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1. Introduction

The discovery of the Higgs boson by the ATLAS and CMS collaborations at the Large Hadron
Collider (LHC) at CERN [1] has inaugurated a new era in high-energy particle physics. While so far
all experimental measurements of the properties of the Higgs boson are consistent with the Standard
Model (SM) expectations, new physics could still be hiding in small deviations arising from the
presence of new virtual particles contributing to the production of a Higgs boson. Establishing the
nature of the Higgs boson and measuring its couplings to SM particles thus requires a high level of
precision, both at the experimental and the theoretical sides.

The inclusive Higgs boson production cross section at the LHC takes the form

σ(m2
H ,s) = ∑

i, j

∫
dx1 dx2 fi(x1) f j(x2) σ̂i j(m2

H ,x1 x2 s) , (1.1)

where s and m2
H denote the hadronic centre-of-mass energy and the mass of the Higgs boson, fi(xk)

denote the parton density functions, and the sum runs over all parton species. The quantity σ̂i j

is the partonic cross section for two partons i and j to produce a Higgs boson. In the framework
of the SM, the dominant partonic production mode of a Higgs boson at the LHC is the so-called
gluon-fusion channel, where two gluons scatter to produce a Higgs boson via a top quark loop. If
the mass of the Higgs boson is below the top-pair threshold, m2

H < 4m2
t , the gluon-fusion process

can be described by an effective Lagrangian where the top quark has been integrated out and the
gluons couple directly to the Higgs boson via an operator of dimension five,

Leff = L5,SM−
1
4v

C(µ2)H Ga
µν Gµν

a , (1.2)

where L5,SM denotes the SM Lagrangian with N f = 5 light quark flavours, and v ' 246GeV is
the vacuum expectation value of the Higgs field. The Wilson coefficient C(µ2) describing the
effective coupling is known as a perturbative expansion up to three loops in the MS-renormalised
strong coupling constant αs(µ

2) evaluated at the scale µ2 [2]. The inclusive gluon-fusion cross
section in the effective theory has been computed at next-to-leading order (NLO) [3] and next-to-
next-to-leading order (NNLO) [4, 5, 6]. The remaining theoretical uncertainty on the cross section
through NNLO due to variations of the renormalisation and factorisation scales is estimated to be
of the order of 10%. Various corrections to the effective theory are known, including two-loop
electroweak and mixed QED/QCD corrections, as well as top-mass corrections to the effective
theory as an expansion in the inverse top-quark mass. In order to reduce the uncertainty on the
cross section, the next important contributions are the next-to-next-to-next-to-leading order (N3LO)
corrections in the effective theory described by eq. (1.2). In this contribution we report on the
progress in this direction, and we review the recent computation of the gluon-fusion cross section
at N3LO in the soft-virtual approximation. This result constitutes a first important step towards the
full computation of a hadron collider observable at N3LO in perturbative QCD.

2. The gluon-fusion cross section at N3LO in the soft-virtual approximation

The full computation of the gluon-fusion cross section at N3LO requires the computation of
thousands of Feynman diagrams. Fortunately, the steep fall of the parton density functions with the
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energy suggests that the cross section can be well approximated by an expansion close to threshold.
This method was already employed at NNLO [6] and was shown to produce a reliable and fast-
converging expansion for the cross section [7]. The expansion is controlled by the single parameter
z = m2

H/ŝ, where ŝ = x1 x2 s denotes the partonic centre-of-mass energy. We can then approximate
the cross section by its threshold expansion,

σ̂i j(s,z) = δig δ jg σ̂
SV
gg +

∞

∑
k=0

(1− z)k
σ̂
(k)
i j . (2.1)

The leading term in the threshold expansion, the so-called soft-virtual term σ̂SV
gg , is only non-

vanishing for the gluon initial state, and describes the production of a Higgs boson at threshold
in association with soft final-state partons. If the soft-virtual term is expanded into a perturbative
series in the strong coupling constant αs = αs(µ

2),

σ̂
SV
gg =

π C(µ2)2

v2V

∞

∑
k=0

(
αs

π

)`
η̂
(`) , (2.2)

with V = N2−1 the number of adjoint colours of SU(N), then the perturbative coefficients can be
schematically written in the form

η̂
(`) = ω

(`)
δ (1− z)+

2`−1

∑
k=0

ρ
(`)
k

[
logk(1− z)

1− z

]
+

, (2.3)

where the coefficients ω(`) and ρ
(`)
k are linear combinations of (multiple) zeta values whose coef-

ficients are polynomials in the colour factors CA = N and CF = V/(2N) and the number of light
flavours N f . We emphasize that the entirety of the `-loop corrections to the production cross sec-
tion is contained in the coefficient ω(`), while the coefficients ρ

(`)
k only receive contributions from

the emission of soft final-state partons. The soft-virtual term is known through NNLO [4, 5, 6, 7]
in perturbative QCD, while at N3LO only the coefficients ρ

(`)
k have been computed [8]. In the

rest of this section we review the recent computation of the full soft-virtual term η̂(`) at N3LO in
perturbative QCD [9].

The partonic cross section for the production of a Higgs boson in association with a certain
number of jets can schematically be written as

σ̂i j(i, j→ H + n partons)∼
∫

dΦn+1 |M (i, j→ H + n partons)|2 , (2.4)

where |M (i, j→ H + n partons)|2 denotes the matrix element (summed and averaged oder spins
and colours) for two partons i and j to produce a Higgs boson in associations with n additional
partons, and dΦn+1 denotes the usual phase space measure in D = 4−2ε dimensions,

dΦn+1 = (2π)D
δ
(D)

(
pi + p j− pH −

n

∑
k=1

pk

)
dD pH

(2π)D−1 δ+(p2
H−m2

H)
n

∏
k=1

dD pk

(2π)D−1 δ+(p2
k) , (2.5)

with δ+(p2−m2) = δ (p2−m2)θ(p0). Note that, due to the presence of soft and collinear singular-
ities, the phase space integration (2.4) is in general divergent and gives rise to poles in dimensional
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regularisation. These singularities cancel order by order in perturbation theory when summing
up all the contributions from different final-sate multiplicities and the convolutions of lower-order
cross sections with the splitting functions up to the required order.

Inclusive phase-space integrals like eq. (2.4) can be efficiently computed using the reverse-
unitarity technique [4, 10]. This technique, which was already successfully applied at NNLO,
establishes a duality between inclusive phase-space integrals and cut loop integrals via Cutkosky’s
rule,

Disc
1

p2−m2 + iε
= 2πiδ+(p2−m2) . (2.6)

The duality makes it possible to apply algebraic techniques developed for loop integrations directly
to phase space integrals. In particular, it makes it possible to apply integration-by-parts (IBP)
techniques to reduce all the phase space integrals to a small set of master integrals [11], and to set
up a set of ordinary differential equations for the master integrals [12].

So far the discussion was generic, and the reverse-unitarity technique can immediately be
applied to phase-space integrals in full kinematics. If we concentrate on the soft-virtual term at
N3LO, we can combine the reverse-unitarity technique with the method of expansion by regions.
Indeed, the soft-virtual term at N3LO receives contributions from interference diagrams with up to
three additional partons, where each parton can be either real or virtual. Moreover, in the soft limit
we can expand the integrand in the soft-parton momenta, where the momentum of each virtual
gluon can be either hard, i.e., O(1), or soft, i.e., O(1− z), and each real final-state parton is soft.
The coefficients appearing in the soft expansion still admit a diagrammatic interpretation, and they
are thus still amenable to algebraic IBP reductions, giving rise to a small set of soft master integrals.
We note, however, that these soft master integrals only admit trivial differential equation, because
they are homogeneous in the expansion parameter (1− z). As such, these integrals need to be
computed by other means.

We have recently completed the computation of all soft master integrals that contribute to the
soft virtual term at N3LO. In the following we give a short summary of the different contributions:

1. Three-loop virtual corrections. The three-loop virtual corrections are given by the QCD
form factor up to three loops, which was computed in ref. [13].

2. Two-loop soft corrections to H + jet. This contribution corresponds to interference dia-
grams involving two virtual gluons and one real final-state gluon. Note that there are two
distinct cases to consider, corresponding to the square of the one-loop amplitude and the
interference of the tree-level and two-loop amplitudes for gg→ H g. In the limit where the
final-state gluon is soft, the interference terms exhibit a universal factorisation

〈M (k)
3 |M

(l)
3 〉 ' −g2

S

k

∑
m=0

l

∑
n=0

(gS µ
2ε)m+n〈M (k−m)

2 |J(m)a
µ J(n)µa |M (l−n)

2 〉 , (2.7)

where gS is the strong coupling constant, M
(k)
N denotes the k-loop amplitude for H + N

gluons and J(m)a
µ is the m-loop QCD soft current, known through two-loop order [14]. Note

that each term (m,n) in the sum (2.7) corresponds m+ n soft and l + k− n−m hard virtual
gluons. The remaining phase space integration is trivial to perform, which completes the
computation of this contribution.
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3. One-loop soft corrections to H + 2 jets. There are two different contributions to consider,
depending on whether the virtual gluon is hard or soft. The hard region is trivial to compute,
and the soft region can easily be computed by expanding the integrand in the soft limit and
reducing all the integrals to soft phase-space integrals that can be computed analytically [9,
15].

4. Soft triple-real corrections to H + 3 jets. In this case, all the gluons are real, and we can
expand the tree-level matrix element for H + 3 jets in the soft final-state momenta. The
remaining integrals can be reduced to eight soft master integrals that can all be evaluated
analytically [16]. We observe that all the coefficients in front of the zeta values are integers
in all cases, but we are currently lacking an explanation of this phenomenon.

These contributions, together with the knowledge of the three-loop Wilson coefficient [2], beta
function [17] and splitting functions [18] (as well as the lower order cross sections to higher order
in the dimensional regulator ε [19]), are sufficient to obtain the full result for the gluon-fusion cross
section at N3LO in the soft-virtual approximation. Adding all the contributions together, all the
poles in dimensional regularisation cancel. The finite terms, however, do not cancel, and constitute
the final result for η̂(3) [9]. Note that we reproduce exactly the predictions for ρ

(3)
k of ref. [8]. The

coefficient ω(3) is genuinely new, and includes in particular the full three-loop corrections to Higgs
production in gluon fusion.

3. Towards phenomenology

Even though the computation of the soft-virtual approximation is complete, it would be prema-
ture to draw strong phenomenological conclusions. Indeed, whenever we truncate a series expan-
sion, an ambiguity is introduced which can be quantified by multiplying the result by an arbitrary
function g(z) with limz→1 g(z) = 1. Indeed, it is easy to see that

∑
i, j

∫
dx1 dx2 [ fi(x1) f j(x2)zg(z)]

[
σ̂i j(m2

H ,x1 x2 s)
zg(z)

]
threshold

, (3.1)

has the same formal accuracy in the soft-virtual approximation, as long as we make sure that g(z)
approaches 1 in the soft limit. Despite the fact that formal accuracy is the same in the soft limit, the
numerical impact on the cross section can be quite sizeable, and a detailed analysis of the numerical
impact of different choices for g(z) was presented in ref. [20]. Note that this ambiguity was already
known at NNLO, where it was shown that the soft-virtual approximation underestimates the full
NNLO cross section by a large amount. At the same time, it was observed a posteriori that choosing
g(z) = z at NNLO leads to a very good approximation to the full NNLO result. In particular, this
choice reproduced correctly the leading logarithmic behaviour of the first subleading term, σ̂0, in
the soft expansion (2.1). Whether the same choice leads to a good approximation also at N3LO
remains, however, still an open question that can most likely only be resolved once more terms in
the threshold expansion are known.
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4. Conclusion and outlook

In this contribution we have reported on the first computation of the inclusive gluon-fusion
cross section at N3LO in the soft-virtual approximation. Although it is still premature to draw
strong phenomenological conclusions at this point, our result constitutes an important step forward
in performing perturbative computations for hadron colliders. In particular, we are confident that it
should be possible to consistently improve our result in order to overcome the ambiguities inherent
to the soft-virtual approximation. First, the techniques we have developed to perform the threshold
expansion are by no means restricted to the soft-virtual term, but they can equally-well be applied
to the subleading terms. This was already demonstrated in ref. [16], where also the first subleading
term appearing in the soft expansion of the triple-real contribution was computed. For the mixed
real-virtual contributions, a new effect appears beyond the soft-virtual approximations, because the
virtual gluons may not only be hard or soft, but we also need to take into account contributions
from collinear regions, where the virtual gluons are collinear to the external momenta. Finally, we
note that the contribution coming from the square of the one-loop amplitude for H + jet has been
computed exactly without any approximation [21]. Indeed, in this case the phase space integration
reduces to a trivial integration over a two-body phase space. Moreover we note that the two-loop
matrix element for H + jet is also available [22], and so similar techniques should also be applicable
in this case. This is currently under investigation.
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