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Experimental analyses often use jet binning to distinguish between different kinematic regimes
and separate contributions from background processes. To accurately model theoretical uncer-
tainties in these measurements, a consistent description of the jet bins is required. We present a
complete framework for the combination of resummed results for production processes in differ-
ent exclusive jet bins, focusing on Higgs production in gluon fusion as an example. We estimate
that the relevant theoretical uncertainties on the signal strength in the H →WW ∗ analysis are
reduced by nearly a factor of 2 compared to the current value using our methodology.
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1. Introduction

In this contribution we study the resummation of a class of large Sudakov logarithms affect-
ing Higgs boson production in exclusive jet bins at the LHC. These large logarithms occur when
the Higgs signal cross section is divided into bins of exclusive jet multiplicity. This division is an
experimental necessity; for example, in the zero-jet bin of the WW final state the background is
dominated by continuum WW production, while in the one-jet and two-jet bins, top-pair produc-
tion becomes increasingly important. The optimization of this search requires cuts dependent on
the number of jets observed, and therefore also on theoretical predictions for exclusive jet multi-
plicities.

The theoretical community has invested significant effort in resumming jet-veto logarithms to
all orders in perturbation theory in order to more accurately model the LHC Higgs signal. The
resummation for the zero-jet bin cross section in the presence of the anti-kT algorithm was first
obtained at next-to-leading logarithmic (NLL) accuracy [1] and later extended to NNLL accu-
racy [2, 3, 4] using different theoretical approaches. The importance of potentially large lnR cor-
rections on numerical predictions, where R is the jet-radius parameter in the anti-kT algorithm, was
studied in Ref. [5]. A significant reduction of the residual theoretical uncertainties was obtained
in the zero-jet bin by resumming the jet-veto logarithms. Given that the theoretical uncertainties
are currently one of the largest systematic errors affecting the one-jet bin analyses of the Higgs-
like particle properties, it is desirable to formulate the resummation when final-state jets are also
present.

We begin by considering the phase-space region where the transverse momentum of the hard
jet in the exclusive 1-jet bin is much larger than the veto scale. A direct resummation of the Sudakov
logarithms using effective field-theory techniques is possible for this choice of parameters. We
calculate contributions through next-to-leading order in the exponent of the Sudakov form factor
and include the full one-loop functions describing hard, soft, and collinear emissions. This implies
that we correctly obtain the first three logarithmic corrections at each order in the QCD coupling
constant: αsL2, αsL and αs; α2

s L4, α2
s L3, and α2

s L2; α3
s L6, α3

s L5, α3
s L4; and so on. We have set

L = ln(Q/pveto
T ), where Q ∼ mH denotes any hard scale in the problem. We match our results to

fixed-order to obtain a NLL′+NLO prediction. We then show how to improve the challenging low
pT J region of the 1-jet bin. We do so by using the inclusive 1-jet cross section, supplemented with a
fixed-order correction from the 2-jet cross section, to provide a resummed prediction in the low pT J

regime. This allows us to present a complete framework for the combination of resummed results
for Higgs production. Using this framework, we estimate that the relevant theoretical uncertainties
on the signal strength in the H →WW ∗ analysis are reduced by nearly a factor of 2 compared to
the current value. In this contribution we can only briefly sketch these results. Further details can
be found in Refs. [6, 7, 8].

2. Review of the formalism

We use effective-field theory techniques to derive a factorization theorem for exclusive Higgs
plus jet production. The factorization of the cross section into separate hard, soft, and collinear
sectors is complicated by the presence of the jet algorithm needed to obtain an infrared-safe ob-
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servable. Following the experimental analyses, we use the anti-kT algorithm to define jets. We
demand that the final state contain only a single jet with pT J > pveto

T ∼ 25−30 GeV. Other jets with
a transverse momentum above this threshold are vetoed. Since pveto

T is usually substantially lower
than the partonic center-of-mass energy (λ ≡ pveto

T /
√

ŝ << 1), the vetoed observables are usually
very sensitive to soft and collinear emissions. We will make the following assumptions in order to
proceed in our analysis:

pT J ∼ mH ∼
√

ŝ; 1� R2� λ
2;

αs

2π
log2 R << 1. (2.1)

Given that pveto
T ≈ 25−30GeV and R≈ 0.4−0.5 , when the leading jet pT J ∼mH , the second two

assumptions are justified. The first assumption restricts us to specific region of phase space. We
will remove that restriction in a later section.

Our effective theory consists of the following low-energy degrees of freedom:

• a collinear jet mode with momentum pJ =
ωJ
2 nJ +kJ , where nJ is the light-cone vector along

the jet direction;

• two collinear modes propagating along the beam axes a and b, with pi =
ωi
2 ni+ki for i = a,b;

• a soft mode with momentum ks.

The residual momenta kJ , ki and the soft momentum ks all scale as
√

ŝλ , while the large compo-
nents of the three collinear momenta scale as ωi ∼

√
ŝ. We are able to utilize an effective-theory

framework because of how the anti-kT algorithm clusters the soft and collinear modes. The initial
clustering combines the final-state hard emissions into a jet, so that the soft radiation sees only
the jet direction and does not probe its internal structure. The mixing between the soft and beam
sectors is power-suppressed, as is the mixing between the beam and jet sectors. Denoting the mea-
surement function that imposes the jet clustering and vetoing as M̂ , these factors imply that we can
factor M̂ into the product of measurement functions acting separately on the soft, jet, and beam
sectors, up to power-suppressed corrections in pveto

T and R. For more details we refer the reader to
Refs. [6, 7], where the final form for the NLL′ cross section is also given.

We briefly comment here on non-global logarithms [9] that first occur at the NLL′ level. Al-
though they are not included in our current factorization theorem, to estimate their numerical effect
we use the large-Nc resummation of these terms derived in Ref. [9]. We include them as a multi-
plicative correction to our factorization formula. Their numerical effect is small, at or below one
percent of the total exclusive Higgs plus one-jet production rate for the relevant values of mH and
pveto

T . To check the robustness of this result we vary the hard scale appearing in these corrections
by a factor of two around their nominal value of mH , and find similarly small corrections. We
therefore believe that it is numerically safe to neglect these terms in our NLL′ result, although they
should be further investigated in the future.

3. Matching NLL′ with NLO

We next match our resummed expression with the fixed-order NLO result to obtain a NLL′+
NLO prediction. We use the NLO predictions for Higgs plus one-jet contained in MCFM [10]. We
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obtain our prediction by setting

σNLL′+NLO = σNLL′+ σNLO−σ
exp
NLL′ . (3.1)

In this equation, σNLO is the fixed-order NLO cross section obtained from MCFM, and σ ′NLL is the
resummed cross section up to NLL′ accuracy. σ

exp
NLL′ captures the singular features of σNLO, and is

obtained by expanding σNLL′ with all scales set to a common value µ . Schematically, we have

σNLL′ = σLO (1+αsg0)e−LgLL(αsL)−gNLL(αsL)

σ
exp
NLL′ = σLO

(
1+αs

[
−g2L2−g1L +g0

])
, (3.2)

where LgLL and gNLL resum the leading and next-to-leading logarithms, respectively. The differ-
ence between σNLO and the expanded NLL’ result σ

exp
NLL′ only contains power-suppressed contribu-

tions for large values of Q:

σnon−singular ≡ σNLO−σ
exp
NLL′ ∼O

(
R2L,

pveto
T
Q

L ,
pveto

T
Q

logR , · · ·
)
, (3.3)

with L = log(Q/pveto
T ), and Q stands for any kinematic quantity of order mH . Since the scale QR is

used to define the jet mode, the R2L terms are regarded as power suppressed. We have demonstrated
explicitly in Ref. [7] that our formalism correctly captures the singular terms at NLO as L→ 0.

4. Extension to low pT J

As discussed previously, the direct resummation of the exclusive 1-jet bin can only be per-
formed when pT J is much larger than pveto

T and of order mH . We therefore divide the low pT J and
high pT J regimes using a parameter poff

T > pveto
T :

σ1([pveto
T ,∞]; pveto

T ) = σ1([pveto
T , poff

T ]; pveto
T )+σ1([poff

T ,∞]; pveto
T ) . (4.1)

We have introduced the following notation to describe the cross sections in different jet bins:

σtot : the inclusive cross section ,

σ0(pveto
T ) : the 0-jet cross section, with no jets with pT J > pveto

T , (4.2)

σ≥1(pveto
T ) : the inclusive 1-jet cross section, with at least 1 jet with pT J > pveto

T ,

σ1([pTa, pT b]; pveto
T ) : the exclusive 1-jet cross section, with pT b > pT J > pTa ,

σ≥2(pveto
T ) : the inclusive 2-jet cross section, with at least 2 jets with pT J > pveto

T .

If an event has pT J < pveto
T then it is in the 0-jet bin. In practice, poff

T is taken to be around mH/2.
The second term in this relation can be directly resummed to NLL′+NLO using the results of
Refs. [6, 7]. To obtain a result for the first term that is improved beyond fixed order by resummation,
we note that the following identity can be used to relate the exclusive 1-jet cross section to the
inclusive 1-jet and inclusive 2-jet cross sections:

σ1([pveto
T , poff

T ]; pveto
T ) =

[
σ≥1(pveto

T )−σ≥1(poff
T )

]
−
[
σ≥2(pveto

T , pveto
T )−σ≥2(poff

T , pveto
T )

]
. (4.3)
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The first bracketed set of terms give the cross section for one or more jets between pveto
T and poff

T .
The second bracketed set of terms provides a correction to have only one jet in this pT range. Using
the relation in Eq. 4.3, we can construct a (partially) resummed prediction for σ1([pveto

T , poff
T ]; pveto

T ),
as the inclusive 1-jet cross section in the first brackets can be obtained from the resummed 0-jet
cross section, which is known to high accuracy [4]. The inclusive 2-jet cross sections in the second
bracket can be calculated at fixed order up to NLO. The difference of inclusive 1-jet cross sections
is the same as the following difference of 0-jet cross sections,

σ≥1(pveto
T )−σ≥1(poff

T ) = σ0(poff
T )−σ0(pveto

T ) . (4.4)

For the resummation of the 0-jet terms, we use the NNLL′+NNLO results of Ref. [4]. Their
difference describes the inclusive 1-jet rate through NLO plus an all-orders series of the inclusive
1-jet logarithms of pveto

T /mH and poff
T /mH . The 2-jet terms are calculated at NLO. This means that

the leading missing terms in the exclusive 1-jet cross section appear at NNLO and come from the
inclusive 1-jet contribution. These corrections can contain at most a single logarithm of the ratios
pveto

T /mH and poff
T /mH as well as possibly large nonlogarithmic corrections. However, we will

show that the resummation of the 0-jet terms can capture NNLO 1-jet terms that are known to be
large, and our predictions may be tested against the complete H +1-jet NNLO cross section once
the calculation is complete [11]. There are additional unresummed corrections in the logarithmic
series of the exclusive 1-jet cross section induced by the cut on the second jet. These are higher-
order terms that convert the resummation from the inclusive to the exclusive 1-jet cross section (or
equivalently correspond to a resummation of the inclusive 2-jet cross sections in Eq. 4.3). These
terms enter at N3LO and beyond in the exclusive 1-jet cross section, and we will provide evidence
that their contribution is small.

To show that Eq. 4.3 improves upon the fixed-order description of the low pT J region, we
must demonstrate that a few criteria are fulfilled. First, the contributions from the inclusive 2-jet
cross section must be small compared to the 0-jet terms, so that the resummation can be performed
for the bulk of the contribution. Since we will switch to the direct resummation of the 1-jet cross
section above poff

T , we must also show that the two predictions smoothly match onto each other
at that point. Finally, we must demonstrate that these first two points are insensitive to the exact
numerical value chosen for poff

T . These requirements turn out to be all satisfied; for details, we refer
the reader to Ref. [8].

One feature we additionally discuss is that the proposal of Eq. 4.3 represents a systematically-
improvable framework that can incorporate future theoretical advances as they become available.
We therefore include the 0-jet component of Eq. 4.3 both with and without complex scale setting,
which is known to resum large π2 terms in the gg→ H form factor relevant for Higgs produc-
tion [12, 13, 14, 15, 16]. Similarly, the NNLO hard function (see Ref. [17]) is known to induce
a large correction to the gluon-fusion channel of the H + 1-jet cross section [11]. From these re-
sults we can find that for the scale choice µR = µF = mH , the hard function gives a correction to
the NLO 1-jet cross section of approximately 30%, compared to a total correction of 40% when
going from NLO to NNLO. It is the dominant source of the NNLO correction for these parameter
choices. Furthermore, the enhancement from the hard function is constant over a large range of
pT J , suggesting that its origin is a large constant term similar to the π2 corrections that the complex
scale setting resums for the 0-jet cross section. We therefore extend the resummation of Ref. [7] to
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include the NNLO H +1-jet hard function. We compare the matching of the low pT J and high pT J

regions in two schemes:

• Scheme A: complex scale setting for the 0-jet terms in the indirect approach, and the direct
1-jet cross section with the NNLO hard function incorporated.

• Scheme B: no complex scale setting for the 0-jet terms in the indirect approach, and the
direct 1-jet cross section with only the NLO hard function.

Scheme A will lead to larger cross sections due to the π2 corrections and the NNLO hard function,
whose effects on the indirect and direct cross sections are roughly equivalent. Scheme A incorpo-
rates more known information than Scheme B, and is therefore our preferred choice for matching
the 0-jet and 1-jet bins. As shown in Ref. [8], it leads to a smoother matching, and that it is also
more independent of the parameter poff

T that is used to separate the two regions.

5. Numerical results

We now have a consistent framework which incorporates resummation-improved predictions,
and accounts for the correlations between their uncertainties, for the 0-jet and 1-jet bins of Higgs
production. We summarize the ingredients below.

• In the 0-jet bin, we use the direct resummation of the cross section as implemented in Ref. [4],
currently known to NNLL′+NNLO. We include the effect of complex scale setting in this
prediction.

• In the high pT J region of the 1-jet bin, we use the direct resummation of Ref. [7], currently
known to NLL′+NLO. We include the NNLO hard function in this prediction.

• In the low pT J region of the 1-jet bin, we use Eq. (4.3). The 0-jet components of this equation
are obtained from the 0-jet resummation, while the inclusive 2-jet pieces are obtained from
MCFM at NLO. We note that since we are now able to resum the entire 1-jet cross section
and consequently include its dominant corrections beyond NLO, it is consistent to use the
NLO result for the inclusive 2-jet piece rather than the LO one.

In this section, we will give the numerical cross sections in each jet bin and their uncertainties. We
will compare the results of the resummed predictions to those obtained at fixed order, to demon-
strate the improvement obtained. We perform this study for the ATLAS and CMS parameters,
taking mH = 125GeV:

ATLAS: pveto
T = 25GeV, R = 0.4 , CMS: pveto

T = 30GeV, R = 0.5 . (5.1)

We use MSTW NNLO PDFs, and assume an 8 TeV LHC.
In Fig. 1, we plot the cross sections in each jet bin against the fixed-order cross sections. The

agreement between fixed order and the two matching schemes, as well as the reduced uncertain-
ties when moving beyond fixed order, are clearly visible in the plot. We note that these results,
weighted by experimental efficiencies in each jet bin, may directly be used in analyses of the de-
tailed properties of Higgs events.
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Figure 1: The cross sections in the 0-jet, 1-jet, and inclusive 2-jet bins, for ATLAS (left) and CMS (right)
parameter choices. In each jet bin, Scheme A (red left points), Scheme B (blue, right points) are compared
to the fixed-order results (black, middle points).

A key measurement in every given production/decay channel is the coupling of the Higgs
boson to other Standard Model particles. In the simplest case, this corresponds to a measurement of
the signal strength µ , the ratio of the experimentally observed cross section to the SM expectation.
For the H →WW ∗ decay channel the theoretical uncertainties discussed here, which are those for
the expected signal in the sum of jet bins, are a major component of the theory systematics on µ .
Using the cross sections and the covariance matrices derived using the procedures sketched here,
we can estimate the reduction in theoretical uncertainties on µ that is gained by using resummed
results for the cross sections. More details can be found in Ref. [8]; here we present only the result
of this analysis:

fixed order :
∆µ

µ
= 13.3% ,

Scheme A :
∆µ

µ
= 6.9% . (5.2)

The ATLAS measurement, using fixed-order results for the cross sections and uncertainties, finds
the relative uncertainty on µ from the expected signal to be +12% and −9%, giving confidence
to our estimates. The result in Eq. 5.2 is encouraging, as it shows that the theoretical uncertainties
in the expected signal in the determination of µ are approximately halved by using the results in
Scheme A.

6. Conclusions

In this work we have presented a complete method for turning the separate resummations of
the large logarithms in the 0-jet and 1-jet bins into a combined covariance matrix for use in ex-
perimental studies. A key element of our approach is an extension of the H + 1-jet resummation
into the phase space region where the transverse momentum of the final state jet is small. This is
the first result that resums the exclusive 1-jet cross section across the entire final state phase space.
Our approach provides a systematically-improvable framework that can incorporate improved cal-
culations as they become available. As a demonstration, we have shown how adding enhanced
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corrections in the 0-jet and 1-jet bins leads to both a smoother matching between the two bins and
reduced perturbative uncertainties. Future calculations, such as the NNLO fixed-order result for
H +1-jet, are easily included in our approach. We find nearly a factor of two reduction in the the-
oretical uncertainty on the signal strength using our methodology. This is a dramatic improvement
in the estimated uncertainty, and will become crucial as the statistical uncertainties on Higgs cross
sections continue to decrease during Run II of the LHC. We look forward to the application of our
ideas in future LHC analyses.
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