
P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Integrating Network-Awareness and
Network-Management into PhEDEx

Vlad Lǎpǎdǎtescu∗

Caltech / USA
E-mail: vlad@cern.ch

Tony Wildish
Princeton / USA
E-mail: awildish@princeton.edu

ANSE Collaboration †

PhEDEx is the data placement and management tool for the CMS experiment at the LHC. It
controls the large-scale data-flows on the WAN across the experiment, typically handling 1 PB
of data per week. While robust, its architecture is now ten years old and has yet to fully adapt
to today’s production environment, an environment in which the network is the fastest and most
reliable component.
The ANSE (Advanced Network Services for Experiments) project, in the context of CMS, aims
to greatly improve PhEDEx’ network awareness for smart source selection, as well as to inte-
grate bandwidth provisioning capabilities in the data transfer management. Both parts require a
good knowledge of the network status, topology and of course, access to useful and up-to-date
performance metrics.
One of the first steps towards this goal involved the identification of a mechanism for informing
PhEDEx about independent network performance metrics. Methods for providing these metrics
have been prototyped and verified in a LAN testbed using fake data transfer requests. This mech-
anism is already directly usable by CMS in their production environment.
Currently, the ANSE-PhEDEx testbed is spread over many servers at a number of sites. It is
composed of several machines dedicated to PhEDEx site agents, one server holding the PhEDEx
central agents, a central database and one server which contains the PhEDEx website and data-
service. Some of the site nodes have additional attached storage nodes.
In this paper, we present the work that has been done in ANSE for PhEDEx. This includes
performance measurements using the Fast Data Transfer (FDT) tool and the extension of the
PhEDEx agent that downloads files to a site to allow it to control the network via creation and
use of dynamic circuits. We present the results of our tests using these new features, on high-
speed WAN circuits ranging from a few Gbps to 40Gbps and detail the development done within
PhEDEx itself.
Finally, the paper will also describe the future plans for the project.

International Symposium on Grids and Clouds (ISGC) 2014,
23-28 March 2014
Academia Sinica, Taipei, Taiwan

∗Speaker.
†B. Ball, A. Barczyk, J. Batista, K. De, S. McKee, A. Melo, H. Newman, A. Petrosyan, P. Sheldon, R. Voicu

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:vlad@cern.ch
mailto:awildish@princeton.edu


P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

1. Introduction

PhEDEx[1] is the data-placement management tool for the CMS[2] experiment at the LHC. It
manages the scheduling of all large-scale WAN transfers in CMS, ensuring reliable delivery of the
data. It consists of several components:

• an Oracle database, hosted at CERN
• a website and data-service, which users (humans or machine) use to interact with and control

PhEDEx
• a set of central agents that deal with routing, request-management, bookeeping and other

activities. These agents are also hosted at CERN, though they could be run anywhere. The
key point is that there is only one set of central agents per PhEDEx instance

• a set of site-agents, one set for every site that receives data
PhEDEx maintains knowledge and history of transfer performance, and the central agents use that
information to choose among source replicas when a user makes a request (users specify the des-
tination, PhEDEx chooses the source). The central agents then queue the transfer to be processed
by the site agents. PhEDEx operates in a data-pull mode, the destination site pulls the data to itself
when it is ready. This gives the sites more control over the activity at their site, so they can ensure
that neither their network nor their storage are overloaded.
The key PhEDEx agents, for our purposes, are the FileDownload and FileRouter agents. The
FileDownload agent is a site-agent, each site runs one or more copies of this agent. It is responsible
for the actual execution of file-transfers; it retrieves the transfer queue from the database, organises
the files in whatever way is suitable for the actual transfer tool that will be used, launches the
transfer, monitors its progress, verifies the files have been delivered, and reports the transfer results
via the database. The actual transfers are executed using lower-level tools such as the WLCG File
Transfer Service (FTS[3]) or the Fast Data Transfer tool (FDT[4][5]).
The FileRouter agent is a central agent. This agent takes the global set of transfer requests and
builds the work queues for each site to process with its FileDownload agents. The agent chooses
a source-site for each destination, based on internal history and statistics. This works well in
practice, but provides only a limited view of the network performance. The name FileRouter is
perhaps misleading, since the agent doesn’t decide the network path the data will take, only the
source for each destination and the order in which files are transferred.
PhEDEx was originally conceived over ten years ago now, and the architecture still reflects design
decisions made at that time. Then, the network was expected to be the weakest link in the develop-
ing Worldwide LHC Grid (WLCG)[6]. Networks were expected to have bandwidth of the order of
100 Mb/sec, to be unreliable, and to be poorly connected across the span of the CMS experiment.
Accordingly, PhEDEx will back off fast and retry gently in the face of failed transfers, on the as-
sumption that failures will take time to fix, and that there is other data that can be transferred in
the meantime. This can lead to large latencies caused by transient errors, with subsequent delays
in processing the data.
The data-transfer topology was designed with a strongly hierarchical structure. The Tier-0 (CERN)
transferred data primarily to a set of 6-7 Tier-1 sites, and each Tier-1 site handled traffic between
itself, the other Tier-1s. and it’s local Tier-2 sites. Tier-2’s wishing to exchange data would have to
go via Tier-1 intermediaries. This kept the transfer-links (i.e. the set of (source,destination) pairs)

2



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

mostly in the realm of a single regional network operator, the only cross-region links were used by
Tier-1s which were assumed to have the expertise to debug problems and keep the data flowing. It
also kept the overall number of transfer links low, since the majority of sites (the Tier-2s) had only
one link, to their associated Tier-1 site.
Today, the reality is very different. The network has emerged as the most reliable component
of the WLCG; problems with transfers tend to be at the end-points rather than in the network
itself. Bandwidths of 10 Gb/sec between Tier-2 sites is common in many areas, and 100 Gb/sec
connectivity is starting to appear. Even where the bandwidth is still relatively low, connections are
quite reliable, so data can be transferred effectively. This has led CMS to embrace a fully connected
transfer mesh in which all sites are allowed to connect to any other site, so the number of transfer
links has risen from about 100 to nearer 3000.
CMS has decided to address these limitations, and is considering a number of possible avenues for
the future of PhEDEx[7]. The ANSE1[8] project is addressing some of them, specifically how to
make PhEDEx more aware of the network status, and how to provide PhEDEx with the means to
control the network by way of virtual circuits and bandwidth-on-demand (BoD).

2. ANSE testbed

In the context of the ANSE project, the central agents, DB and frontend all run at CERN. The site
agents are running on machines located in different geographical locations. (see Figure 1).

Figure 1: PhEDEx setup for ANSE

For development work and prototype tests we mainly use OpenStack virtual machines. These
contain PhEDEx installations and also double as small storage nodes. These typically have 8GB of
RAM, 4 VCPUs and 80GB disk. These VMs are able to have sustained disk-to-disk transfer rates
of 1Gbps.
For more advanced tests we use four physical servers, two located in Geneva and two in Amster-
dam. In each location, one of the two servers is used as a PhEDEx node, while the other is used as
a storage node.

1A project funded by NSF CC-NIE program, initially for two years, which started in January 2013

3



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Each storage node (sandy01-gva and sandy01-ams) has dual E5-2670 CPUs (32 logical cores)
64GB or RAM and 2 LSI disk controllers. Each of the LSI controllers manages 8 high speed
SSDs. Two RAID-0 arrays are created on each LSI controller (4 SSD per RAID 0 array).
Between the two storage nodes we have a high capacity 40Gbps link and use Ciena routers to create
dynamic links between them.
Since the storage nodes were designed for high speed rather than high capacity, we created a large
number of soft links to large random-filled files (2->15GB) on the source disk.
On the destination side, we either used a crontab running every minute to remove transferred files
or we relied on the PhEDEx post-validation script to remove files in bulk at the end of a transfer
job.
Monitoring is performed with MonALISA[4][9] and PhEDEx.

3. Integrating external sources of information

3.1 Sources of information

Currently CERN runs three PhEDEx instances:
Production is used for production CMS data transfers
Debug is used for link monitoring and link commissioning tests
Development is used for testing software and DB schema upgrades
Although the instances run on the same infrastructure, each one is independent of the rest. The
Production instance chooses transfer sources based on its internal monitoring data alone. The
Debug instance, on the other hand, has monitoring information about many more links. Because of
this, it makes sense that where links are shared, network statistics should be shared as well (Figure
2)

Figure 2: Example case where the Production and Debug instances contain complementary data

A tool has been developed which retrieves statistics from all instances and aggregates the data.
This tool then produces a file that the FileRouter agent can use to supplement its internal statistics,
giving it a more complete overview of the network performance.
The next step is to integrate it with perfSONAR[10], effectively gaining a more comprehensive
picture of what’s happening on the network. At the time of writing this paper, perfSONAR is yet
to be deployed on all WLCG sites. We also lack a perfSONAR API which we can call to retrieve
this data. Finally, PhEDEx will need some work to use this data, since it has its own internal
naming convention for sites which corresponds to their logical identity, rather than to their internet
hostnames.

4



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

4. Integrating virtual circuts into PhEDEx

There are several points in the PhEDEx software stack at which it is possible to integrate the
control and use of virtual circuits; per transfer-job, at the level of the FileDownload agent, and at
the FileRouter agent.
At the lowest level, a circuit can be requested per transfer-job, by the transfer tool called from
the FileDownload agent. This level of integration was already achieved some time ago with the
initial implementation of the FDT backend for the FileDownload agent. Each transfer-job would
attempt to create its own virtual circuit, if it failed it would simply proceed to transfer over the
general-purpose network.
The advantage of this approach is simplicity, there is nothing to modify in PhEDEx itself, all the
work happens in the external transfer tool. There are, however, a few disadvantages:

• Transfer-jobs tend to be short-lived (tens of minutes rather than hours), so circuits are being
created at a high rate. This is not currently sustainable.

• PhEDEx is typically configured to overlap transfer-jobs, to offset the overheads incurred
between successive jobs. This means that concurrent transfer-jobs will be competing for
circuits, with consequences that may be hard to understand. For example, if two jobs can
share a circuit, what happens to one of them when the other finishes, and tears down the
circuit?

• There is no overview of the use of network resources. Circuits are requested based on nothing
more than the local knowledge of a single link, without regard for other traffic flows into the
destination or out of the source.

The next level of integration is at the level of the FileDownload agent. This site-agent has an
overview of the data-flows into the destination site at any time, so can make intelligent decisions
about creating circuits. Apart from simply deciding that it should - or should not - create a circuit
for a given flow, it can also create circuits that are longer-lived, serving a series of transfer-jobs
lasting several hours. This will make for much more stable operation, both from the viewpoint of
the network fabric and from the viewpoint of the transfer-jobs. This is the first level of integration
at which virtual circuit control becomes really practical for production use by PhEDEx. The only
significant disadvantage is that destination sites still make circuit-requests without regard for con-
ditions at the source sites, so the risk of sub-optimal configurations still exists. For example, site A
may book a circuit to site B to pull data from it at high speed, but that may commit most of site B’s
WAN bandwidth, leaving little for site B to download from sites C, D and E.
The highest level of integration is at the level of the FileRouter, or centrally, with a view of the
entire transfer system. The FileRouter is essentially a high-level scheduler, deciding the set of
source-destination pairs for fulfilling transfer requests and building the queues of transfers for each
destination site. As such, it alone can have an overview of how busy each site is expected to be, so it
could decide which transfers should use circuits and which should not. It could even base its choice
of source-replica for a given transfer on availability of circuits and bandwidth, not just on current
network performance between the sites. It can also decide that some transfers are low priority, so
should not request a circuit even if one might be available, in order to leave that resource free for
higher priority requests that might come along.
There are two disadvantages to integration at the FileRouter. The first is that the FileRouter deals

5



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

with transfers that will happen, in the near future. When something happens to invalidate its pre-
dictions (e.g. a power-cut at a site) this will invalidate those predictions to a greater or lesser
degree. The more coupled the sites are in their scheduling, the wider the implications of a single
site-outage.
The second disadvantage is the complexity of the problem. Developing efficient scheduling algo-
rithms, including predicting the availability of circuits on a shared network, is not a trivial task. For
example, queues may be re-organised to take advantage of circuits, instead of just using raw prior-
ity and age as the queueing criteria. The FileRouter agent will also have to inform FileDownload
agents when they are expected to use a circuit and when not to, and not just which files to transfer.
Despite these complications, having centrally managed knowledge of when and where to create
circuits for PhEDEx is the ultimate goal.

5. Using a virtual circuit per file-transfer

5.1 Integrating FDT into PhEDEx

The FDT tool integrates InterDomain Controller Protocol (IDCP) On-Demand Secure Circuits and
Advance Reservation System (OSCARS[11]) calls so integrating it in PhEDEx naturally gives us
Bandwidth on Demand capabilities. In addition to this, FDT performs extremely well as a transfer
tool in itself, as we will show in this paper.
As shown in Figure 3, the current architecture consists of four main components:
FDT tool - written in Java it’s based on an asynchronous, flexible multithreaded system, using the

capabilities of the Java NIO libraries. It’s capable of reading and writing at disk speed over
wide area networks and runs on all major platforms.

PhEDEx backend - written in Perl, this backend receives transfer jobs from the FileDownload
site agent which will, in turn, invoke the fdtcp wrapper.

Fdtcp wrapper - written in Python this is the interface between PhEDEx and FDT. It prepares the
file list as required by FDT, invokes the fdtd service and harvests reports to be propagated
back to PhEDEx.

Fdtcp daemon - written in Python as well, it’s a permanently running daemon, responsible for
authentication and completion of requests from fdtcp. These requests are transmitted via
PYthon Remote Objects (PYRO) calls and will either launch FDT in client mode on source
sites or in server mode on destination sites.

Figure 3 also describes a normal scenario in which Site B needs to transfer data from Site A. In this
example, the PhEDEx instance and the storage node are separate physical servers.
The FileDownload agent on the PhEDEx server on Site A gets a list of files to transfer from the
PhEDEx database. It breaks the list (up to 10 PB of data) into manageable chunks (up to a few TB
of data) and hands the chunks to the FDT backend. The FDT backend on that machine will then
issue an fdtcp command for each group of files to copy those files from the storage node of Site A
to the storage node of Site B.
Fdtcp will, in turn, invoke the fdtd daemons on the two storage nodes. Each fdtd daemon will first
verify that the command comes from an approved server, after which it will launch the appropriate
FDT tool. The fdtd daemon on Site B will start the FDT tool in server mode and the daemon on
site B starts FDT in client mode.

6



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 3: Diagram of various components needed to integrate FDT into PhEDEx

Once this is done, the transfers are handled by FDT. After the transfer finishes the reports are then
propagated up the chain, eventually reaching PhEDEx.

5.2 Testbed configuration and transfer results with FDT

5.2.1 Testbed configuration

The tests were run on our testbed (Figure 1), using the Geneva (T2_ANSE_Geneva) and Amster-
dam (T2_ANSE_Amsterdam) sites. All LSI controllers were used.
Each transfer job was 2.25TB (150x15TB files).

5.2.2 Transfer results with FDT

As seen in Figure 4 and Figure 5 FDT is able to achieve sustained rates of over 1500MB/sec. As
PhEDEx shows, the average sits at a marginally slower 1360MB/sec. Figure 4, shows periodic
drops in transfer rates. This is due to the fact that between each transfer job (which is composed

7



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

of a limited number of files) there is a delay between the ending of one job and the launch of a
new one. This is what accounts for the difference in average reported rates by PhEDEx and the
average rate for each transfer job. This is an artifact of our configuration, which only allowed one
transfer job to run at a time. In a production environment PhEDEx would run overlapping jobs, so
this structure would not be apparent. Nonetheless, we chose to keep the simpler configuration for
these first tests, so that results would be easy to interpret.

These high transfer rates are not only due to the storage system alone. FDT automatically starts the
correct number of readers and writers if the files at the source and destinations sites are spread on
different physical disks/controllers.

Figure 4: PhEDEx transfers over 24hrs using FDT as reported by MonALISA. The red line represents the
network interface throughput in Mbit/sec, with data points each minute. The blue line represents a moving
average over one hour of that throughput.

5.2.3 Limitations of the current testbed

At the moment this system does have some drawbacks:

• As noted, The PhEDEx agent configuration has been simplified, compared to the production
environment, for ease of comprehension.

• FDT requires a POSIX compatible interface to function. At the moment not all PhEDEx
sites provide such an interface to their storage elements, so FDT is not actually deployed by
CMS at this time.

• In order to get the best performance out of the systems, files that are to be transfered need
to be spread among different disks on both source and destination storage servers. This adds
more complexity to the sites’ configuration and operation.

Despite these limitations - or rather because of them - this testbed is a valuable resource for un-
derstanding the behaviour of PhEDEx when we attempt to push its transfer performance to the
limit.

8



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 5: PhEDEx transfers over 24hrs using FDT as reported by PhEDEx. Transfer rates are given in
MB/sec, with one hour bins. This, coupled with the fact that rates are only reported at the end of job
transfers, make this plot look bumpy.

6. Virtual circuits at the FileDownload Agent Level

6.1 Changes to the FileDownload agent

For this prototype we decided to integrate all of the control and circuit awareness logic in the
FileDownload agent, thus eliminating the need for an additional site agent or any changes to the
DB schema.
To ease development and to facilitate testing, we fake calls to circuit management APIs which in
turn, return IPs of already established static circuits. From PhEDEx’ point of view it’s as if a new
path has been created. If some conditions are met, PhEDEx switches to using this path, as it would
with a dynamic circuit.

6.1.1 Making use of a circuit

PhEDEx transfers files in bulk, copying several files with each transfer command. The number of
files varies from site to site depending on local constraints, but it is typically in the range of a few
tens of files per transfer job. Each transfer job, therefore, contains information about the source
and destination Physical File Names (PFNs) of several files.
A PFN contains the protocol that needs to be used, the hostname or IP of the file and the local path
of that file. This means that if we want PhEDEx to use circuits, we need a mechanism to replace
the original hostname or IP in each source/destination PFN with the source IP and destination IP
of the circuit.
The FileDownload agent actually receives only Logical File Names (LFNs) from the database,
plus the name of the chosen source site. It constructs the PFNs from the LFNs and a lookup-table
per-site which each site maintains and uploads to the database. After calculating the source and

9



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

destination PFNs, files are bundled into transfer jobs and queued for submission with whichever
transfer tool has been configured between the two sites.
When the transfer jobs are taken from the local queue, but before they are actually submitted, the
agent will check to see if a circuit has been established between the two endpoints. If so, it ma-
nipulates the source and destination PFNs, replacing the hostnames or IP numbers of the endpoints
with the IP numbers corresponding to the circuit. This manipulation is completely transparent to
the actual transfer tool in use.
It could also happen that a circuit becomes available, while the FileDownload agent marks tasks
ready for transfer. This means that part of the tasks in a job will contain source/destination PFNs
having the original hostname/IPs, while others will use the circuit IPs. When the FDT backend is
used, it will automatically launch two different jobs: one for the files transferred over the normal
path and the other for files transferred over the circuit. We still need to test how the other backends
react. In any case, even if a transfer job would fail because of this, PhEDEx will just retry, as it
would for any failure, and the transfer would succeed the second time.

6.1.2 Circuit awareness and lifecycle management

Since the standard FileDownload agent doesn’t have knowledge about more than one transfer paths
over a given link we needed to add this circuit awareness and a way to manage the lifecycle of a
circuit on a given link.
PhEDEx agents are event-driven, using the Perl Object Environment (POE[12]) framework. To
implement circuit-control we added several POE controlled events. Here are the main ones:

• check_workload
• request_circuit
• handle_request
• teardown_circuit
• check_circuit_setup

check_workload This is a recurrent event at 60 second intervals. It is used to estimate the amount
of work that remains to be done based on the current size of the download queue. In order to do
this, it needs to know the average rate that the current link is capable of and the total number of
pending bytes. The latter is calculated based on the PENDING tasks that it currently holds. The
former can be retrieved in two ways:

• if the agent has recently transfered tasks it will retain information about previously DONE
tasks, which will then be used for the average rate calculation

• if nothing has been transferred, it will try to get this information based on the link average
rate calculated by PhEDEx itself.

If an average rate source-destination pair has been calculated, it will estimate the amount of work
needed to be done.
Going through all of the links, we check if all of the conditions below had been met:

• the amount of work pending is above a given amount2

• a circuit has not been established

2This is arbitrarily set to five hours

10



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

• a circuit request is not pending
• a circuit request hasn’t failed within a given time-window3

• transfers haven’t previously failed, within a given time-window, while a circuit was active
If this is the case, we trigger the request_circuit event for that particular link.

request_circuit As the name suggests this event is used to request a circuit.
It does the following:

• creates a state-file for this request. This file contains the names of the PhEDEx nodes in-
volved in the request, the time of the request and the lifetime of the circuit. This file is used
to maintain knowledge of circuits across restarts of the FileDownload agent

• sets a timer to cancel the request if there is no timely response. If we don’t get a circuit
within 10 minutes it’s very likely that we won’t get it at all.

• in the case of this prototype the "handle_request" event is triggered directly, however in the
production version, this event will actually be a callback from the API call where a circuit is
being requested

handle_request This event is a callback from the API call to request a circuit.
It will:

• trigger the event "remove_circuit_request"
• if the circuit creation failed, flag it and return
• modify and save the state file corresponding to this request by adding relevant information

concerning the circuit that has just been established: time the circuit was established, time
the circuit expires, endpoint IPs of the established circuit.

• starts a timer for the "teardown_circuit" event if an expiration time has been specified for the
circuit

check_circuit_setup This is another recurrent event at 60 second intervals and is used to provide
sanitation in case of errors. There are two important scenarios that we are interested in:

1. Download agent has crashed and is restarted
(a) In-memory state information is lost, but circuit-request state file(s) exist on disk:

For each circuit-request state file that has no matching in-memory data, try to cancel
the circuit request and remove the file from disk

(b) In-memory state information is lost, but circuit-established state file(s) exist on disk:
For each circuit-established state file that has no matching in-memory data, check the
expiration time in the state file:
• if the expiration time is not defined, or is defined but didn’t expire yet, the circuit

can be reused. Internal data is populated based on state file and if the expiration
time is defined, the teardown_circuit timer is set.

• if the expiration time is defined but it expired, remove the state file and try to tear
down the circuit

2. Reconsider failed circuits with failed requests or transfers:
Creating a circuit on a particular link may have been blacklisted due to requests for circuits

3This time-window is arbitrarily set to one hour

11



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

failing or due to files transfers failing on that circuit. After a given time these circuits are
removed from the blacklist and the system is free to try to use them again.

handle_request_timeout Triggered after a timeout, cancels a request and cleans its internal state
remove_circuit_request Cleans up internal data and state file concerning this circuit request
teardown_circuit Cleans up internal data and state file concerning the circuit and calls the API

for tearing down the circuit.

6.2 Setup and test

The prototype was tested on ANSE’s testbed (Figure 1) using our two PhEDEx sites:
T2_ANSE_Amsterdam and T2_ANSE_Geneva. As we mentioned earlier each LSI controller man-
ages 8 SSDs split in two RAID 0 arrays. Since the tests are write intensive and were scheduled to
run for around 24 hours, we decided to only use 1 LSI controller, in order to minimize the negative
effects on the life of the SSDs. Two 10Gbps virtual circuits were created for the purposes of this
test. Figure 6 depicts the setup used.

Figure 6: Diagram of the testbed used by the prototype

One of the circuits was used to model a shared link in which PhEDEx had to compete with other
traffic. This background traffic was generated by Iperf and consisted of a continuous stream of
UDP packets at 5Gbps . The other circuit served as the dedicated link.
The main purpose of this test wasn’t to show that we can saturate a 10Gbps link with PhEDEX
(although we came close with just 1 LSI controller), but that a PhEDEx FileDownload agent is able
to switch to using a new path in a transparent manner and with no down time.
The first part of the test consisted of a 10 hour run with PhEDEx transfers on the shared link. After
this time, PhEDEx switched to using the dedicated circuit and continued transfers for another 10
hours. We set up PhEDEx to run a single 450 GB transfer job at a time, each one comprised of 30
files of 15 GB each.

6.3 Results

The results of the first half of the test are shown in Figure 7. A quick glance at this plot, shows that
the 10 Gbps link was saturated by the two competing transfers. Between 23:00 and 0:00 (beginning
of the plot) and 10:00 and 11:00 (end of the plot), only UDP traffic was sent across the network,
running at a steady 5 Gbps. This effectively leaves only 5 Gbps of PhEDEx traffic. PhEDEx
transfers start around 0:00 and quickly saturates the 10 Gbps. The seesaw look of this plot is due
to the fact that PhEDEx has a delay between finishing one job and starting the next. This is due
to various factors: pre/post validation, preparation of copyjobs or even time spent by the backend
itself before actually launching a transfer. Because of these delays, the average rates reported by

12



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

PhEDEx will always be lower than the average rates of each individual transfer job. Nevertheless
we get average transfer rates of 9.5 Gbps for the whole link and consequently 4.5 Gbps for PhEDEx
transfers (10% penalty from gap between jobs).

Figure 7: PhEDEx transfers on the shared path - competing with 5Gbps UDP traffic. As with the previous
case, the red line represents network throughput in Mbps while the blue line represents a moving average of
one hour of that network throughput.

Around 10:00 PhEDEx switches to using the dedicated link. The results of the second half of the
test are shown in Figure 8.
Although most of the time we are able to saturate the 10Gbps link with PhEDEx traffic alone we
sometimes see dips in transfer rates. These dips can be attributed to the storage not being able to
sustain such high write rates.
This time, the average link rates drop from 9.5 Gbps to 8.5 Gbps, however actual PhEDEx transfers
go up from 4.5 Gbps to 8.5 Gbps! The reason for this drop in average link rate is twofold:

• Transferring a job at higher speeds means that it will take less time for it to complete, hence
more jobs will be completed in one hour. However, as we previously explained, there is a
fixed overhead for starting each new job, which means that more delays will be introduced
into the system.

• The storage system (using 1 LSI controller) sometimes cannot sustain write rates of 10 Gbps
to disk.

Figure 9 and Figure 10 show the network activity for PhEDEx traffic alone on both links. In this
plot we can observe that PhEDEx switches to using the new link without any interruption in service,
doing it seamlessly and in a transparent way for other site-agents (switch occurs around 10:00).

7. Summary and future plans

PhEDEx has been very successful at managing data-flows on the WAN for the CMS collaboration.
Nonetheless, it’s architecture is based on design decisions that are no longer valid, and in order to
continue to scale and perform for the future, it must evolve, taking advantage of new technologies.

13



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 8: PhEDEx transfers on the dedicated path

Figure 9: View of PhEDEx-only transfers on both the shared and dedicated path

Over the course of the past year, the ANSE project has made significant progress towards integrat-
ing network-awareness into PhEDEx. We have created and tested a prototype which integrates the
use of virtual-circuits into PhEDEx at the level of the FileDownload agent, i.e. per destination-site.
This is transparent for the other site-agents, with no modifications to the database schema and with
all the logic contained in the FileDownload agent. Nor does it depend on network-circuits being
infallible, the existing failure and retry mechanisms can cope with any underlying instability in the
network.
Our immediate goal is to adopt a circuit management system and use its API to control and operate
real circuits. This will be followed by extensive tests, on a potentially expanded ANSE testbed and
ultimately in production data-transfers.
The next step is to integrate the use of virtual circuits at the FileRouter level. Here, we gain a
global view of CMS-wide flows, which means we can make informed (optimal) decisions about
which circuits need to be requested or not.

14



P
o
S
(
I
S
G
C
 
2
0
1
4
)
0
2
1

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 10: View of PhEDEx only transfers on both the shared and dedicated path

References

[1] Egeland R, Metson S and Wildish T 2008 Data transfer infrastructure for CMS data taking, XII
Advanced Computing and Analysis Techniques in Physics Research (Erice, Italy: Proceedings of
Science)

[2] The CMS Collaboration 2008 The CMS experiment at the CERN LHC JINST 3 S08004

[3] Alvarez Ayllon A, Kamil Simon M, Keeble O and Salichos M 2013 FTS3 - Robust, simplified and
high-performance data movement service for WLCG submitted to CHEP 2013

[4] Legrand I, Newman H, Voicu R, Cirstoiu C, Grigoras C, Dobre C, Muraru A, Costan A, Dediu M and
Stratan C 2009 MonALISA: An agent based, dynamic service system to monitor, control and optimize
distributed systems Computer Physics Communications, Volume 180, Issue 12, December 2009, Pages
2472 - 2498

[5] Fast Data Transfer (FDT) http://fdt.cern.ch/

[6] Eck C et al. 2005 LHC Computing Grid Technical Design Report CERN-LHCC-2005-024

[7] Bonacorsi D and Wildish T 2013 Challenging CMS Computing with Network-Aware Systems
submitted to CHEP 2013

[8] LHCONE Point-to-Point Service Workshop, December 2012
http://indico.cern.ch/event/215393/session/1/contribution/8/material/slides/1.pdf

[9] MONitoring Agents using a Large Integrated Services Architecture (MonALISA)
http://monalisa.caltech.edu/

[10] Campana S et.al. 2013 Deployment of a WLCG network monitoring infrastructure based on the
perfSONAR-PS technology submitted to CHEP 2013

[11] Guok C, Robertson D, Thompson M, Lee J, Tierney B, Johnston W 2006: Intra and Interdomain
Circuit Provisioning Using the OSCARS Reservation System ICBCNS 2006

[12] The Perl Object Environment (POE) http://poe.perl.org/

15


