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1. Introduction

Supersymmetry (SUSY) has been the top candidate for beyond standard model (BSM) physics

since many years. While in the past the focus has been on the minimal supersymmetric standard

model (MSSM), the null results from LHC for SUSY searches [1] as well as the rather large Higgs

mass [2, 3] have triggered more interest in SUSY models beyond the MSSM. The reason is that

BMSSM model could not only address these problems but might answer also other questions which

still remain open in the MSSM. An incomplete list of motivations to go beyond the MSSM is the

following:

• Naturalness: the need to push the Higgs mass to the observed level by large loop corrections

gets significantly softened if additional F- or D-term contributions to the tree-level mass are

present [4–8].

• Missing SUSY signals: the unsuccessful searches for SUSY have put impressive limits

on the SUSY masses in the simplest manifestation of SUSY. However, in the context of

compressed spectra or R-parity violation these limits become much weaker [9–11].

• Neutrino masses: neutrinos would still be massless in the MSSM. To incorporate neutrino

masses, either R-parity has to be violated to allow for a mixing of the neutrinos with SUSY

states or additional particles are needed which contribute to the neutrino masses [12–20].

• µ-problem: the µ parameter in the superpotential from the MSSM must be of O(EWSB)

because of phenomenological reasons. However, since it is not protected by any symmetry

its natural size would be O(GUT ). To relax this tensions, µ could be generated dynamically

as a consequence of SUSY breaking like in singlet extensions [4, 21].

• Strong CP-problem: also the question about the strong CP problem remains open in the

MSSM. To solve it, one can introduce a Peccei-Quinn symmetry [22]. The minimal, self-

consistent SUSY model doing that needs three additional superfields whose scalar compo-

nents can mix with the MSSM Higgs states [23].

• UV-completion: there are many SUSY scenarios motivated by GUT or string models where

additional gauge groups are broken close to the TeV scale. These models predict usually

plenty of additional states close to the SUSY scale beside Z′ and W ′.

Most extensions of the MSSM have in common that they come together with an extended Higgs

sector. I’ll give therefore an overview about the most popular extensions of the MSSM Higgs sector

in the next section before I comment in sec. 3 on tools which can be used to study these and many

other models.

2. Overview about non-minimal Higgs sectors

Extending the Higgs sector of the MSSM can have several consequences: (i) additional con-

tributions to the Higgs mass can be present; (ii) the MSSM doublets mix with other states what

will change the character of the ’SM-like’ Higgs boson; (iii) as consequence of this mixing the
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couplings of the Higgs can be modified compared to SM expectations; (iv) additional light scalars

with a reduced couplings to SM particle can be present; (v) additional charged and also double

charged bosons can appear.

What happens and how important an effect is, depends on the concrete model. Therefore,

I’m going to discuss briefly the most important MSSM extensions in the following. I categorize

the extension into two groups: (i) models with the SM gauge sector, (ii) models with an extended

gauge sector, and start with the first one.

2.1 Models with SM gauge sector

I start with models which don’t extend the gauge sector of the MSSM and consider in this

case in particular singlet and triplet extensions as well as models with Dirac gauginos. Of course,

there are many models which I’ll have to skip, e.g. the DiracNMSSM [24, 25], models with a PQ-

symmetry [23], models with bilinear R-parity violation [26, 27], sister Higgs models [28], models

with a gauged R-symmetry [29] and many more. I’ll always assume that the superpotential is

decomposed as W = WY +WX , where WY contains the Yukawa and WX the Higgs part for a given

model. In the MSSM WX corresponds to

WMSSM = µ Ĥd Ĥu . (2.1)

2.1.1 Singlet extensions

The simplest ansatz to go beyond the MSSM is to add a superfield which is a gauge singlet.

The general superpotential for the Higgs sector with all renormalizable terms allowed by gauge

invariance reads

WS = tS Ŝ+µS Ŝ
2
+κ Ŝ

3
+µ Ĥd Ĥu +λ Ŝ Ĥd Ĥu . (2.2)

Usually, one proposes a discrete symmetry to forbid some of the these terms. The most studied

assumption is the next-to-minimal supersymmetric standard model (NMSSM) with a Z3 which

forbids all dimension-full parameters: tS = µS = µ = 0, see [4, 5] and references therein. Other

possibilities are the near-to-minimal SSM (nMSSM) with a ZR
5 (µS = µ = κ = 0) [30, 31] and the

general NMSSM (GNMSSM) with a ZR
8 (tS = 0) [32–34]. All realizations have in common that they

predict additional F-term contributions to the tree-level Higgs to evade the condition mTree
h < mZ

known from the MSSM. The tree-level mass in singlet extensions can be approximated as

m
2,Tree
h = m2

Z cos2 2β +
λ 2

2
v2 sin2 2β , (2.3)

and in the limit of very small tanβ < 3 and large λ > 0.5 one finds that mTree
h can be easily above

100 GeV because of the second term. λ is usually assumed to be below 0.65 to have a theory

which is perturbative up to the GUT scale. If this is given up, even larger λ couplings are possible

[35]. The enhanced tree-level mass relaxes significantly the necessity of large loop corrections

via (s)tops and renders such models a more natural candidate for BSM physics. One can quantify

the naturalness of a model with respect to a set of independent parameters, p, by considering a

fine-tuning (FT) measure like [36, 37]

∆ ≡ maxAbs
[

∆p

]

, ∆p ≡
∂ lnv2

∂ ln p
=

p

v2

∂v2

∂ p
. (2.4)
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Figure 1: Fine-tuning ∆ in the MSSM (orange) and GNMSSM (blue) in a fully constrained model. Plot

taken from Ref. [38]

It has been shown that the NMSSM improves significantly the FT compared to the MSSM

[39–43]. Moreover, going to the GNMSSM reduces the FT even further [34,38,44], see also Fig. 1

for a comparison of the FT in a constraint version of the MSSM and GNMSSM as function of mh.

From a phenomenological point of view already the extension by just one singlet superfield

can have profound consequences: new decay channels for the SM-like Higgs can appear (e.g.

h → AA/HH → 4b/4τ/2b2τ) [45–47]. Also couplings to SM particles can be altered significantly:

there is for instance the possibility to change the effective hγγ coupling either due to a mixing with

the singlet or by chargino loops enhanced by large λ [48–51]. If the singlinos and the singlet have

masses of only a few GeV, this can help to hide SUSY at the LHC because it reduces the missing

transversal energy (/ET ) to a level below the one needed for many SUSY searches [52]. On the

other side new search strategies for charged Higgs fields are possible by considering the cascade

t → bH− → bW−H/A → bW−γγ [53].

2.1.2 Triplet extensions

In the case of triplet extensions, one can consider either a model with only one triplet which

doesn’t carry hypercharge ( T̂, Y = 0) or a model with two triplets with hypercharge ( T̂1, T̂2, Y =

±1). The different terms in the superpotential of the two models read [54–57]

WT 1 = µT Tr( T̂
2
)+λT Ĥd T̂ Ĥu +µ Ĥu Ĥd , (2.5)

WT 2 = µT Tr( T̂1 T̂2)+λu Ĥu T̂1 Ĥu +λd Ĥd T̂2 Ĥd +µ Ĥu Ĥd . (2.6)

In general, triplet extensions share many features with singlet extensions: there is a F-term en-

hancement to the Higgs mass, the Higgs branching ratios can be affected by the presence of the

new particle(s) and new cascade decays compared to the MSSM can arise. A feature compared

to singlet extensions is the presence of additional charged Higgs bosons. For the model with two

triplets even double-charged Higgs bosons appear. Finally, triplet extensions affect the ρ parameter

what constraints the parameter values in this kind models. If the triplets get non-vanishing vacuum

expectation values (VEVs), ρ is already shifted at tree-level, i.e. triplet VEVs must be very small.
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At one-loop one finds limits on combinations of (λT ,µT ) [58]. Unfortunately, both kinds of triplet

extensions spoil the nice feature of gauge coupling unification.

2.1.3 Singlet/Triplet extensions

One can also combine the two ideas and consider a model with triplets and a singlet at the

same time [59]:

WST = λT ŜTr( T̂1 T̂2)+λS Ŝ Ĥu Ĥd +κ Ŝ
3
+λu Ĥu T̂1 Ĥu +λd Ĥd T̂2 Ĥd . (2.7)

The advantage of this setup is that the µ-problem for the triplets gets solved, too. In addition, one

can easier keep δρ under control.

It’s a matter of taste if this is enough motivation to assume the presence of both extensions. How-

ever, there is also a kind of models which predicts the presence of singlets and triplets instead of

adding them ad-hoc: SUSY models with Dirac gauginos, which I’m going to discuss now.

2.1.4 Models with Dirac gauginos

In general, there are two possibilities to generate mass terms for gauginos λ :

MMλλ MDλΨ (2.8)

MM is a Majorana mass term, while MD is a Dirac mass term due to the interaction with a superfield

Ψ in the adjoint representation [60–64]. Dirac mass terms are theoretical well motivated because

they are a consequence of N = 2 SUSY. In contrast to Majorana masses Dirac masses are also

consistent with an R-symmetry. Thus, if one assumes an underlying R-symmetry which forbids

Majorana masses, singlet, triplet and octet superfields are needed to generate masses for all gaugi-

nos. Not only the Majorana masses are forbidden by the R-symmetry, but also trilinear soft-terms

as well as bilinear terms in the superpotential. These constraints give this kind of models a new

character compared to the extensions before because one adds not only new properties but also

forbids feature of the MSSM. Therefore, models with Dirac gauginos can differ significantly from

the MSSM: (i) the cross sections of colored SUSY states can be suppressed by the Dirac character

of the gluino [65–68]; (ii) the constraints from flavor physics get relaxed [69, 70]; (iii) because

of the supersoftness of the theory the RGEs especially for scalar soft masses change significantly

and the mass pattern appearing in a constrained model are completely different to those in the

CMSSM [71–73].

Broken R-Symmetry in Higgs sector If one just adds the superfields Ŝ, T̂ and Ô which are

necessary to generate Dirac gaugino masses, R-symmetry in the Higgs sector has to be broken. This

happens by assuming that a subset of the following, R-symmetry violating terms is present [74]

W/R = (λS Ŝ+µ)Ĥu Ĥd +λT Ĥd T̂ Ĥu +κ Ŝ
3
. (2.9)

Even if these terms violate R-symmetry they neither introduce Majorana masses nor trilinear soft-

terms. Therefore, the radiative corrections of (s)tops to the Higgs are largely suppressed compared

to the MSSM with large stop mixing. Thus, it is either necessary to have very heavy stops in

the multi TeV range or to enhance the Higgs mass already at tree-level via the additional F-term
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known from the NMSSM by choosing large λ and small tanβ . Another consequence of Dirac mass

terms is the presence of new D-terms of the form MDΨ̃aφ ∗T aφ (T a are the generators of the gauge

groups). The corresponding U(1)Y , SU(2) terms give negative contributions to the tree-level Higgs

mass. Thus, the bino and wino Dirac mass is usually assumed not to be too large.
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Figure 2: Lights Higgs mass in the MRSSM at tree-level and one-loop as function of the new λ /Λ couplings

in the superpotential. Plots are an updated version of the ones of Ref. [76] and were kindly provided by

Wojciech Kotlarski.

Unbroken R-Symmetry If R-symmetry is taken to be unbroken, the Higgs sector has to be ex-

tended by two doublets R̂u and R̂d which allow to write down R-symmetric µ-terms [69].

WR = (µu +λu Ŝ)Ĥu R̂u +(µd +λd Ŝ)Ĥd R̂d +Λd R̂d T̂ Ĥd +Λu R̂u T̂ Ĥu . (2.10)

This is the minimal-R-symmetric SSM (MRSSM) and it has many additional differences compared

to the MSSM. For instance, it predicts an asymmetric dark matter candidate because the neutralinos

are also Dirac states. Since there is no λ -term to enhance the Higgs mass, the tree-level mass is

usually lighter than in the MSSM [75]

m2
h ≃ M2

Z cos2 2β − v2

(

(g1MB
D +

√
2λ µ)2

(4(MB
D)

2 +m2
s )

+
(g2MW

D +Λµ)2

(4(MW
D )2 +m2

T )

)

(2.11)

This effect together with the reduced (s)top corrections is not necessarily a big problem as one

might think: loop corrections proportional to λd,u or Λd,u can be used to push the Higgs mass to

125 GeV as shown in Fig. 2. Also in the charged Higgs sector this model is very interesting: it

predicts not only three charged Higgs particles but also two additional charged R-Higgs fields. The

phenomenology of these new charged states is hardly explored at the moment.

2.2 Models with extended gauge sector

Extending the SM gauge sector

GSM = SU(3)c ×SU(2)L ×U(1)Y (2.12)

introduces not only additional gauge bosons but also scalars to break the new gauge group. The

easiest extensions are those with a single U(1). However, GUT theories like SO(10) predict often

6
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also additional SU(N) groups and in string models multiple U(1)’s can be present. These additional

groups can be in principle be broken at any scale close to or significantly above the TeV range. I’m

going to concentrate here on scenarios where this breaking happens at energies which can be probed

in the near future directly at colliders. For higher breaking scales only indirect probes like from

flavor observables are possible [77].

2.2.1 U(1) extensions

There are many different realizations for GSM ×U(1)X with X = χ,R,B−L,N,η ,Y,S, I, /p, . . . ,

see for instance Refs. [78] and references therein. The concrete gauge group is often fixed by

the underlying string or GUT theory one has in mind. The kind of U(1) does not only fix the

couplings of the Z′ but also the interactions of the new Higgs states. In general, U(1) extensions

have a very interesting phenomenology: (i) they predict a Z′ boson which usually couples to SM

fields; (ii) they could explain origin of R-parity and its spontaneous breaking [79, 80]; (iii) the

absence of gauge anomalies predicts often right handed neutrinos and introduces therefore neutrino

masses; (iv) many new dark matter candidates appear which not necessarily rely on the annihilation

mechanisms known from the MSSM [81]; (v) the cross section of SUSY particles change compared

to the MSSM [82]; (vi) U(1) extensions might help to resurrect gauge mediated SUSY breaking

(GMSB) [83, 84].

Even if the new scalars χ̂ to break the gauge additional gauge symmetries are gauge singlets under

the SM gauge groups, the superpotential and the interactions with the MSSM doublets can be very

different compared to the NMSSM because terms like χ̂3, χ̂ Ĥd Ĥu are forbidden by the new gauge

symmetry. However, D-term interactions between both sectors can even arise due to kinetic mixing

even if the Higgs and χ̂ fields are not charged under the same gauge groups [85]. Kinetic mixing

will always be generated by RGE running if the two U(1)s are not orthogonal [86], but it has only a

moderate effect on the Higgs masses and couplings [87]. The effects are more pronounced if there

are direct D-term interactions like in U(1)R ×U(1)B−L models [8, 88]. In this case the additional

D-terms as well as the mixing with additional light scalars can give a large push to the Higgs mass

as shown in Fig. 3.

Figure 3: Masses (left) and doublet-fraction (right) of the two lightest scalars in a U(1)R ×U(1)B−L model

at tree-level and one-loop. Plots taken from Ref. [8]

2.2.2 SU(N) extensions

Additional SU(N) are often motivated by SO(10) GUTs. The GUT groups gets broken down

7
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to to the SM gauge sector via the cascade

SO(10) → SU(4)PS ×SU(2)L ×SU(2)R

→ SU(3)c ×SU(2)L ×SU(2)R ×U(1)B−L

→ SU(3)c ×SU(2)L ×U(1)R ×U(1)B−L → GSM

Not always all intermediate steps are realized but it can be also be assumed that several steps

happen at the same scale. This leads to three categories of models [89]: (i) Pati-Salam models, (ii)

SU(2)L ×SU(2)R models, (iii) SU(2)L ×U(1)R models. Is has been shown that for each category

many possible realizations exist which are consistent with gauge coupling unification, neutrino

masses and a non-trivial CKM matrix [90]. See Fig. 4. All of these models have a very rich

phenomenology because they predict many new states together with a Z′ and W ′s. In particular,

new charged or even double charged Higgs bosons are a widely spread feature in these models.

Figure 4: Left: Gauge coupling unification in SO(10) models with an intermediate Pati-Salam scale. Plot

taken Ref. [89]. Right: number of possible realization of such a model depending on the energy scale of the

intermediate scale. Plot taken from [90].

The double charged Higgs bosons in left-right models have been studied to some extent and

mass limits of MH++ > 445 (409) GeV [CMS (ATLAS)] have been obtained [91,92]. Interestingly,

there are also indirect constraints possible because M++
H can be correlated with δρ [93]. For direct

searches for double charged Higgs bosons multi-lepton channels are very promising [94].

3. Don’ts and Dos

There is sometimes a huge difference in the manner how a BMSSM study is performed com-

pared to the MSSM. Therefore, I want to comment on some aspects of the analyses and list public

computer tools which should be considered to be used to bring BMSSM studies to a level compa-

rable with MSSM standards.

• Tree-level Higgs masses in BMSSM models are not sufficient! It is well known that the

measured Higgs mass rules out large areas of the parameter space of the (natural) MSSM.

Thus, also the Higgs sectors of BMSSM models have to be confronted with these limits.

Thus, at least an one-loop calculation is mandatory to see if the Higgs mass is pushed into

the correct direction. If the one-loop mass turns out to be well below 120 GeV, it makes

no sense to further study that parameter point. One-loop calculations for a large range of

BMSSM models can be either performed with FeynArts/FormCalc [95–97]. Also the

8
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package SARAH [98] together with either SPheno [99, 100] or FlexibleSUSY [101] can

be used what provides a highly automatized calculation of loop masses.

• To get MC model files don’t hack the MSSM one. There are well established tools like

LanHEP [102], FeynRules [103, 104], or SARAH to create model files for many Monte

Carlo tools.

• HiggsBounds/HiggsSignals [105–107] should always be used to check existing

limits from Higgs searches and to give a quantative measure how good experimental

data is reproduced.. These codes are generic enough to deal with highly extended Higgs

sectors if the user provides the necessary input.

• Check the vacuum stability. It has been shown that the MSSM with light stops but a large

mixing to explain the Higgs mass suffers from an unstable, and often short-lived electroweak

vacuum [108–112]. To check the stability of the desired vacuum, the tool Vevacious [113]

was created.

• Don’t forget about flavor physics. Especially light, charged Higgs particles can be danger-

ous because they can significantly enhance observables like b → sγ . The FlavorKit inter-

face [114] allows to calculate many flavor observables in BMSSM models via the combina-

tion FeynArts/FormCalc– SARAH– SPheno. Alternatively, one can also use FeynArts

& FormCalc either stand-alone or coupled to Peng4BSM [115].

One easy possibility for a precise study of BMSSM models is to use the SUSY or BSM Toolbox

[116]. This is a collection of scripts which creates an environment consisting of SARAH, SPheno,

WHIZARD [117,118], MadGraph [119,120] HiggsBounds/HiggsSignals, CalcHep [121,

122], MicrOmegas [123] and SSP for the study of extended SUSY and non-SUSY models. Many

of the models shown here are already delivered with SARAH and can be automatically implemented

in all other tools via the Toolbox scripts. In this context the SPheno modules created for the

new models provide a precise mass spectrum calculation based on two-loop RGE running and full

one-loop corrections to all masses. An extensions for even a two-loop calculation in the Higgs

sector is expected to appear soon [124]. SPheno does also calculate two and three body decays

for the SUSY states present in the models and makes predictions for many flavor observables based

on a full one-loop calculation. The scripts can be downloaded here

http://sarah.hepforge.org/Toolbox.html

4. Conclusion

I have briefly summarized the main aspects of SUSY models beyond the MSSM. One can see

that there are many well motivated possibilities to go beyond the MSSM. Each of the presented

model has its peculiarities. While some models are already studied in great detail, others lack from

a deep exploration. However, there are nowadays the tools available to perform precise studies in

all models and to confront these models with experimental and theoretical constraints.
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