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We report on recent results for two-loop corrections to the pair production of top quarks, Z bosons
and W bosons, respectively. In particular, we describe how the master integrals are calculated
analytically in terms of multiple polylogarithms with the method of differential equations. For
tt̄ production, we discuss the light-quark two-loop corrections in the gluon channel. For ZZ and
WW production, the solutions for all two-loop master integrals were completed. The results are
optimised for numerical evaluation by employing a set of logarithms, classical polylogarithms Lin
(n = 2,3,4) and multiple polylogarithms of type Li2,2, where the Li functions are real valued and
allow for an immediate power series expansion in the physical region. This method reduces the
numerical evaluation time by orders of magnitude with respect to the traditional representation
and paved the way to the first NNLO prediction for the total cross section for ZZ production at
the LHC.
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Two-loop corrections to tt̄ and ZZ/WW production

1. Introduction

Precision measurements at the LHC experiments motivate theoretical predictions at NNLO
for top quark pair production and pair production of electroweak gauge bosons. Complete NNLO
results have been calculated in the case of tt̄ production for the total cross section [1, 2], and in the
case of γγ [3, 4, 5] and Zγ [6, 7, 8] production also for distributions. At this conference [9], the
total cross section for ZZ production [10] has been presented for the first time.

Typically, the two-loop amplitudes are one of the bottlenecks of a NNLO calculation. Publicly
available programs [11, 12, 13, 14, 15, 16, 17, 18] for integration-by-parts (IBP) reduction [19, 20,
21] are often powerful enough to perform the reduction to master integrals, and new approaches [22,
23] might help to overcome their limitations for more involved processes. A second problem is
the calculation of master integrals. Here, considerable improvements are due to new techniques
for the treatment of multiple polylogarithms, such as the coproduct formalism [24, 25, 26, 27].
Most calculations of multiscale Feynman integrals are performed with the method of differential
equations [28, 29, 30, 31], which has been refined recently [32].

For tt̄ production we are interested in a mostly analytical approach towards a fully differential
NNLO code. Partial results are available for the subtraction terms [33, 34, 35, 36, 37, 38, 39],
one-loop squared [40, 41, 42] and two-loop corrections [43, 44, 45]. Here, we discuss the recently
completed light-quark two-loop corrections in the gluon channel [46].

For WW production, the high energy limit for the virtual NNLO corrections has been cal-
culated some time ago [47]. Recently, all planar and non-planar two-loop master integrals for
VV ′ production became available for the equal-mass case [48, 49] and also for the unequal-mass
case [50, 51, 52, 53]. Here, we report on the calculation of the master integrals for ZZ and WW
production [49].

2. Light fermionic two-loop corrections to gg→ tt̄

We consider the two-loop corrections to top quark pair production in the gluon channel,

g(p1)+g(p2)→ t(p3)+ t̄(p4), (2.1)

with p2
1 = p2

2 = 0 and p2
3 = p2

4 = m2. The Mandelstam invariants s = (p1 + p2)
2, t = (p1− p3)

2

and u = (p2− p3)
2 fulfil the mass-shell condition s+ t +u = 2m2. In the following, we report on

the calculation [46] of the gauge invariant subset which contains at least one closed massless quark
loop.

We generate Feynman diagrams with Qgraf [54] and employ Reduze 2 [15, 55, 56] to match
the diagrams to integral families, calculate the interference of the two-loop with the tree amplitude
and reduce the resulting Feynman integrals to a set of master integrals. We use Form [57] at
different stages of the calculation. Some example Feynman diagrams are shown in Fig. 1.

Most of the master integrals were available already, but some needed to be calculated for this
project. The most complicated integrals encountered were the three master integrals occurring in
the non-planar double box topology of the last diagram in Fig. 1. In [58] these integrals were
computed in terms of multiple polylogarithms, representing the first analytical calculation of non-
planar double box integrals with more than one massive leg.
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Two-loop corrections to tt̄ and ZZ/WW production

Figure 1: Two-loop corrections to gg→ tt̄ with a closed massless quark loop, taken from ref. [46]. Thick
fermion lines are used for the massive top quark, thin fermion lines represent massless quarks.

The calculation employs the method of differential equations. Here, we define the dimension-
less variables x, y and z by

s =−m2(1− x)2/x, t =−m2y, u =−m2z. (2.2)

such that the Landau variable x absorbs a root
√
−s(4m2− s) appearing in the differential equation

due to a two-massive-particle threshold. The derivatives of the master integrals with respect to the
external invariants x and y are obtained via IBP reduction in terms of linear combinations of master
integrals, where the coefficients are rational functions of x and y. It is not difficult to choose the
master integrals such that after an expansion in ε = (4−d)/2, where d is the space-time dimension,
the system of differential equations decouples partially such that it can be integrated in a bottom-up
approach.

Integrating the differential equations with respect to x and y leads to iterated integrals of the
form

G(w1,w2, · · · ,wn;z)≡
∫ z

0
dt

1
t−w1

G(w2, · · · ,wn; t) , (2.3)

G(0, · · · ,0︸ ︷︷ ︸
n

;z)≡ 1
n!

lnn z , (2.4)

which are known as multiple polylogarithms. A non-linearity introduced with the variable x leads to
non-linear denominators in the integration variable, for which we employ generalised weights [59]
[ f (o)] defined by

G([ f (o)],w2, · · · ,wn;z) =
∫ z

0
dt

f ′(t)
f (t)

G(w2, · · · ,wn; t) , (2.5)
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where f is an irreducible rational polynomial. While it is completely straight-forward to eliminate
the generalised weights by complex factorisation, e.g.

G([o2 +1];x) =
∫ x

0
dt

2t
t2 +1

=
∫ x

0
dt

1
t− i

+
∫ x

0
dt

1
t + i

= G(i;x)+G(−i;x), (2.6)

the bracket notation is more compact and preserves the structure of the d ln( f (t)) integration. In
order to fix the integration constants, we use a combination of regularity conditions, symmetry
constraints and Mellin-Barnes evaluations in asymptotic limits. For the latter, we employed the
packages Ambre [60] (for planar topologies) and MB [61]. The sector decomposition program
SecDec 2 [62, 63] was a valuable tool to perform numerical checks of our results.

We insert the master integrals in the interference terms and choose arguments y and x for all
multiple polylogarithms including those originating from u-channel contributions. In this way, we
obtain a result in terms of multiple polylogarithms of the form

G(w1, . . . ,wn; y) with wi ∈
{
−1,0,−1/x,−x,−(1+ x2)/x,−(1− x+ x2)/x

}
, (2.7)

G(w1, . . . ,wn; x) with wi ∈
{
−1,0,1, [1+o2], [1−o+o2]

}
, (2.8)

some of which are multivalued. In order to employ the expressions for phenomenological appli-
cations, the performance of the numerical evaluations is not satisfactory yet. The main reason is
that known strategies [64] for the evaluation of a single function of the above type requires a series
of non-trivial mappings to many power series objects, which are ultimately used for the numerical
approximation.

Therefore, we express our results in terms of an alternative functional basis, which we con-
struct to allow for fast and direct numerical evaluations. We choose logarithms, classical polyloga-
rithms

Lin(x1) =−G(0, · · · ,0,1︸ ︷︷ ︸
n

;x1) , (2.9)

with n = 2,3,4 and genuine multiple polylogarithms of the type

Li2,2(x1,x2) = G
(

0,
1
x1
,0,

1
x1x2

;1
)
, (2.10)

where the arguments are (complicated) rational functions of x and y, such that the resulting func-
tions are real valued. We can actually go one step further and require in addition

|x1|< 1 , |x1x2|< 1 , (2.11)

such that the Li functions allow for an immediate convergent power series representation

Lin(x1) =−
∞

∑
j1=1

x j1
1
jn
1
, (2.12)

Li2,2(x1,x2) =
∞

∑
j1=1

∞

∑
j2=1

x j1
1

( j1 + j2)2
(x1x2)

j2

j2
2

, (2.13)

which renders the numerical evaluation straight-forward and very stable. While it is not obvious
at all that such a restricted set of functions is sufficient to express our results, we find that it is
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Figure 2: Top level topologies for planar [48] and non-planar [49] master integrals in qq̄→WW and
qq̄→ ZZ. Thick lines denote the massive electroweak vector bosons.

indeed the case. In the final expression, all generalised weights are eliminated by multivariate
recombinations such as

G(−(1+ x2)/x;y)+G([1+o2];x)−G(0;x)+ iπ = ln(−(1+ x2)/x− y) = ln(z) (2.14)

The new functional basis reduces the numerical evaluation time by orders of magnitude. Our meth-
ods for the multiple polylogarithms employ and extend symbol and coproduct based algorithms
presented in [26, 27].

3. The two-loop master integrals for qq̄→ ZZ/WW

We consider the two-loop corrections for the partonic scattering processes

q(p1)+ q̄(p2)→ Z(p3)+Z(p4), (3.1)

q(p1)+ q̄(p2)→W+(p3)+W−(p4), (3.2)

with p2
1 = p2

2 = 0 and p2
3 = p2

4 = m2, where m is either the Z or the W mass, respectively. Similarly
to the previous section, we choose to work with dimensionless variables x and z, where here

s = m2(1+ x)2/x, t =−m2y, u =−m2z. (3.3)

In the following, we report on the recent analytical calculation [49] of the two-loop master integrals
required for two-loop corrections [65] to these processes. Fig. 2 shows the planar and non-planar
top-level topologies for the master integrals. A significant part of the technology discussed in the
previous section could be employed also for this calculation.
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We choose our master integrals such that the differential equations take the normal form

d~m(ε;x,z) = ε dA(x,z)~m(ε;x,z) (3.4)

where ~m(ε;x,z) is a vector of master integrals and A(x,z) is a matrix of rational functions of x and z.
Normal forms of this type have been proposed in [32]. Finding such a basis is not necessary to solve
the integrals, a partial decoupling in ε would be enough for that purpose. However, it simplifies the
book-keeping and is considerably more transparent from a conceptional point of view. In our case,
the matrix A can be decomposed according to

A(x,z) =
10

∑
k=1

Ak ln(rk) , (3.5)

where Ak is a matrix of rational numbers and the letters rk are rational functions of the external
invariants,

rk =
{

x, 1− x, 1+ x, z, 1+ z, x− z, 1− xz, 1+ x2− xz, 1+ x+ x2− xz, z(1+ x+ x2)− x
}
. (3.6)

Except for specific cases it is not known whether for some given set of Feynman integrals a basis
with differential equations of the form (3.4) exists at all (see also [66, 67, 68]). Provided such
a basis exists, no general algorithm to finding it is available. An approach which works for the
master integrals discussed in this section and other cases of practical relevance was formulated
in [49]. Starting from a rough first guess which partially decouples the top level topologies, the
recipe describes how to systematically clean up unwanted terms.

We integrate the differential equations and use a couple of simple integrals available in the
literature as independent input. We impose regularity conditions in some of the following collinear
and threshold limits

z→ x, z→ 1/x, z→−1, z→ (1+ x+ x2)/x, x→ 1 , (3.7)

which fixes all of the remaining integration constants.
Similarly as for the tt̄ corrections, we convert our results to a functional basis optimised for

numerical evaluations. Also here, it turns out to be sufficient to employ Li functions where the
arguments fulfil (2.11). In this way, the complete two-loop corrections to qq̄→ ZZ production can
be evaluated for some generic phase space point in about 30ms with double precision or in about
0.3s with 30 digits precision on one CPU core.

4. Conclusions

Considerable progress has been made towards fully differential NNLO predictions for the pair
production of massive particles at the LHC. In this talk, we reported on recent analytic results for
two-loop corrections to the pair production of top quarks, Z bosons and W bosons, respectively. A
major ingredient is the analytical calculation of the master integrals, where we put special emphasis
on providing them in a form which allows for fast and stable numerical evaluations.

For tt̄ production, we presented the light-quark two-loop corrections in the gluon channel [46].
The calculation of the remaining master integrals required for the subleading colour corrections in
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the quark channel is work in progress [70]. We expect the complete two-loop corrections [71] to
be available in the near future.

For ZZ and WW production, we presented the calculation of all two-loop master integrals [49].
These results enabled the calculation of the total ZZ production cross section [10], which was
presented at this conference for the first time [9]. For WW production, the calculation of the
NNLO cross section is work in progress [69].
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