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1. Introduction

Recently, both ATLAS [1] and CMS [2] collaborations discovered a new boson at the Large
Hadron Collider (LHC), whose properties are so far compatible with the long sought standard
model (SM) Higgs boson [3–5]. In order to decide whether thisparticle is indeed responsible for
the electroweak symmetry breaking, a precise measurement of its couplings to fermions, gauge
bosons and its self-interactions is needed. In particular,the knowledge of the Higgs self-couplings
is the only way to reconstruct the scalar potential.

The possibility of observing Higgs pair production at the LHC have been discussed in Refs. [6–
14]. In general, it has been shown that despite the smallnessof the signal and the large background
its measurement can be achieved at a luminosity-upgraded LHC.

The dominant mechanism for SM Higgs pair production at hadron colliders is gluon fusion,
mediated by a heavy-quark loop. The leading-order (LO) cross section has been calculated in
Refs. [15–17]. The next-to-leading order (NLO) QCD corrections have been evaluated in Ref. [18]
within the large top-mass approximation and found to be large, with an inclusiveK factor close to
2. The finite top-mass effects were analysed at this order in Ref. [19], finding that a precision of
O(10%) can be achieved if the exact top-mass leading-order cross section is used to normalize the
corrections.

Given the size of the NLO corrections, it is necessary to reach higher orders to provide accurate
theoretical predictions. In this proceedings contribution we present the next-to-next-to-leading
order (NNLO) corrections for the inclusive Higgs boson pairproduction cross section [20].

2. Description of the calculation

The effective single and double-Higgs coupling to gluons isgiven, within the large top-mass
approximation, by the following Lagrangian

Leff =−
1
4

GµνGµν
(

CH
H
v
−CHH

H2

v2

)

. (2.1)

HereGµν stands for the gluonic field strength tensor andv≃ 246GeV is the Higgs vacuum expec-
tation value. While theO(α3

S) of theCH expansion is known [21,22], the QCD corrections ofCHH

are only known up toO(α2
S) [23]. Up to that order, both expansions yield the same result.

The NNLO contributions to the SM Higgs boson pair productionsquared matrix element can
be separated into two different classes: (a) those containing two gluon-gluon-Higgs vertices (either
ggH or ggHH) and (b) those containing three or four effective vertices.Given the similarity be-
tweenggH andggHH vertices, the contributions to the class (a) are equal to those of single Higgs
production, except for an overall LO normalization (assuming thatCH =CHH up toO

(

α3
S

)

). These
results can be obtained from Refs. [24–26].

Contributions to the class (b) first appear at NLO as a tree-level contribution to the subprocess
gg→ HH, given that eachggH andggHH vertex is proportional toαS. Then, at NNLO we have
one-loop corrections and single real emission corrections. The virtual corrections only involve the
gluon initiated partonic channel. The remaining contributions involve the partonic subprocesses
gg→ HH + g andqg→ HH + q (with the corresponding crossings). Examples of the Feynman
diagrams involved in the calculation are shown in Figure 1.
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Figure 1: Example of Feynman diagrams needed for the NNLO calculationfor the virtual corrections (left)
and the real corrections (right) forgg→ HHg (top) andqg→ HHq (bottom) subprocesses. Other parton
subprocesses can be obtained from crossings.

For both virtual and real corrections, we used the MATHEMATICA packages FEYNARTS [27]
and FEYNCALC [28] in order to generate the Feynman diagrams and evaluate the corresponding
amplitudes. The calculation was performed using nonphysical polarizations, which we cancel by
including ghosts in the initial and final states. We used the FIRE algorithm [29] to reduce the virtual
contributions into master integrals, which were obtained from Ref. [30]. For the real emission
processes we used the Frixione, Kunszt, and Signer subtraction method [31] in order to subtract
the soft and collinear divergencies. Further details of thecalculation, together with the explicit
expressions for the NNLO results, can be found in Refs. [20,32].

3. Phenomenology

Here we present the numerical results for the LHC. At each order, we use the corresponding
MSTW2008 [33] set of parton distributions and QCD coupling.We recall that we always normalize
our results using the exact top- and bottom-mass dependenceat LO. For this analysis we useMH =

126GeV,Mt = 173.18GeV andMb = 4.75GeV. The bands of all the plots are obtained by varying
independently the factorization and renormalization scales in the range 0.5Q≤ µF ,µR ≤ 2Q, with
the constraint 0.5≤ µF/µR ≤ 2, beingQ the invariant mass of the Higgs pair system.

We assume for the phenomenological results that the two-loop corrections to the effective
vertexggHH are the same as those ofggH (that isC(2)

HH =C(2)
H , following the notation of Ref. [32]),

as it happens at one-loop order. We change its value in the range 0≤ C(2)
HH ≤ 2C(2)

H in order to
evaluate the impact of this unknown coefficient and find a variation in the total cross section of less
than 2.5%.

In Figure 2 we present the LO, NLO and NNLO predictions for thehadronic cross section at
the LHC as a function of the Higgs pair invariant mass, for a c.m. energyEcm= 14TeV. As can
be noticed from the plot, only at this order the first sign of convergence of the perturbative series
appears, finding a nonzero overlap between the NLO and NNLO bands. Second order corrections
are sizeable, this is noticeable already at the level of the total inclusive cross sections, where the
increase with respect to the NLO result is ofO(20%), and theK factor with respect to the LO
prediction is aboutKNNLO = 2.3. The scale dependence is clearly reduced at this order, resulting
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Figure 2: Higgs pair invariant mass distribution at LO (dotted blue),NLO (dashed red) and NNLO (solid
black) for the LHC at c.m. energyEcm= 14TeV. The bands are obtained by varyingµF andµR in the range
0.5Q≤ µF ,µR ≤ 2Q with the constraint 0.5≤ µF/µR ≤ 2.
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Figure 3: Total cross section as a function of the c.m. energyEcm for the LO (dotted blue), NLO (dashed
red) and NNLO (solid black) prediction. The bands are obtained by varyingµF andµR as indicated in the
main text. The inset plot shows the correspondingK factors.

in a variation of about±8% around the central value, compared to a total variation ofO(±20%) at
NLO.

In Figure 3 we show the total cross section as a function of thec.m. energyEcm, in the range
from 8TeV to 100TeV. We can observe that the size of the NLO andNNLO corrections is smaller
as the c.m. energy increases. We can also notice that the scale dependence is substantially reduced
in the whole range of energies when we include the second order corrections. The ratio between
NNLO and NLO predictions as a function of the c.m. energy is quite flat, running from 1.22 at
8TeV to 1.18 at 100TeV. On the other hand, the ratio between NNLO and LO runs from 2.39 to
1.74 in the same range of energies.

Finally, we present in Table 1 the value of the NNLO cross section for Ecm = 8, 14, 33 and
100TeV. We have taken into account three sources of theoretical uncertainties: missing higher
orders in the QCD perturbative expansion, which are estimated by the scale variation, and un-
certainties in the determination of the parton flux and strong coupling. To estimate the parton
dinstributions and coupling constant uncertainties we used the MSTW2008 90% C.L. error PDF
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Ecm 8 TeV 14 TeV 33 TeV 100 TeV

σNNLO 9.76 fb 40.2 fb 243 fb 1638 fb
Scale[%] +9.0−9.8 +8.0−8.7 +7.0−7.4 +5.9−5.8

PDF[%] +6.0−6.1 +4.0−4.0 +2.5−2.6 +2.3−2.6

PDF+αS [%] +9.3−8.8 +7.2−7.1 +6.0−6.0 +5.8−6.0

Table 1: Total cross section as a function of the c.m. energy at NNLO accuracy. We use the exact LO
prediction to normalize our results. The different sourcesof theoretical uncertainties are discussed in the
main text.
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Figure 4: Higgs pair invariant mass distribution at NNLO for the LHC atc.m. energy of 8 TeV (dotted
blue), 14 TeV (dashed red) and 100 TeV (solid black), normalized by the total cross section.

sets [34], which are known to provide very close results to the PDF4LHC working group recom-
mendation for the envelope prescription [35]. As we can observe from Table 1, nonperturbative
and perturbative uncertainties are of the same order.

It is worth noticing that the soft-virtual approximation, which was presented in Ref. [32],
gives an extremely accurate prediction for the NNLO cross section, overestimating for example the
Ecm= 14TeV result by less than 2%. As expected, this approximation works even better than for
single Higgs production, due to the larger invariant mass ofthe final state.

As was mentioned before, the finite top-mass effects were analysed in Ref. [19]. They found
that these terms provide an increase ofO(10%) in the NLO prediction atEcm= 14 TeV. This means
that the NLO contribution separately is underestimated by about a 20% in the large top-mass limit.
If this is the case also at the next order, then the finite top-mass contributions are expected to have
an effect ofO(5%) in the NNLO prediction (provided that the exact LO is used to normalize the
results, and that the finite top-mass effects are included atNLO). At higher collider energies the
approximation is expected to be less accurate, given that larger invariant masses of the Higgs pair
system are involved.

To analyse this statement, we show in Figure 4 the invariant mass distribution at NNLO for
Ecm= 8, 14 and 100 TeV, normalized by the total cross section. We can observe that the maximum
of the distribution is approximately in the same position, but the bulk of the the cross section shifts
towards larger values ofQ. Nevertheless, this shift is not really dramatic: at 8, 14 and 100 TeV the
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70% of the inclusive cross section comes fromQ< 485, 505 and 550 GeV respectively. Then, the
effective theory could be still reliable to compute the NNLOcorrections for large collider energies.
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