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Computer Algebra and Analytic aspects of Nested Sums Jakob Ablinger

1. Introduction

This paper is dedicated to the presentation of the basic features of the computer algebra pack-
age HarmonicSums which was developed in [2] and [1] and which was afterwards extended
and generalized. The package HarmonicSums was designed to support calculations with special
nested objects arising in massive higher order perturbative calculations in renormalizable quantum
field theories. On the one hand HarmonicSums can work with nested sums such as harmonic
sums [15, 26] and their generalizations (S-sums [4, 22], cyclotomic harmonic sums [3], cyclotomic
S-sums [1], binomial sums [5, 6, 7, 21, 27]) and on the other hand it can treat iterated integrals of the
Poincaré and Chen-type, such as harmonic polylogarithms [23] and their generalizations (multiple
polylogarithms [4], cyclotomic harmonic polylogarithms [3]). HarmonicSums provides func-
tions to compute (generalizations of) the Mellin-transformation of these iterated integrals which
leads to the nested sums and on the other hand inverse Mellin transforms of the nested sums can
be computed. HarmonicSums offers commands that rewrite certain types of nested sums into
expressions in terms of generalized S-sums and it can be used to derive algebraic and structural
relations between the nested sums (compare [1, 2, 16, 17, 18, 19]) as well as relations between the
values of the sums at infinity and connected to it the values of the iterated integrals evaluated at
special constants (compare [1, 3, 4, 20]). In addition algorithms to compute series expansions (es-
pecially asymptotic expansions) of these nested objects are implemented. The package has already
been used extensively, for example during the work on [10, 11, 12, 13, 14].

2. The package HarmonicSums

Note that this section contains a whole Mathematica session that runs throughout the sec-
tions. The inputs are given in the way how one has to type them into Mathematica and the out-
puts are displayed as Mathematica gives them back. We start the session by loading the package
HarmonicSums:

In[1]:= << HarmonicSums.m
HarmonicSums by Jakob Ablinger -RISC Linz- Version 1.0 (15/05/04)

Definition of the Nested Sums

In the package HarmonicSums harmonic sums, S-sums, cyclotomic harmonic sums and
cyclotomic S-sums are denoted by the letter S as we can see in the following examples.
The command ToHarmonicSumsSum yields the definition of the sums.

In[2]:= {S[1, 2, 3, 4, n], S[1, 2, 3, {2, 1/3, 4}, n]}//ToHarmonicSumsSum

Out[2]=


n

∑
τ1=1

∑
τ1
τ2=1

∑
τ2
τ3=1

∑
τ3
τ4=1

1
τ4
4

τ3
3

τ2
2

τ1
,

n

∑
τ1=1

2τ1 ∑
τ1
τ2=1

3−τ2 ∑
τ2
τ3=1

4τ3
τ3
3

τ2
2

τ1


In[3]:= {S[{{3, 2, 1}, {4, 1, 2}, {2, 0, -2}}, n], S[{{3, 2, 1}, {4, 1, 2}, {2, 0, 2}}, {2, 1/3, -4}, n]}//ToHarmonicSumsSum
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Out[3]=


n

∑
τ1=1

∑
τ1
τ2=1

∑
τ2
τ3=1

(−1)τ3

4τ2
3(

1+4τ2

)2

2+3τ1
,

n

∑
τ1=1

2τ1 ∑
τ1
τ2=1

3−τ2 ∑
τ2
τ3=1

(−1)τ3 4−1+τ3

τ2
3(

1+4τ2

)2

2+3τ1


Note that for internal reasons, sometimes the name CS is used to denote cyclotomic harmonic

sums and cyclotomic S-sums.

In[4]:= {CS[{{3, 2, 1}, {4, 1, 2}, {2, 0, -2}}, n], CS[{{3, 2, 1}, {4, 1, 2}, {2, 0, 2}}, {2, 1/3, -4}, n]}//ToHarmonicSumsSum

Out[4]=


n

∑
τ1=1

∑
τ1
τ2=1

∑
τ2
τ3=1

(−1)τ3

4τ2
3(

1+4τ2

)2

2+3τ1
,

n

∑
τ1=1

2τ1 ∑
τ1
τ2=1

3−τ2 ∑
τ2
τ3=1

(−1)τ3 4−1+τ3

τ2
3(

1+4τ2

)2

2+3τ1


In addition HarmonicSums can deal with binomial sums, which are denoted by BS:

In[5]:= BS[{{2, 1, 3}, {1, 0, 1}}, {4, 3}, {{{2}, {1, 1}}, {{1, 1}, {2}}}, n]//ToHarmonicSumsSum

Out[5]=

n

∑
τ1=1

4τ1
(
2τ1
)
!∑

τ1
τ2=1

3τ2
(

τ2!
)2(

2τ2

)
!τ2(

τ1!
)2(1+2τ1

)3

Hence a summand of the form xτi

(aτi+b)c
( f1τi)!···( f jτi)!
(g1τi)!···(gkτi)!

is represented by {a,b,c} in the first, x in
the second and {{ f1, . . . , f j},{g1, . . . ,gk}} in the third index set.

Transformation to Nested Sums

Using the command TransformToSSums an extension [8] of the algorithm described in
[1] is performed to rewrite nested sum expressions in terms of harmonic sums, S-sums, cyclotomic
harmonic sums and cyclotomic S-sums.

In[6]:= ∑
n
i=1

2(5+2i)∑
i
j=1

1
j2(

2+3i+i2
)(

12+7i+i2
) //TransformToSSums

Out[6]=
1

(n+1)(n+2)(n+3)(n+4)
1
54
(
−n
(
43n3 +394n2 +1163n+1100

)
+36(n+1)2(n2 +8n+15

)
S2(n)

)

Definition of the Nested Integrals

Harmonic polylogarithms, multiple polylogarithms and cyclotomic harmonic polylogarithms
are denoted by the letter H as we can see in the following examples. The command ToHarmonic-
SumsIntegrate yields the definition of the nested integrals.

In[7]:= {H[1,2,-3,4,x], H[{3,1},{5,1},{2,0},x]}//ToHarmonicSumsIntegrate

Out[7]=


∫ x

0

∫
τ1
0

∫ τ2
0

∫ τ3
0

1
τ4−4 dτ4
τ3+3 dτ3

τ2−2 dτ2

τ1−1
dτ1,

∫ x

0

τ1

(∫
τ1
0

τ2

(∫ τ2
0

1
τ3+1 dτ3

)
τ4

2+τ3
2+τ2

2+τ2+1 dτ2

)
τ2

1 + τ1 +1
dτ1
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Note that an index a ∈ R yields an iteration over 1
sign(a)τi−a

, while an index {l,k} l,k ∈ N

indicates an iteration over τk
i

Φl(τi)
, where Φl is the l−th cyclotomic polynomial. For iterations over

more general functions the name GL is reserved. The functions can then be defined using VarGL:

In[8]:= GL[{
√

1− VarGL, 1
VarGL+1 },x]//ToHarmonicSumsIntegrate

Out[8]=

∫ x

0

(∫
τ1

0

1
1+ τ2

dτ2

)√
1− τ1 dτ1

Shuffle and Quasi-Shuffle Product

The functions LinearExpand and LinearHExpand are provided to expand products of
harmonic sum, S-sums, cyclotomic harmonic sums and cyclotomic S-sums and products of har-
monic polylogarithms, multiple polylogarithms and cyclotomic harmonic polylogarithms, respec-
tively.

In[9]:= S[{{3, 2, 1}, {2, 0, -2}}, {1, 4}, n] S[{{3, 1, 1}}, {-3}, n]//LinearExpand

Out[9]= −S[{{3,1,1},{2,0,−2}},{−3,4},n]+S[{{3,2,1},{2,0,−2}},{−3,4},n]+
S[{{3,1,1},{3,2,1},{2,0,−2}},{−3,1,4},n]+S[{{3,2,1},{2,0,−2},{3,1,1}},{1,4,−3},n]+
S[{{3,2,1},{3,1,1},{2,0,−2}},{1,−3,4},n]

In[10]:= H[1, 2, x] H[3, 4, x]//LinearHExpand

Out[10]= H[1,2,3,4,x]+H[1,3,2,4,x]+H[1,3,4,2,x]+H[3,1,2,4,x]+H[3,1,4,2,x]+H[3,4,1,2,x]

Differentiation of Nested Sums

In order to differentiate expressions involving harmonic sums, S-sums or cyclotomic harmonic
sums the Mathematica function D is extended. Note that here we actually work with the analytic
continuation of these sums; for details see e.g., [1, 4, 18, 19].

In[11]:= D[S[3, 1, n] + n S[3, {2}, n] - S[{{2, 1, 1}}, n], n]

Out[11]= 1+(1+2 n)−2− (3+2 n)−2 +(1+2 (1+n))−2 +S[{{2,1,2}},n]+H[{0,0},{1,0},1]− S[2,n]
4

+H[{2,0},{0,0},1]+S[2,2 n]+S[2,∞]S[3,n]−S[2,∞]S[3,∞]+9
S[5,∞]

2
−S[3,2,n]+S[3,{2},n]−3 S[4,1,n]+

n ((H[0,0,1]−H[0,0,2]) H[1,0,1] + (−H[0,0,1] +H[0,0,2]) H[1,0,1]−H[0,0,1,0,2] +H[0,2] S[3,{2},n]−
3 S[4,{2},n])

Basis Representations

For computing basis representations of harmonic sums, S-sums, cyclotomic harmonic sums,
harmonic polylogarithms, cyclotomic polylogarithms or multiple polylogarithms HarmonicSums
provides the functions ComputeHSumBasis, ComputeSSumBasis, ComputeCSumBa-

sis and ComputeHLogBasis are provided.
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• ComputeHSumBasis[w,n] computes a basis and the corresponding relations for har-
monic sums at weight w. With the options UseDifferentiation and UseHalfInte-
ger it can be specified whether relations due to differentiation and argument duplication
should be used.

• ComputeSSumBasis[w,x,n] computes a basis and the corresponding relations for S-
sums at weight w where the allowed “x“− indices are defined in the list x. With the options
UseDifferentiation and UseHalfInteger it can be specified whether relations
due to differentiation and argument duplication should be used.

• ComputeCSumBasis[w,let,n] computes a basis and the corresponding relations for
cyclotomic harmonic sums at weight w with letters let. With the options UseDiff-
erentiation, UseMultipleInteger and UseHalfInteger it can be specified
whether relations due to differentiation and argument multiplication should be used.

• ComputeHLogBasis[w,n] computes a basis and the corresponding relations for multi-
ple polylogarithms at weight w. The option Alphabet->a and IndexStructure->i
can be used to specify an alphabet or a special index structure respectively.

In[12]:= ComputeCSumBasis[2, {{2, 1}}, n, UseDifferentiation -> False,

UseMultipleInteger -> False, UseHalfInteger -> False

Out[12]=

{{
S[{{2,1,−2}},n],S[{{2,1,2}},n],S[{{2,1,−1},{2,1,1}},n]

}
,{

S[{{2,1,1},{2,1,1}},n]→ 1
2

S[{{2,1,1}},n]2 + 1
2

S[{{2,1,2}},n],
S[{{2,1,1},{2,1,−1}},n]→ S[{{2,1,−2}},n]+S[{{2,1,−1}},n]S[{{2,1,1}},n]
−S[{{2,1,−1},{2,1,1}},n],S[{{2,1,−1},{2,1,−1}},n]→ 1

2
S[{{2,1,−1}},n]2 +

1
2

S[{{2,1,2}},n]
}}

In order to look for relations for harmonic sums, S-sums and cyclotomic harmonic sums
at infinity we can use the functions ComputeHSumInfBasis, ComputeSSumInfBasis

and ComputeCSumInfBasis while for looking for relations between multiple polylogarithms
and cyclotomic polylogarithms at 1 the functions ComputeGeneralizedH1Basis and Com-
puteCyclotomicH1Basis are provided.

In[13]:= ComputeCSumInfBasis[2, {{2, 1}}]

Out[13]=

{{
S[{{2,1,−2}},∞],S[{{2,1,2}},∞],S[{{2,1,−1},{2,1,1}},∞]

}
,{

S[{{2,1,1},{2,1,1}},∞]→ 1
2

S[{{2,1,1}},∞]2 +
1
2

S[{{2,1,2}},∞],

S[{{2,1,1},{2,1,−1}},∞]→ S[{{2,1,−2}},∞]+S[{{2,1,−1}},∞]S[{{2,1,1}},∞]

−S[{{2,1,−1},{2,1,1}},∞],S[{{2,1,−1},{2,1,−1}},∞]→ 1
2

S[{{2,1,−1}},∞]2 +

1
2

S[{{2,1,2}},∞]
}}

For harmonic sums and cyclotomic harmonic sums tables with relations are provided [3, 9].
These tables can be applied using the command ReduceToBasis. With the options UseDiff-

5
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erentiation and UseHalfInteger it is possible to specify whether relations due to differ-
entiation and argument duplication should be used.

ReduceToBasis[expr,n,Dynamic->True] computes relations for harmonic sums,
S-sums and cyclotomic harmonic sums in expr from scratch and applies them while ReduceTo-
Basis[expr,n,Dynamic->Automatic] uses the precomputed tables and computes rela-
tions that exceed the tables form scratch.

ReduceToHBasis uses precomputed tables with relations between harmonic polylogar-
ithms and applies them to expressions involving harmonic polylogarithms similar as for Reduce-
ToBasis the options Dynamic->Automatic/True can be set.

ReduceConstants uses precomputed tables with relations between harmonic polylogar-
ithms at argument 1 and harmonic sums at infinity to reduce the appearing constants as far as
possible again the options Dynamic->Automatic/True can be set.

In[14]:= ReduceToBasis[S[2, 1, n] + S[1, 2, n], n]

Out[14]= S[1,n]S[2,n]+S[3,n]

In[15]:= ReduceToBasis[S[5, 5, {3, 3}, n], n, Dynamic -> True]

Out[15]=
1
2

(
S[5,{3},n]2 +S[10,{9},n]

)
In[16]:= ReduceToHBasis[H[1, 0, x] + H[0, 1, x]]

Out[16]= H[0,x]H[1,x]

In[17]:= ReduceConstants[S[1,1,1,1,1,1,1,1, ∞] + 2 H[1, 0, 1] + H[0, 1, -1, 1], Dynamic -> Automatic]

Out[17]=
5

201600
(
S[1,∞]8 +140S[2,∞]S[1,∞]6 +560S[3,∞]S[1,∞]5 +1890S[2,∞]2S[1,∞]4

+1120(5S[2,∞]S[3,∞]+6S[5,∞])S[1,∞]3 +20
(

549S[2,∞]3 +280S[3,∞]2
)

S[1,∞]2

+720
(

21S[3,∞]S[2,∞]2 +28S[5,∞]S[2,∞]+40S[7,∞]
)

S[1,∞]+7893S[2,∞]4

−5600S[2,∞]
(
−S[3,∞]2 +54S[−1,∞]+72

)
+1680(8S[3,∞](S[5,∞]−15)+15S[8,∞])

)

Series Expansions

The function HarmonicSumsSeries[expr,{n,p,ord}] can be used to compute se-
ries expansions about the point n=p of expressions expr involving harmonic sums, S-sums, cyclo-
tomic harmonic sums, harmonic polylogarithms, multiple polylogarithms and cyclotomic harmonic
polylogarithms up to a specified order ord.

In[18]:= HarmonicSumsSeries[n*S[2, n] + n*H[-2, n], {n, 0, 4}] // ReduceConstants

Out[18]= n4
(

4 z5+
1
24

)
+n3

(
−6 z22

5
− 1

8

)
+n2

(
2 z3+

1
2

)
In[19]:= HarmonicSumsSeries[n*S[2, n] + n*H[-2, n], {n, ∞, 4}] // ReduceConstants

Out[19]= −n H[0,2]+n H[0,n]− 4
n3 +

5
2 n2 +n z2− 3

2n
+1

6
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In[20]:= HarmonicSumsSeries[S[3, 1, {1/2, 1/3}, n], {n,∞,3}]

Out[20]= S[1,
{

1
3

}
,∞]

(
−S[3,

{
1
6

}
,∞]+S[3,

{
1
2

}
,∞]+6−n

(
1

5n3 −
3n

n3

))
+

6−n
(

12
25n3 −

1
5n2

)
S[2,

{
1
3

}
,∞]+6−n

(
42

125n3 −
6

25n2 +
1

5n

)
S[3,

{
1
3

}
,∞]+

S[2,
{

1
6

}
,∞]S[2,

{
1
3

}
,∞]−S[1,

{
1
6

}
,∞]S[3,

{
1
3

}
,∞]−S[4,

{
1
3

}
,∞]+S[1,3,

{
1
6
,2
}
,∞]+

6−n
(

1
5n2 −

12
25n3

)
H[0,3,1]+6−n

(
− 42

125n3 +
6

25n2 −
1
5n

)
H[0,0,3,1]− H[3,1]6−n

5n3

Note that z2,z3, . . . are used as abbreviations for S[2,∞],S[3,∞], . . . respectively. In order to
compute asymptotic expansions of an S-sums S[a1,a2, . . . ,{x1,x2, . . .},n] with |xi| > 1 for at least
one i the option PrincipalValue -> True has to be set:

In[21]:= HarmonicSumsSeries[S[1,1,{2,1},n],{n, ∞, 3}]

Out[21]= S[1,1,{2,1} ,n]

In[22]:= HarmonicSumsSeries[S[1,1,{2,1},n],{n, ∞, 3},PrincipalValue->True]

Out[22]=
1
2

(
2n
(
− 2

n2 −
43
3n3

)
− π2

2
+2n

(
4
n
+

4
n2 +

12
n3

)
LG[n]

)

Note that the function LG is defined as LG[n] := log(n)+ γ, where γ is the Euler-Mascheroni
constant. For computing asymptotic expansions of expressions of the form

∫ 1
0 xnGL[a,x]dx for

n→ ∞ the command GLExpansion is provided:

In[23]:= GLExpansion[GL[{
√

1+VarGL}, x],x,n,ord]

Out[23]= − 2
3n5 +

4225
96
√

2n5
+

2
3n4 −

469
24
√

2n4
− 2

3n3 +
55

6
√

2n3
+

2
3n2 −

7
√

2
3n2 −

2
3n

+
4
√

2
3n

The function HToS can be used to compute the full power series expansions of harmonic
polylogarithms, multiple polylogarithms and cyclotomic harmonic polylogarithms about 0. SToH
is used to perform the reverse direction.

In[24]:= HToS[{H[-1, 0, -1, x], H[-3, 0, -1/2, x]}]

Out[24]=

{
∞

∑
ι1=1

S[2, ι1](−x)ι1

ι1
−

∞

∑
ι1=1

(−x)ι1

ι3
1

,
∞

∑
ι1=1

3−ι1(−x)ι1 S[2,{6}, ι1]

ι1
−

∞

∑
ι1=1

2ι1(−x)ι1

ι3
1

}

In[25]:= SToH[{∑
∞
ι1=1

(−x)ι1 S[6,ι1]
ι1

,∑∞
ι1=1

3−ι1 (−x)ι1 S[2,{6},ι1]
ι1

}]

Out[25]=

{
H[−1,0,−1,x]−H[0,0,−1,x],H[−3,0,−1

2
,x]−H[0,0,−1

2
,x]
}

For the more general iterated integrals GL the command GLToS has to be used, note that this
command internally relies on the recurrence solver of the package Sigma [24, 25].

In[26]:= GLToS[GL[{
√

4−VarGL
√

VarGL}, x]]

7
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Out[26]=

∞

∑
o1=2
−

256x
1
2

(
−1+2o1

)(
∏

o1
ι1=1

−1+2ι1
8ι1

)(
−1+o1

)
o1(

−5+2o1
)(
−3+2o1

)(
−1+2o1

)2

Mellin Transformation and Inverse Mellin Transformation

To compute the Mellin transform of a possibly weighted harmonic polylogarithm, multiple
polylogarithm (with indices in R\ (−1,1)∪{0}) and cyclotomic polylogarithm hlog[x] we can
use the command Mellin[hlog[x],x,n].

In[27]:= Mellin[H[1, 0, x]/(1 + x)+H[3,x]/(3-x), x, n]

Out[27]= −2 (−1)n S[3,∞]+ (−1)n S[−2,−1,∞]+ (−1)n S[−1,−2,∞]− (−1)n S[−1,2,n]+3n S[1,n] S[1,{1/3} ,∞]−
3n S[1,{1/3} ,n] S[1,{1/3} ,∞]−3n S[2,{1/3} ,∞]+3n S[1,1,{1/3,1} ,∞]−3n S[1,1,{1,1/3} ,n]

For computing the Mellin transform of more general input expr the command General-
Mellin[expr,x,n] is provided. Note that this command internally relies on the recurrence
solver of the package Sigma.

In[28]:= GeneralMellin[InvMellGen[S[1, 2, {2, 1/2}, n] + S[1, n], n, x], n, x]

Out[28]=
4(−1)n

√
2πn!

(2n+1)(2n+3)(2n+5)
(
n− 1

2
)
!

BS[{{1,0,0}},{−(1/4)},{{{2},{1,1}}},n]

+
2(3
(
−5+6

√
2
)
+2
(
−8+13

√
2
)
n+
(
−4+8

√
2
)
n2)

3(n+1)(2n+3)(2n+5)

+
(−1)n√πn!

(2n+1)(2n+3)(2n+5)
(
n− 1

2
)
!

(
8
√

2−15 GL[
{

VarGL
√

1+VarGL
}
,1]
)

+
−
(
−1+3n+1)(n+1)GL[

{ 1
3−VarGL

}
,1]+3n+1(n+1)S1

( 1
3 ,n
)
+1

(n+1)2

To compute the inverse Mellin transform of a harmonic sum or a S-sum denoted by sum

we can use the command InvMellin[sum,n,x]. For a definition of S-sum we refer to [1].
Note that δ1−x denotes the Dirac-δ -distribution δ (1− x) ∈ D′[0,1]. For cyclotomic harmonic
sums and S-sums which are not S-sums InvMellin yields an integral representations, where
Mellin[a[x,n]]:=

∫ 1
0 a(x,n)dx and Mellin[a[x,n],{x,c,d}]:=

∫ d
c a(x,n)dx.

In[29]:= InvMellin[S[1, 2, n], n, x]

Out[29]=
H[1,0,x]

1−x

In[30]:= InvMellin[S[1, 2, {1, 1/3}, n], n, x]

Out[30]= δ1−x

(
−S[1,{1/3} ,∞]S[2,{1/3} ,∞]−2S[3,{1/3} ,∞]+S[1,2,{1/3,1} ,∞]+

S[2,1,{1/3,1} ,∞]

)
+

3−nS[2,{1/3} ,∞]

3−x
− S[2,{1/3} ,∞]

1−x
− 3−nH[3,0,x]

x−3

In[31]:= InvMellin[S[{{3, 1, 2}}, n], n, x]

Out[31]= −Mellin
[
x3nH[0,x]

]
− 1

3
Mellin

[
(x3n−1)H[0,x]

x−1

]
+

1
3

(
2 Mellin

[
(x3n−1)H[0,x]

x2 +x+1

]
+

Mellin
[

x(x3n−1)H[0,x]
x2 +x+1

])
−1

8
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In order to compute an integral representation of an expression expr containing general S-
sums together with harmonic sums and cyclotomic sums the command InvMellGen[expr,n,x]
can be used:

In[32]:= CollectMellinGen[InvMellGen[S[1, 2, {2, 1/2}, n] + S[1, n], n, x], n, x]

Out[32]= MellinGen
[
−H[2,0,1] (xn−1)

x−1
,{x,1,2}

]
+MellinGen

[
(xn−1)(1−H[2,0,x])

x−1
,{x,0,1}

]

Note that here we use the notation MellinGen[a[x,n],{x,c,d}]:=
∫ d

c a(x,n)dx.

3. Conclusion

In this paper we summarized some features of the computer algebra package HarmonicSums.
Due to space limitations we had to restrict to the presentation of the main commands, while there
are many more commands implemented. For more information we refer to [1, 2, 4]. The package
together with several precomputed tables and a more detailed description can be downloaded at
http://www.risc.jku.at/research/combinat/software/HarmonicSums.
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