravity (|20, 21]) has been
made in Ref./3]. Its realistic extension for exponentiglR) gravity was given in Refs22, 23].
There has been proposedR(R) gravity theory where inflation and late time cosmic acceleration
can be realized in a unified mann@e[ 23]

F(R) =R—2A [1—exp<—§>] — Aint {1—exp[— (Rﬁfﬂ } +;7<F¥;1f1> RY, (2.12)

with R and Ajs representative values of the scalar curvature and cosmological constant at the
inflationary stage, respectively(> 1) a natural numbery(> 0) a positive dimensional constant,
anda a real number. The last term plays an important role to realize the graceful exit from inflation
at the inflation scal&l;. In fact, fora > 1 andn > 1, there is no influence of inflation on the
evolution of the universe at the small curvature, and inflation does not have any effects on the
stability of the matter dominated stage.

It is known that depending on the model, in the litnit ts, there may appear finite-time future
singularities which were classified as folloviz3[.

(i) Type | (“Big Rip”) singularity: Whent — ts, @ — 00, pef — 00, and|Pegt| — . Here, pes
and P are equivalent to the total energy density and pressure of the universe, respectively. The
case thapeyr andP.¢ become finite values &t is included.

(i) Type Il (“sudden”) singularity: Whem — ts, a — as, Peff — Ps, aNd|Poft| — 0.

(iii) Type Il singularity: Whent — ts, a — as, Peff — %, and|Pag| — oo.

(iv) Type IV singularity: When — ts, a— as, pett — 0, and|Pet| — 0. Only higher derivatives
of H becomes infinity. This also includes the case tatnd/or|Pe;| become finite values at=ts.
Here,ts, as(# 0) andps are constants.

It is remarkable that adding? term to such models with finite-time future singularities may
lead to complete removal of finite-time future singularities. From other $8derm induces
early-time inflation. Hence, we achieve two goals: unification of inflation with dark energy and
cancellation of finite-time future singularities. For the detailed study of removal of finite-time
future singularities irF (R) gravity via adding oRR? term, which induces inflation within a unified
manner, one can consult Re25]|.

2.4 Neutron stars and the puzzle of hyperon

By following the investigations in Ref2l], we describe a model of neutron stars and present
a solution for the issue of hyperon, i.e., the recently observed neutron star with its masaMbout
cannot be realized by using an equation of state (EoS) for hyperoR§Rngravity. In the case
of the action in Eqg.2.1) with F(R) = R+ d;R? + d,R®, whered; andd, are constants, for a soft
equation of state (EoS) for hyperon, it is demonstrated that the maximum mass of a neutron star can
explains the observations of the pulsar PSR J1614-2Z270dnd that the resultant Mass-Radius
relation can be compatible with the observations.

To begin with, we write the Tolman-Oppenheimer-Volkoff (TOV) equatior-{{iR) gravity.
With the EoS for hyperons, we examine a neutron star model in the powét{Rgravity model
shown above. We draw the diagram of a Mass-Radius relation ifr (R gravity model and
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compare it with that in general relativity. Furthermore, we explore whether the maximum mass of
the neutron stars and the relation between Mass and Radius consistent with the observations can be
derived inF (R) gravity.

The analyzed results are summarized as follows. In general relativity, for a hyperon model, the
maximum mass of neutron stars is constrained to be smaller than around two solar mass by soften-
ing the EoS for nucleons, thanks to the hyperonization. On the other hand, in the poweRaw
gravity model a (R) = R+d;R? 4 d,R®, which is a simple approximation of a more complicated
non-linear form ofF (R), with a EoS for hyperons, the mass of neutron stars can reach around two
solar mass. It should be emphasized that only in the central part of neutron stars with its high
density, the resultant Mass-Radius relation is different from that in general relativity. Accordingly,

a EoS for neutron stars is softened effectively, so that the relation between Mass and Radius for the
observed neutron stars: EXO 1745-248, 4U 1608-52, and 4U 1820-30 can be explained. It may
be interpreted that the following three subjects are resolved in the framework of modified gravity:
the maximum mass of a neutron star, the Mass-Radius relation, and the puzzle of hyperons. A
future subject would be to develop the way of solving the TOV equation non-perturbatively, and
that in order to execute it, it is necessary to develop more sophisticated numerical techniques and
to understand the so-called chameleon mechanism, which is a shielding effect of the deviation of
F(R) gravity from general relativity as well as quantum gravity in very high density region.

3. F(T) gravity

We introduce orthonormal tetrad componesigx”) (A= 0,1,2,3) in teleparallelism 8.
Here, the inde)A is used at each point' for a tangent space of the manifold, and hed,{:ds the
so-called vierbein, namely, a tangent vector for the manifold. The metric tensor is givgn by
nABeﬁeﬁ (1, v=0,1,2,3), whereu andv are coordinate indices on the manifold. Also, the inverse
of the vierbein is derived from the equatiefie) = &)/. The torsion tensor is constructedi,, =
re,, — WP, = & (aueh — aveh), wherelr P, = g, €l is the Weitzenbick connec-
tion. The torsion scalar is representedys S, F TPy = (1/4) TPHV Ty + (1/2) TPHV Ty pp —

Tou PTYH,. Here, the superpotential is defined &y = (1/2) (K“"p +O5 TV, — 5y T"“a>
with K*Y p = —(1/2) (T*, =T, — T, ") the contortion tensor. By usiri, the action for the
modified teleparallel gravity with matter is expressed as

S= / o

wherele| = det(e}}) = /—0.
It is important to caution that there does not exist the conformal transform2ghrtfirough

which anF (T) gravity theory reduces to a scalar field theory in pure teleparallel gravity, although
in general relativity, constructed by the Levi-Chivita connection, there exists such a conformal
transformation of ar (R) gravity theory into a scalar field theory with the Einstein-Hilbelt term.
Therefore, we cannot examine cosmology in the corresponding action in the Einstein frame con-
sisting of the terms of pure teleparallel gravity and a scalar field theory, which is obtained from the
action ofF (T) gravity with the conformal transformatio29.

Pmatter) - (3.2)
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3.1 Analogue of the Starobinsky inflation {2 inflation)
The action ofT 2 gravity without matter term is given by

1 1
S:/d4x\e|2K2< +6M2T> /d4x|ey [T+2D“T”,,,))+6M2T2 (3.2)

Here, the second equality can be satisfied because thd:t’éTrﬁ,p is a total derivative. Clearly,
the form of this action is different from that of the action in EB.10), so that there can exist
the differences of cosmology derived from these actions. In T&cinflation can be the de Sitter
expansion, whereaR? inflation cannot it 29]. In the flat FLRW universe, foif 2 gravity, we
find the Hubble parameter at the inflationary stiyg = Ms/+/3 = constantand thus the scale
factor during inflatiora(t) = aexp(Hinit) = aexp[(Ms/+/3) t], wherea(> 0) is a positive constant.
In case ofR? gravity, if |H/(M3H)| < 1 and |-H2/(M3H?)| < 1, we obtainH = Hiyigal —
(M3/6) (t — tinitiar) @nd a = aynifial [Hinitial (t —tinitia) — (M3/12) (t —tinitial)z}- Here, tinitial IS the
initial time of inflation, andHinitial IS the value of the Hubble parameter axfliy is that of the scale
factor attiniia;. Consequently, the behavior f inflation is different from that oR? inflation.

3.2 Unification of inflation and the dark energy dominated stage

A unified model between inflation and the dark energy dominated stage has been proposed in
Ref. [30]. In this subsection, we adopt the unit where= 1. Provided that the universe is filled by
a barotropic fluid with its equation of state = Py /pq = —1— fq(on )/ pn, wherepy andPy are the
energy density and pressure of a barotropic fluid, respectivelyf:dipg) is a function ofpg. We
explorefq bringing with two zeros, i.e., two de Sitter solutions, leading to a cosmological constant
with its large value during inflation in the early universe and a fluid with zero pressure such as dust
at the late time.

The Lagrangian is described by = VsF (T) — Vspr (Vs) with Vs the spatial volume. Since
the conjugate momentumds%’/dVs, we see that the Hamiltonian becom#é= Vs (9% /9Vs) —
£ = (2TF(T)—F(T)+pn)Vs, Wwhere the prime depicts the derivative with respect toFrom
the Hamiltonian constraint iR (T) gravity is the same as one in general relativity, naméfy= 0,
with Vs £ 0, we havepy = F(T) — 2F/(T)T. By using this relation, we observe a curve in the
plane of(H,py). For the pure teleparallel gravity, i.e5(T) =T, with T = —6H?2, the above
relation readsT /24 py = 0, from which we find the Friedmann equatiét? = py /3. Hence,
the dynamics is determined by the equation sysker fy (pr)/2 and py = 3Hfh(pr). As an
example, we build a model with a small cosmological constdnso that the energy density of
the universe can bpy +A%. In this case, ifpq = pf(l'”f) is large, the fluid behaves as a large
cosmological constant, whereas, whanis small, its pressure is almost zero. Thus, Ber=

—p2/pi™, sincewy = —pn/pi™, we acquirefy (oq) = —pn <1 pf/pﬂ'”f) In this model, there

exist two critical points. The first poir is (H, pq) = (A?/+/3,0), wherew; = —1 (i.e., the de
Sitter expansion) and the energy fraction of a flGigl= py/ (SHZ) ~ 1. The second poin® is

(H,p1) = (1/ (pf(li”f) +)\4) /3,08™), wherews = —1 (i.e., the de Sitter expansion) a = .

Moreover, forA4 < pg < pf(li"f), we see thatvy ~ 0 andQy ~ 1 (i.e., the matter (fluid) dominated

stage). Therefore, it can be considered that in the present model, thé’pomtesponds to the
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inflationary stage, the poir, describes the dark energy dominated stage, and there exists the
matter dominated stage between the poiteandP.. In comparison with the unified model in
Eq. 2.12) of inflation and the late time cosmic acceleratioffrifR) gravity, the results stated in the
aboveF (T) gravity model are reasonable, because also irFti® gravity model in Eq.2.12),
inflation, the stable matter dominated stage, and the late-time cosmic acceleration can be realized.
In Ref. [31], finite-time future singularitieshave been studied in the framework of loop quan-
tum cosmology (LQC) (for recent reviews on LQC, s88,(34]). It has been demonstrated that
in LQG, holonomy corrections addf% correction term to the Friedmann equation, so that a Big
Rip singularity can be cured. Furthermore, it has been investigated whether other types of finite-
time future singularities can be removed in LQC. As a consequence, Big Rip singularities cannot
appear because along an ellipse in the plan@lopy ), the Friedmann equation moves in the anti-
clockwise manner. However, whdp diverges at some energy density smaller than the critical one,
sudden singularities can occur

3.3 Conformally invariant F(T) gravity theory

Recently, a conformally invariant scalar field theory has been investigated in38gf. 1
ordinary curvature gravity, the action of the conformally invariant scalar field theory is represented
as

S— /d“xF( ZR—fDMp ”¢—r‘f1;ni>, (3.3)

with B; andmy constants. The variation of this action with respect to the scalardiéddds to the
equation of motion fop asCd¢ —B1pR+ ¢™ = 0. It is known in Ref. BE] that this equation is
invariant under the conformal transformation fbiof ¢ = exp(y1n) ¢, wheren = n(x) andy; is

a constant, and that fay,, of §,v = exp(n(X)guv), whenBy = 1/6, my = 3, andy, = —1/2. By
analogy with the above fact, it is considered that also in teleparallel gravity, the equation of motion
for ¢ is invariant under the conformal transformation §oof ¢ = exp(y2n) § with y; a constant

and that forg,,, of g,y = exp(n(X)guy). As aresult, if the action is given by

¢m2+1
mz+1> ’

S= /d“x e( 3T+ 2 DH¢D“¢+83¢T pOHe — (3.4)
from this action, the equation of motion fgrreads_1¢ + B¢ T + B3¢ D“Tpup +¢™ =0, where

B, =1/6, Bs = 1/3, andny = 3. Here, in deriving Eq.3.4), we have used the relatidR =

—T —20KTY,,. Itis significant to obtain the above consequence, namely, the torsion scalar can
non-minimally couple to a scalar field conformally, that the second term on the right-hand side of
this relation is the total derivative, and that this total derivative term consists of both the torsion
scalar and the Ricci scalar.

3.4 Trace-anomaly driven inflation

We study trace-anomaly driven inflation by following the observations in RE}. The trace
anomaly is given by37] Tanomay= C1[.# + (2/3)0R] + &¥ + &R, Here, . = (1/3)R2 —
2R, R +RyvpoRHVPY is the square of the four-dimensional Weyl tensor, &nd R2 — 4R,y RV +

Lin Ref. [32], the finite-time future singularities iR (T) gravity have been examined in detail.
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RuvpaRHVP? is the Gauss-Bonnet invariant. RdrscalarsNy /, spinors,N; vector fields N, (= 0
or 1) gravitons andNpyp higher-derivative conformal scalai, and¢; are represented as

- N + 6N1/2 +12N; + 611N, — 8NHp

g 3.5

“ 1200412 ’ (3.5)

& — _N+11N1/2+62N1+141]N2—28NHD (3.6)
2= 360(41)2 ' '

For an ordinary matter (except conformal scalars with higher-derivative te€ins)Q and¢, < O.
Moreover,&; can be taken as an arbitrary value, because the finite renormalization of the local
countertermR2 can shift the value o€;. In the flat FLRW universe, we have= 12H2 + 6H,

F =0,9 = 24(H*+H?H), and therefore the trace of energy-momentum tensdrrefadsTr =
—(2/k?) (6H? +3H — F — 3HF’ — 12H2F’ 4+ 36H2HF") with the prime meaning the derivative
with respect tar . It follows the gravitational field equations with the trace anomaly that we find

0= 32 (F +3HF'+12H%F' — 36H?HF")
K

2
- <§61+63> (3t2+3H§t> (12H2 +6H) +246 (H* +H?H) . (3.7)
For the de Sitter space, we have a constant Hubble parahteter ons; SO that EqQ.3.7) can be
written to0 = (2/k?) (F +12HZ,,oF’) + 246Hg, s If € = 0, namely, there is no contribution of
the trace anomaly, we obtafgy = —2T + 12H2 ., which is equivalent to general relativity with

a cosmological constant. With = —6HZ,, this expression can meet the above equation. For
example, ifF (T) = T+ BT" with B andn are constants, the above equation yi¢lds,= 0 and/or

14+ (2n—1)B (—6HZne)" * +2HZ,E:Kk2 = 0. In case of = 2, provided tha{9B/k?) — & > 0,

we get a de Sitter solution. Thus, exponential de Sitter inflation can occur. &irc® for an
ordinary matter, if3 > 0, the above relation satisfies. We remark that the de Sitter soluti®A in
gravity can be unstable, and thii$ inflation can end29]. We also note that compared will?
gravity, for the action in Eq/2.1) without matter, wher& (R) = R+ uR% with v andq constants,

the parameter region to produce the de Sitter solution is smaller.

4. F(T) gravity theories from the Kaluza-Klein (KK) and Randall-Sundrum (RS)
theories

In Ref. [10], four-dimensional effectivd=(T) gravity theories is constructed from the five-
dimensional Kaluza-Klein (KK)13,138,'39] and Randall-Sundrum (RS40,/41] theories.

4.1 From the KK theory

Provided that the ordinary KK reduction procedule,[38, [39] from the five-dimensional
space-time to the four-dimensional one can also be usedTin gravity. One of the dimensions of
space is compactified to a small circle and the four-dimensional space-time is extended infinitely.
The radius of the fifth dimension is taken to be of order of the Planck length in order for the
KK effects not to be seen. Thus, the size of the circle is so small that phenomena in sufficiently
low energies cannot be detected. In the following, we only explore the gravity part of the ac-
tion and remove its matter part. The five-dimensional actionFfor) gravity [42] is given by
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®Is= [d|®)e|F(®)T)/ (2k2) with the torsion scaldP T = (1/4) T3 Typc+ (1/2) T3 Tepa—

T, 2T, the form of which is the same as that of the four-dimensional one, and the Latin indices
(a,b,...=0,1,2,3,5) with “5" the fifth-coordinate component. Here, the superscripty 5f*or

the subscripts of5” expresses the five-dimensional quantiti€se = 1/®g, where® g the deter-
minant of ®'g,,, andkZ = 8nGs = ('Mp)) _3, whereGs is the gravitational constant arM,(:?)

is the Planck mass. The five-dimensional metric is represent@ggs = diag(guv, —y?). Here,

Y = 1/1, is a dimensionless quantity and a homogeneous scalar field only with its time depen-
dence. Alsog is a homogeneous scalar field with a mass dimensionraigia fiducial value of

T. With &} = diag(1,1,1,1, ) andngp = diag(1, -1, —1,—1, —1), the four-dimensional effective
action is written aS§e) = [ d|e] [1/ (2k?) ] WF (T + Y20, ot y).

ForF(T) =T — 2/\4, where/\4(> 0) is the four-dimensional positive cosmological constant,
with a scalar fieldo as ¢ = (1/4) &2, the above action is rewritten td3| Sf<e£)\F(T):T—2/\4 =
JdXe| (1/k?) [(1/8) 2T +(1/2) 9u&HE — A4]. In the flat FLRW space-time with the metric
d =dt?—a®(t) yi_103 (d)é)z, we findg,,, = diag(1, —a?, —a?,—a’) ande,) = diag1,a,a,a). By
using these expressions, we acquire the relafien—6H?2. Accordingly, with the above relation,
the gravitational field equations is derived [@92) £2 — (3/4)H2E2+ Ay = 0 and E2+ HEE +
(1/2)H&2 = 0[43)], and the equation of motion fdf readsé + 3HE + (3/2) H2& = 0. It follows

from the above gravitational field equations tf@t2) H2E2 —2A,+HEE + (1/2) HEZ2 = 0. We get
a solution of the Hubble parameter during inflatiér= Hi,s = constant> 0) andé = & (t/t) + &2,
whereé; andé,(> 0) are constants aricshows a time. In the limit af — 0, we see that exponential
de Sitter inflation can happen bl =~ (2/&2) \//A\4/3, a =~ aexp(Hinst), andé ~ &,. Also, from

the equation of motion fof, we obtainé; ~ — (1/2) &Hint ~ —1/As/3t.

4.2 From the RS type-ll model

The RS type-I modeH(] consists of two branes. One is a brane with positive tensign-ad
and the other is that with negative tensioryat u. Here,y denotes the fifth dimension. By using
the warp factoexp(—2|y|/I) and the negative cosmological constAgf< 0) in the bulk, the five-
dimensional metric is written ais> = exp(—2]y|/I) guv (X)dx*dx” +dy? with | = /—6/As. Inthe
limit u— o, we have the RS type-1l modet1], namely, the single brane with the positive tension
exists in the anti-de Sitter (AdS) bulk space. The gravitational field equation on the brane in the RS
type-ll model has been derived in Red4]. Recently, this procedure with (a) the induced (Gauss-
Codazzi) equations on the brane, (b) the Israel’s junction conditions on it, a@d ggmmetry
of y < —y, has been applied to teleparallel gravihg]. In comparison with the case of ordinary
curvature gravity, there appear additional terms originating from the projection on the brane of the
vector portion of the torsion tensor in the bulk.

For the flat FLRW space-time, on the brane, the Friedmann equationtiéds (T)/dT) =
~(1/12) [F(T) = 47— 2 0nater— (K2/2)* 7 PRae] , where 7 = (11— 600matier-+ 9302 a1y /4
and a EoS of matteWmatter = Prmatte/ Pmatter  The contributions of teleparallel gravity, which
do not exist for curvature gravity, are involved ii. Moreover, on the brane, the effective
cosmological constant becomés= As + (K52/2)2)\2, whereA (> 0) is the brane tension and
G=1[1/(3m)] (K§/2)2)\ . In what follows, we examine the dark energy dominated stage, so that the
contributions from matter, e.gomatter OF Wmatte, CAN be neglected. F&1(T) = T — 2As, by using

10
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the relationT = —6H?2, we acquire a de Sitter solutidA = Hpg = \//\5+Ké)\ 2/6 = constant
anda(t) = ape exp(Hpet), whereapg(> 0) is a positive constant. Hence, the late time accelerated
expansion of the universe can occur. FdiT) = T2/M? + { s, whereM a mass scale anlis a

— 1/4
constant, we getl = Hpg = {(M2/108) [(Z —HN\s—4 (K52/2)2/\2} } = constantHere, since
the content of the 4th root should be positive or zero, we se€thad+ (k2A2) /Ns.

5. Summary

In the present article, we have reviewed recent progress on issues of cosmic acceleration and
theoretical natures ¢f (R) gravity andF (T) gravity. In the former part, we have described various
cosmological and theoretical problemsHfR) gravity. We have examined the conformal transfor-
mation fromF (R) gravity (i.e., the Jordan frame) to general relativity with a scalar field (i.e., the
Einstein frame) and its inverse version. In addition, we have stugfiedflation (the Starobinsky
inflation). Also, we have explained a unified scenario of inflation and the dark energy dominated
stage. Moreover, we have presented the classification of the finite-time future singularities. Fur-
thermore, we have examined neutron stars and the hyperon issue. Next, in the latter part, we have
stated a number of cosmological issues as well as theoretical properkiés jrgravity. First of
all, we have written the basic formulation of teleparallelism. Then, we have remarked the impos-
sibility of the conformal transformation from the Jordan frame to the Einstein frame. We have
further investigated the analogue of the Starobinsky inflation, naffélpflation. In addition, we
have demonstrated the unification between inflation and the late time accelerated expansion of the
universe. Furthermore, we have mentioned the finite-time future singularities in loop quantum cos-
mology (LQC). Moreover, we have shown a conformally invarigt ) gravity theory. Finally,
we have reviewed our main results of R&EQ[ in terms of derivations of (T) gravity theories
from the Kaluza-Klein (KK) and Randall-Sundrum (RS) theories.

It could be expected that through the investigations on various theoretical aspects of a number
of gravity theories, we can acquire some clues to resolve the issues of cosmic acceleration including
the mechanism of inflation in the early universe and the origin of dark energy at the present time.
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