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Solving Coupled Systems of Differential and Difference Equations Carsten Schneider

1. Introduction

Symbolic summation in the setting of difference fields and rings [26, 32, 20, 33, 35, 36, 37,

38, 40] provides a general toolbox in form of the Mathematica package Sigma [34, 39] to simplify

definite multi-sums to expressions in terms of indefinite nested sums and products. This function

domain covers as special cases harmonic sums [16, 46]

Sa1,...,ak
(N) =

N

∑
i1=1

sign(a1)
i1

i
|a1|
1

i1

∑
i2=1

sign(a2)
i2

i
|a2|
2

. . .

ik−1

∑
ik=1

sign(ak)
ik

i
|ak|
k

, ai ∈ Z\{0}, (1.1)

generalized harmonic sums [30, 7], cyclotomic sums [3] or nested binomial sums [24, 23, 47, 11] .

In the last years this technology proved to be useful to evaluate non-trivial Feynman integrals

in the context of QCD. Namely, as worked out in [17, 48] a big class of integrals in terms of the

dimensional parameter ε = D−4 and a discrete Mellin parameter N can be written in the following

form:

F(N) =
L1(N)

∑
k1=l1

...

Lv(N,k1,...,kv−1)

∑
kv=lv

f (ε ,N,k1, . . . ,kv) (1.2)

where Li(N,k1, . . . ,kv−1) stands for an integer linear relation in the variables N,k1, . . . ,kv−1 or

is ∞ and f (ε ,N,k1, . . . ,kv) is a linear combination of proper hypergeometric sequences given in

terms of Γ-functions with arguments in terms of integer linear relation in the integer parameters

N,k1, . . . ,kv−1 and ε might occur linearly in the form r ε with r being a rational number.

Given such a multi-sum F(N), the main task is to compute the first coefficients Fi(N) of the

Laurent-series expansion

F(N)
?
= Fλ (N)ελ +Fλ+1(N)ελ+1 + . . . , λ ∈ Z (1.3)

in terms of special functions such as (generalized) (cyclotomic) harmonic sums and nested binomial

sums mentioned above. To get this representation, the following two tactics are of interest.

Tactic 1: Compute the coefficients of the ε-expansion of the summand

f (ε ,N,k1, . . . ,kv) = fλ (N,k1, . . . ,kv)ε
λ + fλ+1(N,k1, . . . ,kv)ε

λ+1
. . . (1.4)

by formulas such as Eq. (1.4) in [5] and arrive at a linear combination of hypergeometric terms (free

of ε) multiplied with (cyclotomic) harmonic sums. Finally, if the interchange of the summation

signs and differentiation w.r.t. ε (which we applied to get the summand expansion) is valid, we end

up at multi-sum representations for the coefficients of the expansion (1.3):

Fi(N) =
L1(N)

∑
k1=l1

...

Lv(N,k1,...,kv−1)

∑
kv=lv

fi(N,k1, . . . ,kv).

Note that exactly at this point our symbolic summation toolbox in form of the Mathematica package

EvaluateMultiSums [1, 39] (based on the difference field/ring algorithms in Sigma) can be

activated: it tries to transform the found multi-sums completely automatically to the desired form

in terms of indefinite nested sums and products. If infinite summation bounds occur one needs
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in addition the Mathematica package HarmonicSums [3, 6, 7] which provides the necessary

asymptotic expansions to treat limit computations.

Tactic 2: A different approach is as follows. Hunt for a recurrence

a0(ε ,N)F(N)+a1(ε ,N)F(N +1)+ · · ·+ad(ε ,N)F(N +d)

= hλ (N)ελ +hλ+1(N)ελ+1 +hλ+2(N)ελ+2 + . . . (1.5)

of order d ∈ N with polynomials ai(ε ,N) in the variables ε and N. In particular, we require that

the inhomogeneous part is given in expanded form where the coefficients hi(N) are expressions in

terms of indefinite nested sums and products. For the different methods and algorithms to compute

such recurrences we refer to [17, 5] and references therein. Here we emphasize the following [17]:

Given such a recurrence and suppose that we are given the initial values F(n) for n = 1, . . . ,d

expanded high enough, then we are in business to obtain the all-N solution using Sigma: we can

determine the first coefficients of the expansion (1.3) whenever they are expressible in terms of

indefinite nested sums and products.

These tactics (in particular the first variant with EvaluateMultiSums) turned out to be

instrumental to evaluate two and three loop massive integrals in [15, 2, 4]. Another interesting

feature is to crunch the occurring sums with the Mathematica package SumProduction [19]

to basis sums (master sums) such that no relations (in particular, no contiguous relations) occur

among them. Then our summation tools are only applied to a few remaining sums. This enabled

us to handle many additional problems such as outlined in Refs. [18, 10] and is currently used for

ongoing calculations. For the interplay of all these packages and their features we refer to [41].

For our current calculations, we continue this strategy of compactification by another com-

ponent. Namely, in order to calculate massive 3-loop operator matrix elements [9, 8, 13] we

used integration by parts (IBP) technology [44, 22, 27], more precisely, the powerful C++–code

Reduze 2 [43, 29] was used, to reduce the input expression to a reasonable number of master

integrals. Then using our symbolic summation tools (Tactic 1), we could expand the given master

integrals in terms of harmonic sums. Given these building blocks we could derive the expansion of

the complete input expression.

However, in the most recent calculations integrals occur that seem too hard for direct calcu-

lations. This pushed us forward to another aspect. We use the well known fact that the master

integrals are related to each other [28]: together they form a hierarchically ordered coupled system

of differential (resp. difference) equations.

This article provides a new component to utilize this property by means of symbolic summa-

tion (Section 2) and uncoupling algorithms [25]. In Section 3 we will present an algorithm that

solves such coupled differential equations in one continuous variable x (resp. coupled difference

equations in a discrete variable N). More precisely, we can derive the first coefficients of the ε-

expansion of the master integrals using as input this coupled system and a certain amount of initial

values. A summary will be given in Section 4.
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2. The backbone of our solver: difference field/ring algorithms

Subsequently, we work out the essential summation paradigms to treat the two tactics pre-

sented above. The underlying ideas will be demonstrated by tackling the following sum

F(N) =
N

∑
k=1

(−1)ke−
3εγ

2 Γ(−1−
3ε

2

)
B
(
2+ k,

ε

2

)
B(−ε + k,−ε)B

(
1−

ε

2
+ k,1+

ε

2

)
(

N

k

)

︸ ︷︷ ︸

f (N,k)

(2.1)

with Euler’s γ constant and where B(a,b) = Γ(a)Γ(b)
Γ(a+b) denotes the Beta-function.

2.1 Tactic 1: Expand under the summation sign and simplify the coefficients

As worked out in the introduction, we first compute the first coefficients fi(N,k) of the ε-

expansion (1.4) of the summand f (N,k); here we have λ = −3. Then we get the coefficients

Fi(N) = ∑N
k=1 fi(N,k) of the ε-expansion (1.4). E.g., for i =−1 we get the single pole term

F−1(N) =
N

∑
k=1

(−1)k+1

(
N

k

)((2+3k)
(
−2+3k+7k2 +3k3

)

3k2(1+ k)3
+

2S2(k)

1+ k
+

ζ2

2(1+ k)

)

with ζa = ∑∞
i=1

1
ia

. In order to simplify this sum we compute a recurrence relation using the sum-
mation package Sigma:

(
16N3 +144N2 +413N +384

)
(N +1)2F−1(N)− (N +2)(2N +5)

(
16N3 +112N2 +221N +113

)
F−1(N +1)

+(N +3)2
(
16N3 +96N2 +173N +99

)
F−1(N +2) =

ζ2

(
4N2+21N+29

)

2 + −64N5−500N4−1133N3+203N2+3516N+3090
3(N+2)(N+3)

.

(2.2)

Remark. The underlying difference field algorithms [32, 35, 36, 37, 40] are based on Zeilberger’s

creative telescoping paradigm [49]. In general, the input is a definite sum ∑k f (N,k) where the

summand f may consist of indefinite nested sums and products w.r.t. the summation variable k and

where the occurring objects in f might depend on the parameter N (or even further parameters).

Note that the algorithms provide also a proof certificate that shows the correctness of the recurrence.

Now we activate Sigma’s recurrence solver, which can handle the following problem [31, 14, 32].

Problem REC: GIVEN polynomials a0(N), . . . ,ad(N) in N and an expression h(N) in terms of

indefinite nested sums and products (such as harmonic sums, binomial nested sums, etc.).

FIND all solutions of the linear recurrence

a0(N)F(N)+ · · ·+ad(N)F(N +d) = h(N)

that are expressible in terms of indefinite nested sums and products.

In our particular instance, we find the solutions

L =
{

c1
1−4N

N +1
+ c2

(−14N −13

(N +1)2
+

(4N −1)S1(N)

N +1

)

+
(1−4N)S1(N)2

6(N +1)

+
(14N +13)S1(N)

3(N +1)2
+

175N2 +334N +155

12(N +1)3
+

(1−4N)S2(N)

6(N +1)
+

ζ2

8(N +1)
|c1,c2 ∈ R}.
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Since the solution set is completely determined (note that we found two linearly independent so-

lutions of the homogeneous version and one particular solution of the recurrence itself), it follows

that F−1(N) ∈ L. The first two initial values N = 1,2 determine uniquely c1 =
1
12
− ζ2

8
and c2 = 1.

Summarizing, we discovered (together with a rigorous proof) that

F−1(N) =
( 1

12
−

1

8
ζ2

) 1−4N

N +1
+

−14N −13

(N +1)2
+

(4N −1)S1(N)

N +1
+

(1−4N)S1(N)2

6(N +1)

+
(14N +13)S1(N)

3(N +1)2
+

175N2 +334N +155

12(N +1)3
+

(1−4N)S2(N)

6(N +1)
+

ζ2

8(N +1)
.

We remark that the package EvaluateMultiSums combines all the available features of Sigma

yielding a powerful function to obtain such simplifications in terms of indefinite nested sums and

products completely automatically.

2.2 Tactic 2: Extract the expansion from a recurrence

For the second tactic we need a recurrence (1.5) for our sum (2.1). Using Sigma we get

2(N +1)2F(N)+
(
3ε2 +3εN +9ε −4N2 −12N −8

)
F(N +1)

− (2ε −N −1)(ε +2N +6)F(N +2) = 0ε−3 − 16
3

ε−2 + 40
3

ε−1 −
(
2ζ2 −

68
3
)ε0 + . . . .

Together with initial values for N = 1 and N = 2

F(1) = 2
3
ε−3 − 11

6
ε−2 +

( ζ2

4
+ 79

24

)
ε−1 + . . . , F(2) = 8

9
ε−3 − 73

27
ε−2 +

( ζ2

3
+ 1415

324

)
ε−1 + . . .

we are now in the position to calculate the first coefficients of the ε-expansion with Sigma:

F(N) = 4N
3(N+1)ε

−3 −
(

2(2N+1)
3(N+1) S1(N)+ 2N(2N+3)

3(N+1)2

)

ε−2

(
(1−4N)
6(N+1)S1(N)2 −

N
(

N2−2
)

3(N+1)3 + (3N+2)(4N+5)
3(N+1)2 S1(N)+ (1−4N)

6(N+1)S2(N)+ Nζ2

2(N+1)

)

ε−1 + . . .

In general, suppose we are given a recurrence (1.5) with polynomial coefficients ai(N) (not all ai

being the zero-polynomial) and expressions hi(N) in terms of indefinite nested sums and products;

furthermore assume we are given the expansion of F(i) for i = 1, . . . ,d up the the order εr. Then

we can decide if the coefficients of the expansion (1.3) up to order r can be expressed in terms of

indefinite nested sums and products.

Here the general idea is as follows. Plug in the generic solution (1.3) into (1.5):

a0(ε ,N)
[

Fλ (N)ελ +Fλ+1(N)ελ+1 +Fλ+2(N)ελ+2
. . .

]

+a1(ε ,N)
[

Fλ (N +1)ελ +Fλ+1(N +1)ελ+1 +Fλ+2(N +1)ελ+2
]
+ · · ·+

+ad(ε ,N)
[

Fλ (N +d)ελ +Fλ+1(N +d)ελ+1 +Fλ+2(N +d)ελ+2 + . . .

]

= hλ (N)ελ +hλ+1(N)ελ+1 +hλ+2(N)ελ+2 + . . .

(2.3)

Two Laurent series agree if they agree term-wise, in particular the term with lowest order must

agree. This gives the constraint1

a0(0,N)Fλ (N)+a1(0,N)Fλ (N +1)+ · · ·+ad(0,N)Fλ (N +d) = hλ (N).

1We auppose that ai(0,N) 6= 0 for all i; otherwise divide through ε several times which amounts to decrease λ .

5
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Now we activate the recurrence solver (see Problem REC on page 4) and calculate with Sigma

all solutions that are expressible in terms of indefinite nested sums and products. Thus together

with the initial values for Fλ (1), . . . ,Fλ (d) we can decide if Fλ (N) can be expressed in terms of

indefinite nested sums and products. If this fails, our algorithm stops. Otherwise, we take the found

representation of Fλ (N) in terms of indefinite nested sums and products and plug it into (2.3).

Shuffling the inserted expressions to the right hand side gives

a0(ε ,N)
[

Fλ+1(N)ελ+1 +Fλ+2(N)ελ+2
. . .

]

+a1(ε ,N)
[

Fλ+1(N +1)ελ+1 +Fλ+2(N +1)ελ+2
]
+ · · ·+

+ad(ε ,N)
[

Fλ+1(N +d)ελ+1 +Fλ+2(N +d)ελ+2 + . . .

]

= h′λ+1(N)ελ+1 +h′λ+2(N)ελ+2 + . . .

where the h′i(N) are updated expressions in terms of indefinite nested sums and products. By

construction the ελ contribution is removed and we can divide the whole equation by ε . Thus we

can repeat the procedure where Fλ+1 (instead of Fλ ) plays the role of the lowest term.

3. A challenging diagram and a new algorithm to solve coupled systems

We want to calculate the ε-expansion of the ladder graph with 6 massive fermion lines2:

D4(N) =
4

?
= F−3(N)ε−3 +F−2(N)ε−2 +F−1(N)ε−1 +F0(N)ε0 + . . . (3.1)

For scalar diagrams of the same class [4] we succeeded in calculating the ε-expansion following

Tactic 1 of Section 2. But for the diagram in question we failed with this tactic so far. As it turned

out, a clever extension [12] of Brown’s hyperlogarithm algorithm [21] was successful to obtain

in [4] the scalar version of (3.1), i.e. for diagrams with a numerator function equal to one, with

limε→0 D4(N) = F0(N). However, if one wants to consider the complete physical diagram, this

method does not apply since poles in ε occur in almost all integrals. Subsequently, we present a

new strategy that can tackle such diagrams in a rather natural way.

Let us consider the generating function (formal power series) of D4(N), i.e.,

D̂4(x) =
∞

∑
N=0

D4(N)xN
.

Then by using refined IBP methods, i.e., by Reduze 2 [43, 29, 8] we obtain the expression

∞

∑
N=0

D4(N)xN =
52

∑
i=1

�B̂i(x)+
15

∑
i=1

�Î1(x) (3.2)

with the master integrals Îi and B̂i and with large coefficients � in terms of rational functions

in ε and x that are not printed out explicitly. As it turns out, B̂1(x), . . . , B̂52(x) can be determined

directly with sophisticated Mellin-Barnes techniques and our summation tools from above. E.g., for

2The following graph has been drawn using Axodraw [45].
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B̂1(x) = ∑∞
N=0 B1(N)xN the integral B1(N) can be written in the compact sum representation (2.1)

for which we carried out the ε-expansion as a concrete example.

Since Î1(x), . . . , Î15(x) are hard to handle with this toolbox, we use the additional property that

the missing integrals satisfy a hierarchically ordered coupled system of differential equations. This

particular property is induced by the underlying sector decomposition of the IBP method. More

precisely, we are given

DxÎ1(x) =− (−ε+x−1)
(x−1)x Î1(x)−

2
(x−1)x Î2(x)+

1
(x−1)x B̂1(x)+ . . .

DxÎ2(x) =− ε(3ε+2)(x−2)
4(x−1)x Î1(x)+

(−2+x+ε(3x−5))
2(x−1)x Î2(x)−

(2ε+x−εx)
2(x−1)x Î3(x)

+ ε(50−14x)+ε2(25−6x)−8(x−3)
4(5ε+6)(x−1)x B̂1(x)+ . . .

DxÎ3(x) =
ε(3ε+2)
4(x−1) Î1(x)+

(2+ε−3x−3εx)
2(x−1)x Î2(x)−

(ε+1)
2(x−1) Î3(x)+

8(x−3)+ε2(6x−25)+2ε(7x−25)
4(5ε+6)(x−1)x B̂1(x)

(3.3)

in terms of Î1(x), Î2(x), Î3(x). Note that by the internal structure the right hand sides of (3.3) are free

of Î4(x), . . . , Î15(x). In the following subsections we will demonstrate how this system can be solved

in Î1(x), Î2(x), Î3(x) by using the explicitly given expansions of the B̂i that we calculated already as

a preprocessing step.

Given this result, we will then turn to the remaining Îi(x) with i > 3. Here the hierarchical

nature proceeds. Given the ε-expansion of the B̂i(x) and Î1(x), Î2(x), Î3(x) in terms of indefinite

nested sums and products, we obtain a coupled system in terms of the unknowns {Î4(x), Î5(x)}

and we can solve them again in terms of indefinite nested sums and products. Summarizing, we

continue iteratively, and obtain closed forms for the clustered integrals in the given hierarchically

structured order:

{Î1(x), Î2(x), Î3(x)}→ {Î4(x), Î5(x)}→ {Î6(x), Î7(x), Î8(x)}

→ {Î9(x), Î10(x)}→ {Î11(x), Î12(x), Î13(x)}→ {Î14(x)}→ {Î15(x)}. (3.4)

3.1 Step 1: Transformation to a coupled recurrence system

In order to solve the coupled system (3.3), we first derive a coupled system of difference

equations that determines the coefficients I1(N), I2(N), I3(N) of the power series

Îi(x) =
∞

∑
N=0

Ii(N).

Namely, plugging in these generating functions into the first equation of (3.3) yields

Dx

∞

∑
N=0

I1(N)xN =− (−ε+x−1)
(x−1)x

∞

∑
N=0

I1(N)xN − 2
(x−1)x

∞

∑
N=0

I2(N)xN + 1
(x−1)x

∞

∑
N=0

B1(N)xN + . . .

Then applying Dx on the summands of the power series and doing coefficient comparison on both

sides leads to

NI1(N −1)− (ε +N +1)I1(N)+2I2(N) = B1(N)+ . . . ,

where on the right hand sides only the master integrals Bi(N) (but not Ii) arise. Similarly, we apply

this transformation to the other equations in (3.3) and inserting the already computed ε- expansions

7
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of Bi(N) we obtain the coupled recurrence system

NI1(N −1)− (ε +N +1)I1(N)+2I2(N)

=− 4(N+2)
3(N+1)ε

−3 +
(

2(2N+1)
3(N+1) S1(N)−

2
(

6N2+13N+8
)

3(N+1)2

)

ε−2 + . . .

4(ε −N)I3(N)−2ε(3ε +2)I1(N)+ ε(3ε +2)I1(N −1)

−2(3ε +1)I2(N −1)+2(5ε +2)I2(N)−2(ε −2N +1)I3(N −1)

=− 8
3
ε−3 −

(
8
3
S1(N)−4

)

ε−2 −
(

4
3
S1(N)2 − 4(N+1)

N
S1(N)+ 4

3
S2(N)+ζ2 +6

)

ε−1 + . . .

2(ε +2N +2)I2(N)−2(3ε +2N +1)I2(N −1)+ ε(3ε +2)I1(N −1)−2(ε +1)I3(N −1)

= 8
3
ε−3 +

(
8
3
S1(N)−4

)

ε−2 +
(

4
3
S1(N)2 − 4(N+1)

N
S1(N)+ 4

3
S2(N)+ζ2 +6

)

ε−1 + . . . ,

(3.5)

where the left hand sides contain the unknowns I1(N), I2(N), I3(N) and the right hand sides consist

of ε-expansions whose coefficients are given in terms of indefinite nested sums and products. More

precisely, in our concrete example, only harmonic sums occur.

3.2 Step 2: Uncouple the recurrence system

In the next step we uncouple the system (3.5) in the following sense: we search for one scalar

linear recurrence in one of the functions, say I1(N), and express the remaining functions I2(N)

and I3(N) in terms of I1(N). To accomplish this task, various algorithms are available within

the Mathematica package OreSys [25]; for our concrete problem we took Zürcher’s uncoupling

algorithm [50].

More precisely, we get the scalar difference equation

−2(N +1)(N +2)(ε +N +2)I1(N)− (N +2)
(
2ε2 −5εN −7ε −6N2 −28N −32

)
I1(N +1)

+
(
ε3 +4ε2N +14ε2 −4εN2 −13εN −3ε −6N3 −50N2 −136N −120

)
I1(N +2)

− (ε −N −2)(ε +N +4)(ε +2N +8)I1(N +3)

=− 4(N+2)
3(N+3)ε

−3 +
2
(

4N4+35N3+101N2+105N+25
)

3(N+1)(N+2)(N+3)2 ε−2 + . . . (3.6)

in the unknown function I1(N) and the two equations

I2(N) =�I1(N)+�I1(N +1)+�I1(N +2)

− 2(N+2)
3(N+1)ε

−3 +
(

6N3+25N2+33N+15
3(N+1)2(N+2)

+ (−2N−1)
3(N+1) S1(N)

)

ε−2 + . . .

I3(N) =�I1(N)+�I1(N +1)+�I1(N +2)

+ 2(N+2)
3(N+1)ε

−3 +
(
−2N3−3N2+3N+3

3(N+1)2(N+2)
+ (2N+1)

3(N+1)S1(N)
)

ε−2 + . . .

(3.7)

that determine I2(N) and I3(N) if one knows the solution of I1(N).

3.3 Step 3: Solve the uncoupled system of difference equations

Now we are in the right position to activate Tactic 2 of our symbolic summation toolbox. First

we derive the initial values

I1(1) =
5
ε3 −

163
12ε2 +

(
15ζ2

8
+ 1223

48

)
ε−1 + . . . , I1(2) =

130
27ε3 −

695
54ε2 +

(
65ζ2

36
+ 46379

1944

)
ε−1 + . . . ,

I1(3) =
169

36ε3
−

395

32ε2
+
(

169ζ2

96
+ 470071

20736

)
ε−1 + . . .
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using, e.g., MATAD [42] or using further tools as Mellin-Barnes integrals and other methods as

worked out in [10]. Namely, given (3.6) we activate Sigma’s recurrence solver and obtain the

ε-expansion

I1(N) =
(

4
(

3N2+6N+4
)

3(N+1)2 + 4S1(N)
3(N+1)

)

ε−3

+
(
−2
(

20N3+58N2+57N+22
)

3(N+1)3 − S1(N)2

N+1
+ 2(N+2)(2N−1)S1(N)

3(N+1)2 − S2(N)
N+1

)

ε−2 + . . .

where the coefficients are given in terms of harmonic sums. Finally, we utilize (3.7) and get

I2(N) =
4

3
ε−3 −

2

ε2
+
(

− 1
3
S1(N)2 + 2

3
S1(N)− 1

3
S2(N)+ 5N+7

3(N+1) +
ζ2

2

)

ε−1 + . . .

I3(N) =− 8
3ε3 +

(
4(N+2)
3(N+1)S1(N)−

4
(

4N2+7N+2
)

3(N+1)2

)

ε−2

+
(

2
(

12N3+32N2+25N+2
)

3(N+1)3 −
2
(

4N2+11N+10
)

3(N+1)2 S1(N)+ (N−2)
3(N+1)S1(N)2 + (N−2)

3(N+1)S2(N)+ζ2

)

ε−1 + . . .

3.4 The general method and the physical result of D4(N)

Summarizing, we calculated the first coefficients of the ε-expansions of Î1(N), Î2(N), Î3(N)

(resp. of I1(N), I2(N), I3(N)) and treat also all other integrals in (3.4) iteratively by the following

method.

Step 1: Transform the coupled DE system to a coupled REC System (x → N).

Step 2: Uncouple the REC system to a scalar recurrence for one unknown integral, say Ii(N).

Step 3: Determine the coefficients of the ε-expansion of Ii(N) in terms of indefinite nested sums

and products (see Tactic 2 in Section 2) and derive the ε-expansions of the remaining integrals.

Step 4: Translate back to the x-space by Îi(x) = ∑∞
N=0 Ii(N)xN .

To this end, we plug in all the computed expansions B̂i(x) (by using symbolic summation)

and Îi(x) (by using our new solver for coupled equations) into the expression (3.2). This actually

gives again a gigantic expression in terms of generating functions where the coefficients of the

ε-expansion are extremely large. In order to derive the Nth coefficient D4(N), we activate again

our toolbox mentioned in the introduction. We crunch the arising generating functions with the

package SumProduction and compute the Nth coefficient of the obtained compact expression

using the package HarmonicSums. Finally, observe that this operation is based on Cauchy-

product and we therefore obtain again definite sums. Finally, we apply once more Tactic 1 of our

symbolic summation toolbox, more precisely we use the package EvaluateMultiSums based

on Sigma to transform these sums to indefinite nested sums and products.

9
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Summarizing, using all these packages, we end up at the following result for (3.1):

D4(N) =
( 64

(
N2 +N −1

)

3(N +1)(N +2)(N +3)(N +4)
−

64S1(N)

3(N +3)(N +4)

)

ε−3

+
(4(N +1)(4N +17)S2(N)

3(N +2)(N +3)(N +4)
−

4
(
3N5 +68N4 +379N3 +648N2 −98N −696

)

3(N +1)(N +2)2(N +3)2(N +4)2
S1(N)

+
4
(
14N6 +214N5 +1179N4 +3050N3 +4097N2 +3094N +1200

)

3(N +1)2(N +2)2(N +3)2(N +4)2

+
4(5N +27)

3(N +2)(N +3)(N +4)
S1(N)2

)

ε−2 + . . .

The single pole term and constant term are suppressed due to space limitations. In total the follow-

ing harmonic sums and generalized harmonic sums occur

ζ2,ζ3,(−1)N
,2N

,S−3(N),S1(N),S2(N),S3(N),S4(N),S−2,1(N),S2,1(N),S3,1(N),

S1

(
1
2
,N

)
,S1(2,N),S3

(
1
2
,N

)
,S1,1

(
1, 1

2
,N

)
,S1,1

(
2, 1

2
,N

)
,S2,1,1(N),S2,1

(
1
2
,1,N

)
,

S2,1

(
1, 1

2
,N

)
,S3,1

(
1
2
,2,N

)
,S1,1,1

(
1,1, 1

2
,N

)
,S2,1,1

(
1, 1

2
,2,N

)
,S1,1,1,1

(
2, 1

2
,1,1,N

)
.

4. Conclusion

We presented a new method to solve coupled systems of differential and difference equations

which emerge in massive Feynman diagram calculations. Here we rely on sophisticated summation

tools based on difference fields/rings and on uncoupling algorithms; for our concrete example we

used the package OreSys [25].

We obtained the ε-expansions of rather complicated master integrals. Using these expansions

we calculated easily the most complicated ladder graphs with 6 massive fermion lines using Sigma

HarmonicSums, EvaluateMultiSums and SumProduction. All ladder-topologies for 3-

loop massive operator matrix elements can be calculated in this way. The mass production is ready

for graphs depending on the same master integrals. We used this technology for a few integrals

emerging in Feynman integrals with two equal masses [10] and in the pure-singlet case [13]. More

involved massive 3-loop topologies are currently investigated.
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