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In the last two years the renormalization group functions for the couplings and fields of the Stan-

dard Model have been computed at three-loop level [1–7]. The evolution of the self-coupling λ

of the Standard Model Higgs boson is of particular importance due to its close connection with

the stability of the Standard Model vacuum state. In this talk the three-loop corrections to the

β -function for this crucial coupling are discussed.

The calculation of three-loop β -functions and anomalous dimensions poses special technical chal-

lenges, such as the huge number of diagrams and the proper treatment of γ5 in dimensional regu-

larization. In order to avoid infrared divergences resulting from setting external momenta to zero

in the case of the Higgs self-coupling an auxiliary mass is used to compute the ultraviolet diver-

gences needed for the renormalization constants. This method, first suggested in [8], is explained

in some detail.

Finally, an update for the status of the vacuum stability problem in the Standard Model up to the

Planck scale is presented.
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1. Motivation: The vacuum stability problem

The Standard Model of particle physics describes the interactions of fermions through the

exchange of gauge bosons. In the covariant derivative

Dµ = ∂ µ − ig1Y Bµ − i
g2

2
σ aW a µ − igsT

aAa µ
. (1.1)

the three gauge couplings gs, g2 and g1 of the SU(3)× SU(2)×U(1) group are defined.1 In

addition to the fermions and gauge bosons a scalar SU(2) doublet is introduced which aquires

a vacuum expectation value (VEV) at the electroweak scale v ≈ 246.2 GeV. The fermion masses

and the Higgs-fermion interaction are derived from the Yukawa sector of the Standard Model and

the Higgs self-interaction is introduced to the Lagrangian in the classical Higgs potential

V (|Φ|) =
(

m2 Φ†Φ+λ
(

Φ†Φ
)2
)

, Φ =

(

Φ1

Φ2

)

. (1.2)

After spontaneous symmetry breaking we have the classical field strength

Φcl := 〈0|Φ|0〉 = 1√
2

(

0

v

)

(1.3)

and describe excitations from the ground state with four quantum fields, the Higgs field H and three

Goldstone bosons χ , Φ±:

Φ =

(

Φ1

Φ2

)

SSB−−→

(

Φ+

1√
2
(v+H − iχ)

)

. (1.4)

Due to radiative corrections the effective couplings evolve with the renormalization scale and

we have to consider the effective Higgs potential [9] instead of the classical one. The effective

potential develops a second minimum at high classical field strengths |Φcl| if we extrapolate the

Standard Model up to e.g. the Planck scale MPlanck ∼ 1019 GeV. In the absence of physics beyond

the Standard Model at the LHC so far this is a conceivable scenario. The effective potential is a

function of Φcl and is affected by the self-interactions of the scalar fields as well as the interactions

of the scalar fields with all other fields. Hence it depends on all couplings of the theory.
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Figure 1: Classical and effective Higgs potential

1Bµ , W aµ and Aaµ are the gauge fields of SU(3), SU(2) and U(1) respectively, σa are the Pauli matrices, T a are

the generators of SU(3) and Y the U(1) hypercharge of the field on which Dµ acts.
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Generic shapes of the classical Higgs potential and of the effective potential are shown in

Fig. 1 for the cases of a Higgs mass larger and smaller than a critical value mmin, the minimal

stability bound. For MH > mmin the second minimum is higher than the one at the electroweak

scale and therefore the vacuum state with |Φcl|= v√
2

is stable. However, for MH < mmin the second

minimum is energetically favoured and the electroweak vacuum state is not stable against decay

into this global ground state. Depending on whether the lifetime of the electroweak vacuum state

is shorter or longer than the age of the universe this is called an unstable or metastable scenario. It

has been demonstrated that the stability of the Standard Model vacuum is in good approximation

equivalent to the question whether the Higgs self-interaction λ stays positive up to the maximum

validity scale of the theory, e.g. MPlanck [10–12]. A detailed analysis of the vacuum stability problem

in the Standard Model can be found in [3, 13–20].

The evolution of any coupling is described by the respective β -function

βX(λ ,yt ,gs,g2,g1) = µ2 d

dµ2
X(µ), X ∈ {λ ,yt,gs,g2,g1} . (1.5)

Every β -function is a power series in all couplings of the theory which is why the β -functions for

all numerically relevant couplings are needed. Recently, the β -functions for the gauge couplings

[1, 2, 5], Yukawa couplings [3, 7] and for the Higgs self-interaction [3, 4, 6] have been computed at

three-loop level.

In order to determine the evolution of λ the coupled system of differential equations (1.5)

needs to be solved using initial conditions for all couplings, e.g. their value at the scale of the

top pole mass. In table 1 the values for the numerically largest couplings are given at this scale.

These are derived by matching the experimentally accessible parameters GF, Mt, MH, MW, MZ and

αMS
s

(MZ) to the MS-parameters gs(Mt), g2(Mt), g1(Mt), yt(Mt) and λ (Mt). One-loop [21–23] and

two-loop corrections [13, 15, 24–30] to this matching are taken into account. Except for yt the

Yukawa interactions yb, yc, etc. can be neglected in this context due to their smallness. The same

applies to the off-diagonal entries of the Yukawa matrices.

2. Calculating the β -function for the Higgs self-interaction with an auxiliary mass

The β -function of a coupling is computed in dimensional regularization from the renormal-

ization constant of a vertex proportional to this coupling and the renormalization constants for the

external fields of this vertex. The calculation is performed in the unbroken phase of the Standard

coupling value for µ = Mt

gs 1.1666

g2 0.6483

g1 0.3587

λ 0.1276

yt 0.9369

Table 1: Standard Model couplings at the top pole mass scale for Mt = 173.34 GeV [31],

MH = 125.9 GeV [32–34] und αs(MZ) = 0.1184 [35] using the on-shell to MS-relations given in [13].
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Figure 2: One-loop diagrams contributing to the renormalization of the Φ4
1-vertex: An IR singularity appears

in (c) if two external momenta are set to zero.

Model and the results are given in the MS-scheme. There are many challenges to the computation

of the three-loop β -function for the Higgs self-interaction. One is the huge number of Feynman

diagrams, 573692 for the Φ4
1-vertex even if we factorize the full gauge group factor from the mo-

mentum space factor for each diagram (for details see [4]). Another issue is the proper treatment of

γ5 in dimensional regularization. Whereas a naive treatment of γ5 does not work for the computation

of βyt
we have shown in [3, 4] that a naive treatment is sufficient for βλ at three-loop level.

In the case of corrections to the quartic scalar vertex a problem arises already at one-loop

level if we compute the renormalization constant setting two external momenta to zero and then

evaluating propagator-like massless diagrams. In Fig. 2 we see that diagram (c) has an UV diver-

gence as well as an IR one which cancel to give zero for the whole diagram. In order to avoid

the IR singularity and to retrieve the correct contribution to the UV renormalization constant we

introduce an auxiliary mass in the denominator of every propagator. Then we Taylor expand in

the external momenta as far as needed in order to factorize the kinematic structure of the Greens

function which we want to compute, e.g. q2gµν −qµqν for the gluon propagator. Now we can set

the external momenta in the scalar part of the Greens function to zero because the UV divergence

does not depend on those.

This method was suggested in [8] and further developed in [36]. In order to see why this

method works let us consider the following decomposition of a propagator denominator [36]:

1

(l +q)2
=

1

l2 −M2
+

−q2 −2l·q−M2

l2 −M2

1

(l +q)2
, (2.1)

where l is a linear combination of loop momenta and q of external momenta. Using this formula

recursively leads to the last term, which has q in the denominator, contributing only to the finite

part of the integral because the power of the denominator is increased with every recursion. We

consider now the case where two iterations are enough:

1

(l+q)2
=

1

l2 −M2
+

−q2 −2l·q
(l2 −M2)2

+
(−q2 −2l·q)2

(l2 −M2)3

− M2

(l2 −M2)2
+

M2(M2 +2q2 +4l·q)
(l2 −M2)3

+
(−q2 −2l·q−M2)3

(l2 −M2)3

1

(l+q)2
.

(2.2)

This decomposition is exact and hence using the left side of (2.2) for every propagator denominator

would give the correct and M2-independent result. As we are only interested in the UV divergent
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l

= l2

ε Cl2 +
M2

ε CM2+ finite

(a)
(b)

M2δZ
(2Φ)
M2 =−M2

ε CM2

(c)

Figure 3: A divergent subgraph (a) with terms ∝ M2 and ∝ l2 leads to an M2-independent but wrong

contribution in (b) as the rest of the diagram produces a term ∝ 1
M2 . This must be compensated by a mass

counterterm (c).

part of the integral we neglect the last term in (2.2). Furthermore, we notice that the first line of

(2.2) is exactly the Taylor expansion in the external momenta mentioned above.

If we do not use this exact decomposition but simply put M2 in every propagator denominator

and expand in the external momenta we neglect exactly the terms ∝ M2 in the second line of (2.2).

At one-loop level this is not a problem because we know that the exact result does not depend on

M2. We can therefore reconstruct the contribution from the terms ∝ M2 in (2.2) as counterterms to

the M2-terms in our result.

These counterterms become important at higher orders where a divergent subgraph with a term

∝ M2

ε is multiplied with a term ∝ 1
M2 from the rest of the full diagram. Hence the wrong contribution

∝ M2

ε from the subgraph is not identifiable in the final result. This can be avoided by applying all

possible counterterms ∝ M2 which have been computed in lower orders. Using these counterterms

∝ M2 we restore the M2-terms of the exact decomposition (2.2) order by order in perturbation

theory. An example is shown in Fig. 3. The one-loop diagram (a) has a divergent part l2

ε Cl2 +
M2

ε CM2

if we introduce the auxiliary mass M2 in the denominators of the two propagators and Taylor

expand in the external momentum l. Only the scalar part Cl2 is needed in order to renormalize the

Lagrangian of the (massless) theory. The counterterm M2δZ
(2Φ)
M2 = −M2

ε CM2 however is needed at

two-loop level in order to insure that only the part l2

ε Cl2 of the subdiagram (a) of the full diagram

(b) contributes to the final result.

To summarize the method, we introduce an auxiliary mass in every propagator denominator,

expand in the external momenta as far as needed for the kinematic structure of the considered

Greens function before setting them to zero in the scalar part of the Greens function. Then the

UV divergent part of the Greens function is computed order in order in perturbation theory by

evaluating massive Tadpole diagrams, for which we use MATAD [37]. In order to get the correct

result we have to apply all possible regular UV counterterms as well as all possible counterterms

∝ M2 to the lower order diagrams. In the Standard Model they have the form

M2

2
δZ

(2g)
M2 Aa

µAa µ
,

M2

2
δZ

(2W)
M2 W a

µW a µ
,

M2

2
δZ

(2B)
M2 BµBµ

, M2δZ
(2Φ)
M2 Φ†Φ. (2.3)

Other counterterms ∝ M2 and of mass dimension four can not be constructed. For fermions this

is obvious, for ghosts this is because of the kinematic structure of the ghost vertex which is al-
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ways proportional to a momentum making only kinetic counterterms ∝ (∂µ c̄a)(∂ µca) and no term

∝ M2c̄aca possible.

Note, that the mass M2 is introduced by hand at the level of integrands and is not a parameter

of the theory. Hence these counterterms do not appear in the Lagrangian and gauge invariance of

the theory is not spoiled. The whole procedure is a mathematical trick to reduce the problem of

UV renormalization counterterms to computing massive tadpoles with one scale.

The results of the calculation of the three-loop β -function for the Higgs self-interaction have

been published in [3, 4].

3. The evolution of the Higgs self-coupling and vacuum stability

The evolution of λ up to the Planck scale MPlanck ∼ 1019 GeV using the β -functions for

λ ,yt ,gs,g2 and g1 as well as the initial conditions from Tab. 1 is shown in Fig. 4. Whereas the dif-

ference between the evolution using two-loop β -functions and the one using one-loop β -functions

is significant, the curves for three-loop β -functions and two-loop β -functions are very close. The

difference between these two curves represents the theoretical uncertainty stemming from truncat-

ing the perturbation series of the β -functions. This can be compared to the theoretical uncertainties

stemming from the matching of on-shell to MS-parameters which are of similar size [20] and to

the uncertainties of the experimental input parameters. Here the main uncertainty stems from the

top mass. In Fig. 4 we see the three-loop evolution of λ for the top pole mass shifted by one

σ = 0.76 GeV [31]. The uncertainties stemming from the Higgs mass and αs measurement are

3 loop: M t=173.34+0.76 GeV

3 loop: M t=173.34-0.76 GeV

1 loop

2 loop

3 loop
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Figure 4: Evolution of λ using 1, 2 and 3 loop β -functions, top mass uncertainty
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significantly smaller than the one from the top mass but still larger than the theoretical ones (see

e.g. [20]).

The stability of the electroweak vacuum state is a fundamental issue if the Standard Model

extrapolated to high energies. In the absence of new physics the Higgs self coupling becomes

negative at Log10

( µ
GeV

)

≈ 10.36 for the best fit input parameters. This makes a metastable scenario

the most likely for the Standard Model up to the Planck scale. Due to the calculation of three-

loop β -functions for the Higgs self-interaction and the other Standard Model couplings as well

as due to improved precision in the matching relations between on-shell and MS-parameters the

theoretical uncertainties are well under control. A more precise measurement of the experimental

input parameters, especially of the top mass at a linear e+e−-collider, is necessary to clarify this

issue with certainty.
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