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The momentum dependent two-loop contributions of the order O(αtαs) to the masses in the
Higgs-boson sector of the MSSM are computed. Adopting the Feynman-diagrammatic approach
and using a mixed on-shell/DR renormalization, the new corrections can directly be matched onto
the higher-order corrections included in the code FEYNHIGGS. Two-loop diagrams involving sev-
eral mass scales are evaluated with the program SecDec. The combination of the new momen-
tum dependent two-loop contribution with the existing one- and two-loop corrections leads to an
improved prediction of the light MSSM Higgs-boson mass with reduced theoretical uncertainty.
The resulting shifts in the lightest Higgs-boson mass Mh can extend up to the level of the current
experimental uncertainty of about 500 MeV in the scenario considered in these proceedings.
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1. Introduction

The ATLAS and CMS experiments at CERN have recently discovered a new boson with a mass
around 125.6 GeV [1, 2]. Despite its seemingly Standard Model-like behavior within the present
experimental uncertainties, the newly discovered particle can also be interpreted as the Higgs-
boson of extended models. The Higgs-boson sector of the Minimal Supersymmetric Standard
Model (MSSM) [3] with two scalar doublets accommodates five physical Higgs-bosons, the light
and heavy CP-even bosons h0 and H0, the CP-odd boson A0, and the charged Higgs-bosons H±.
In the MSSM, the mass of the light CP-even Higgs-boson, Mh, can directly be predicted from the
other parameters of the model. The accuracy of this prediction should at least match the one of the
experimentally measured mass value for the new boson.

The status of higher-order corrections to the masses and mixing angles in the neutral Higgs-
boson sector of the MSSM with real parameters is quite advanced. The complete one-loop result
within the MSSM is known [4–7]. The dominant one-loop contributions are the ones of order αt

originating from top and stop loops (αt ≡ y2
t /(4π) and yt being the top-quark Yukawa coupling).

The range of available two-loop corrections meanwhile also covers most of the contributions which
are believed to be significant [8–22]. In particular, the O(αtαs) contributions to the self-energies –
evaluated in the Feynman-diagrammatic (FD) as well as in the effective potential (EP) approach –
as well as the O(α2

t ), O(αbαs), O(αtαb) and O(α2
b ) contributions – evaluated in the EP approach

– are known for vanishing external momenta. The results obtained in the FD approach are publicly
available in the code FEYNHIGGS [9, 23, 27–29].

An evaluation of the momentum dependence at the two-loop level in a calculation employing
the DR scheme was presented in Ref. [24]. A (nearly) full two-loop EP calculation, including even
the leading three-loop corrections, has also been published [25]. However, within the EP method
all contributions are evaluated at zero external momentum for the corresponding self-energies, in
contrast to the FD method, which in principle allows non-vanishing external momentum. Further,
the calculation presented in Ref. [25] is not publicly available as a computer code for Higgs-boson
mass calculations. Subsequently, another leading three-loop calculation of O(αtα

2
s ) has been per-

formed [26], using assumptions on the various SUSY mass hierarchies, resulting in the code H3m
(which adds the three-loop corrections to the FEYNHIGGS result). Most recently, a combination
of the full one-loop result, supplemented with leading and sub-leading two-loop corrections evalu-
ated in the Feynman-diagrammatic/effective potential approach and a resummation of the leading
and sub-leading logarithmic contributions from the scalar-top sector has been published [27] and
included in the latest version of the code FEYNHIGGS [9, 23, 27–29].

In these proceedings, the calculation of mass shifts resulting from the inclusion of the lead-
ing momentum-dependent O(αtαs) corrections to the neutral CP-even Higgs-boson masses is de-
scribed for one representative scenario.
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2. Outline of the calculation

The MSSM requires two doublets H1 and H2 of complex scalar fields which read

H1 =

(
H 0

1

H −
1

)
=

(
v1 +

1√
2
(φ 0

1 − iχ0
1 )

−φ
−
1

)
, H2 =

(
H +

2

H 0
2

)
=

(
φ
+
2

v2 +
1√
2
(φ 0

2 + iχ0
2 )

)
. (2.1)

The vacuum expectation values v1 and v2 define the angle tanβ = v2/v1. At tree level, the mass
matrix of the neutral CP-even Higgs-bosons in the (φ 0

1 ,φ
0
2 ) basis can be written as

M2,tree
Higgs =

(
m2

A0sin2
β +m2

Zcos2 β −(m2
A0 +m2

Z)sinβcosβ

−(m2
A0 +m2

Z)sinβcosβ m2
A0cos2 β +m2

Zsin2
β

)
, (2.2)

where mA0 is the mass of the CP-odd neutral Higgs-boson A0. The rotation to the basis formed by
the mass eigenstates H0,h0 is given by(

H0

h0

)
=

(
cosα sinα

−sinα cosα

)(
φ 0

1
φ 0

2

)
. (2.3)

2.1 Computational set-up

The higher-order corrected CP-even Higgs-boson masses in the MSSM are obtained from the
corresponding propagators dressed by their self-energies. The inverse propagator matrix in the
(φ 0

1 ,φ
0
2 ) basis is given by

(∆Higgs)
−1 =−i

(
p2−m2

φ1
+ Σ̂φ1(p2) −m2

φ1φ2
+ Σ̂φ1φ2(p2)

−m2
φ1φ2

+ Σ̂φ1φ2(p2) p2−m2
φ2
+ Σ̂φ2(p2)

)
, (2.4)

where the Σ̂(p2) denote the renormalized Higgs-boson self-energies, p being the external momen-
tum.

The calculation is performed in the Feynman-diagrammatic (FD) approach. To obtain ex-
pressions for the unrenormalized self-energies at O(αtαs), the evaluation of genuine two-loop
diagrams and one-loop graphs with counter-term insertions is required. Example diagrams for the
neutral Higgs-boson self-energies are shown in Fig. 1. For the counter-term insertions, one-loop
diagrams with external top quarks/squarks have to be evaluated. In addition, two-loop tadpole
diagrams enter the two-loop counter terms. The complete set of contributing Feynman diagrams
has been generated with the program FeynArts [30] (using the model file including counter
terms from Ref. [31]). A tensor reduction and evaluation of traces was performed with the pro-
grams FormCalc [32] and TwoCalc [33], yielding algebraic expressions in terms of the scalar
one- and two-point one-loop functions, massive two-loop vacuum functions [34], and two-loop in-
tegrals which depend on the external momentum. The latter have been evaluated with the program
SecDec [35, 36].

2.2 Computation of mass shifts

The calculation of the self-energies is performed in the (φ 0
1 ,φ

0
2 ) basis. To be consistent with the

higher-order contributions to the Higgs-boson masses incorporated in the program FEYNHIGGS,
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Figure 1: Examples of two-loop diagrams enetring the Higgs-boson self-energies (φ = h0,H0,A0).

the renormalized self-energies in the (φ 0
1 ,φ

0
2 ) basis are rotated into the physical (h0,H0) basis,

Σ̂
(2)
H0H0 = cos2

α Σ̂
(2)
φ 0

1 φ 0
1
+ sin2

α Σ̂
(2)
φ 0

2 φ 0
2
+ sin(2α) Σ̂

(2)
φ 0

1 φ 0
2

, (2.5a)

Σ̂
(2)
h0h0 = sin2

α Σ̂
(2)
φ 0

1 φ 0
1
+ cos2

α Σ̂
(2)
φ 0

2 φ 0
2
− sin(2α) Σ̂

(2)
φ 0

1 φ 0
2

, (2.5b)

Σ̂
(2)
h0H0 = sinα cosα (Σ̂

(2)
φ 0

2 φ 0
2
− Σ̂

(2)
φ 0

1 φ 0
1
)+ cos(2α) Σ̂

(2)
φ 0

1 φ 0
2

, (2.5c)

where the tree-level propagator matrix is diagonal and α the tree-level mixing angle, see Eqs. (2.2)-
(2.3). The resulting new contributions to the neutral CP-even Higgs-boson self-energies, containing
all momentum-dependent and additional constant terms, are assigned to the differences

∆Σ̂
(2)
ab (p2) = Σ̂

(2)
ab (p2)− Σ̃

(2)
ab (0) , ab = {H0H0,h0H0,h0h0} . (2.6)

Note the tilde (not hat) on Σ̃(2)(0), which signifies that not only the self-energies are evaluated at
zero external momentum but also the corresponding counter terms, following Refs. [37–39]. A
finite shift ∆Σ̂(2)(0) therefore remains in the limit p2 → 0 due to δm2(2)

A0 = ReΣ
(2)
A0A0(m2

A0) being
computed at p2 = m2

A0 in Σ̂(2), but at p2 = 0 in Σ̃(2).

Several checks have been performed on the calculation. Subtracting the finite shift of δm2(2)
A0 ,

the finite shift ∆Σ̂
(2)
ab (0) in Eq. (2.6) must cancel in the limit of vanishing external momentum.

This could be confirmed numerically. Moreover, agreement with previous calculations performed
in the zero momentum limit [37, 39] was found analytically. All integrals which were deduced
analytically from known expressions [34, 40] were checked with SecDec. For more details about
the calculational set-up the reader is referred to [41, 42].

According to Eq. (2.4), the CP-even Higgs-boson masses are determined from the poles of the
h0-H0-propagator matrix. This is equivalent to solving the equation

[
p2−m2

h0 + Σ̂h0h0(p2)
][

p2−m2
H0 + Σ̂H0H0(p2)

]
−
[
Σ̂h0H0(p2)

]2
= 0 , (2.7)

yielding the loop-corrected pole masses, Mh and MH .
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3. Numerical results

The following parameter values are adopted for the numerical studies shown below

mt = 173.2 GeV, MSUSY = 1 TeV, Xt = 2MSUSY , µ = 200 GeV ,

mg̃ = 1500 GeV, mt̃1 = 826.8 GeV, mt̃2 = 1173.2 GeV . (3.1)

They are oriented at the mmax
h scenario described in Ref. [43]. Results for other scenarios and more

details can be found in Ref. [41]. In Fig. 2, ∆Mh (left plot) and ∆MH (right plot) are shown as a
function of mA0 for tanβ = 5 (blue) and tanβ = 20 (red). In the mmax

h scenario for mA0 >∼ 200 GeV,
the additional shift ∆Mh ∼−60 MeV amounts to the size of the anticipated experimental precision
at a linear collider. The contribution to the heavy CP-even Higgs-boson mass can reach −60 MeV
for very small or intermediate values of mA0 , whereas for mA0 >∼ 500 GeV a decreasing correction
to MH can be observed. The peak in ∆MH for tanβ = 5 originates from a threshold at 2mt .
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Figure 2: Variation of the mass shifts ∆Mh,∆MH with the A0-boson mass mA0 for tanβ = 5 (blue) and
tanβ = 20 (red). The peak in ∆MH originates from a threshold at 2mt .
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Figure 3: Variation of the mass shifts ∆Mh,∆MH with the gluino mass for two different values of tanβ =

5,20 and mA0 = 250 GeV.

Furthermore, the dependence of Mh and MH on the gluino mass mg̃ is analyzed in the scenario
described above. The results are shown in Fig. 3 for ∆Mh (left plot) and ∆MH (right plot) for
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mA0 = 250 GeV with the same color coding as in Fig. 2. In the case of Mh one can observe that
the effects are smallest for mg̃ ∼ 1.5 TeV. More sizable shifts occur for larger gluino masses, by
more than−400 MeV for mg̃ >∼ 4 TeV, reaching thus the level of the current experimental accuracy
in the Higgs-boson mass determination. The corrections to MH do not exceed −50 MeV in the
considered mg̃ range.

4. Conclusion

Results for the leading momentum-dependent O(αtαs) contributions to the masses of the neu-
tral CP-even Higgs-bosons in the MSSM have been presented. They were obtained by calcu-
lating the corresponding contributions to the dressed Higgs-boson propagators in the Feynman-
diagrammatic approach, using a mixed on-shell/DR renormalization scheme.

The effect of the new momentum-dependent two-loop corrections on the predictions for the
CP-even Higgs-boson masses was investigated. The numerical analysis displayed a strong de-
pendence of the light CP-even Higgs-boson mass on the value of the gluino mass. For values of
mg̃ ∼ 1.5 TeV corrections to Mh of about −50 MeV are found, while for very large gluino masses,
mg̃ & 4 TeV, the corrections can amount to the level of the current experimental accuracy, i.e. about
500 MeV at the LHC. The effects are mostly below the current and future anticipated experimen-

tal accuracies for the heavy CP-even Higgs-boson mass. The new results of O(αtαs) have been
incorporated into the program FEYNHIGGS.
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