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We report on our latest results in the calculation of the three-loop heavy flavor contributions

to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q2
≫ m2. We

discuss the different methods used to compute the required operator matrix elements and the
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1. Introduction

In the large Q2 limit, the heavy flavor Wilson coefficients in deep-inelastic scattering (DIS) are

known to factorize into light flavor Wilson coefficients and massive operator matrix elements [1,2].

These heavy flavor coefficients can then be convoluted with parton distribution functions (PDFs) to

obtain the heavy flavor corrections to deep-inelastic scattering structure functions, which amount

to sizeable contributions, in particular in the region of small values of the Bjorken variable x.

At NNLO, the light flavor Wilson coefficients are known [3]. The missing ingredients required

to obtain the heavy flavor Wilson coefficients are therefore the 3-loop massive operator matrix

elements (OMEs).

Here we present our latest results in the ongoing effort to calculate these quantities. Par-

ticularly, six out of eight OMEs are by now available. The simplest operator matrix elements,

A(3),PS

qq,Q and A(3)
qg,Q, were obtained in [4]. More recently, A(3)

gq [5], A(3),NS,TR
qq [6] and A(3),PS

Qq [7] were

calculated using a variety of techniques to be described in the following sections. Using these

operator matrix elements, we have been able to obtain the Wilson coefficients LPS
q,(2,L), LS

g,(2,L) [8],

LNS
q,(2,L) [6] and HPS

q,(2,L) [7]. The asymptotic heavy flavor corrections to FL(x,Q2) have been cal-

culated in Refs. [8, 9]. Also, results for the terms proportional to T 2
F in A(3)

gg,Q [10] and all NFT 2
F

terms [4, 11, 12] have been computed. Once the last two operator matrix elements are completed,

and the corresponding heavy flavor contributions to the DIS structure functions are then obtained,

it will be possible to make more precise determinations of αs and the mass of the charm quark mc,

as well as provide better constraints on sea quarks and the gluon and thus improve the results given

in [13–15]. The 3-loop OMEs are also needed to obtain the matching relations at NNLO in the vari-

able flavor number scheme (VFNS) [2, 16]. Starting with 3-loop order there are also heavy flavor

contributions due to graphs containing massive fermion lines of different mass, see Refs. [17–19]

and the talk by F. Wißbrock [20] presented at this conference. Furthermore, the asymptotic heavy

flavor corrections for the charged current processes have also been calculated to next-to-leading

order (NLO) [21, 22].

The operator matrix elements have been calculated using the standard Feynman rules of QCD

together with the Feynman rules for operator insertions as described in Refs. [6, 23]. Feynman

diagrams were generated based on these rules using QGRAF [24]. The output of QGRAF was

then processed using Form [25], after which the diagrams end up being expressed as a linear

combination of a large number of scalar integrals. These scalar integrals are then reduced to a much

smaller set of master integrals using integration by parts identities, as described in Section 2.1.

The master integrals are then calculated using a variety of techniques. These will be discussed in

Section 2.2, where we will make special emphasis on the differential equations method. We will

discuss our results in Section 3. The conclusions are given in Section 4.

2. Calculation of the operator matrix elements

2.1 Integration by parts identities

We calculate the operator matrix elements as functions of the Mellin variable N, and perform the
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reduction to master integrals using the C++ program Reduze2 [26]1, which implements Laporta’s

algorithm [29]. It is not so straightforward to apply this algorithm to the case where we have

operator insertions, precisely because of the dependence on the arbitrary parameter N. Laporta’s

algorithm is designed to work with integrals with definite indexing, and although it may be possible

to adapt this algorithm to the case where we have an arbitrary index N, we found a more elegant

solution by rewriting the operator insertions in terms of propagators, which will be raised to definite

powers. For example, in the case of an insertion on a line, the operator insertion will be proportional

to (∆.k)N−1, where k is the momentum going through the line, and ∆ is a light-like vector. We

now introduce a new variable x and re-express the operator insertion by the following generating

function

(∆.k)N−1
→

∞

∑
N=1

xN−1(∆.k)N−1 =
1

1− x∆.k
. (2.1)

In the case of 3-, 4- and 5-point operator insertions, we can similarly re-express the operator inser-

tion in terms of products of the same type of artificial propagators. These new propagators can be

added to the list of propagators defining the integrals, and Laporta’s algorithm can then be applied

without problems. Propagators like the one given in Eq. (2.1) are known as bilinear propagators,

and Reduze2 has been adapted to be able to deal with such objects. Auxiliary propagators are in-

troduced when needed in such a way that all products of internal momenta with an external/internal

momentum or with ∆ can be uniquely expressed as a linear combination of inverse propagators. A

set of propagators that satisfies this condition is called an integral family. All integrals involved in a

given problem will be identified by specifying an integral family and the powers of the propagators,

which can be negative if the integral has irreducible numerators. We have found that all integrals

required for the calculation of all of the eight OMEs can be specified using 24 integral families.

2.2 Calculation of the master integrals

For the calculation of the master integrals we used a combination of one or more of the following

methods, depending on the complexity of the integral under consideration:

• Summation methods, implemented in the Mathematica package Sigma [30,31], based on

advanced symbolic summation algorithms in the setting of difference fields [32–40], and the

packages HarmonicSums [41–44], EvaluateMulti- Sums, and SumProduction

[45].

• Hypergeometric functions [47–49].

• Mellin-Barnes representations [50–53].

• In the case of convergent massive 3-loop Feynman integrals, they can be performed in terms

of hyperlogarithms, generalizing the method proposed in [54] to massive diagrams with op-

erator insertions [49, 55].

• Differential (difference) equations [56].

1The program Reduze2 uses the codes Fermat [27] and GiNaC [28].
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The summation methods and other mathematical methods we used in the representation and re-

duction of nested sums and iterated integrals we have used were described in detail in the talks

by C. Schneider [57], J. Ablinger [58] and C. Raab [59, 60] given at this conference. Some of the

integrals can be completely solved in terms of hypergeometric functions (including Appell hyper-

geometric functions) with parameters depending on N and the dimension D = 4+ ε , or multiple

sums of such functions where the summation indices also appear in the parameters of the hyperge-

ometric function. If the corresponding series representation is convergent, the resulting sums can

then be performed using Sigma. A survey on the function spaces, which have appeared in the

present calculations, is given in Ref. [61].

In some cases, after Feynman parameterization of the integrals, the Feynman parameters can

be integrated in terms of Beta functions by splitting a denominator using [52, 53]

1

(A+B)ν
=

1

2πi

∫ +i∞

−i∞
dσ

Γ(−σ)Γ(σ +ν)

Γ(ν)

Aσ

Bσ+ν
. (2.2)

The remaining contour integral in σ can then be done with the help of the Mathematica package

MB [62], which finds a contour and a value of ε such that the Feynman integral is well defined, and

then analytically continues to ε → 0. After this, we can take residues and then sum them using

Sigma.

The method of hyperlogarithms and its generalizations have been described in detail in [55],

where a few examples were presented. This method applies to Feynman integrals which are non-

singular in the dimensional parameter ε . It relies on the α-parameterization of the integrals, inte-

grating each parameter one after the other. A required condition for the applicability of this method

is that after each integration, the denominators of the integrals remain linearly factorizable in the α

parameters. Many of the most interesting integrals appearing in our calculations do not satisfy this

condition. It can be applied, if e.g. quadratic forms of Feynman parameters can be transformed

away or mapped into the argument of the iterated integral. In the massive case, however, this is not

always possible, whatever order of integrations is applied.

Many of the most complicated integrals we have encountered so far were solved using the

differential equations method. The idea behind this method is to take derivatives of the master

integrals with respect to the invariants of the problem, and then re-express the result in terms of the

master integrals themselves. This leads to a system of differential equations that can then be solved

once appropriate boundary conditions are found. In our case, we take advantage of the introduction

of the auxiliary variable x, as shown in Eq. (2.1), and take derivatives with respect to this variable.

For example, consider the following two master integrals, which were needed to obtain A(3),PS

Qq ,

M1(x) =
∫

dDk1

(2π)D

dDk2

(2π)D

dDk3

(2π)D

1

D1D2D3D4D5D6D7

, (2.3)

M2(x) =
∫

dDk1

(2π)D

dDk2

(2π)D

dDk3

(2π)D

1

D2
1D2D3D4D5D6D7

, (2.4)

where

D1 = (k1 − p)2, D2 = (k2 − p)2, D3 = k2
3 −m2, D4 = (k1 − k3)

2
−m2, (2.5)

D5 = (k2 − k3)
2
−m2, D6 = 1− x∆.k3, D7 = 1− x(∆.k3 −∆.k1). (2.6)

4



P
o
S
(
L
L
2
0
1
4
)
0
4
1

Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in DIS A. De Freitas

Here m is the mass of the heavy quark, and p the momentum of the external light quark, which is

taken on-shell (p2 = 0). Taking derivatives with respect to x we obtain

d

dx
M1(x) =

1

1− x

(

2+ ε −
1

x

)

M1(x)+
2x

1− x
M2(x)+

K1(x)

1− x
, (2.7)

d

dx
M2(x) = −

1

1− x

(

1−2ε

x
+

3

2
ε −2

)

M2(x)

+
ε

4
(2+3ε)

1

1− x

(

1

x2
−

1

x

)

M1(x)+
K2(x)

1− x
, (2.8)

where K1(x) and K2(x) are linear combinations of sub-sector master integrals that have been solved

previously. In Eqs. (2.7,2.8), we have set the mass m and ∆.p to 1 for simplicity. Now we undo the

introduction of the variable x. Since

M1(x) ∝
∞

∑
N=0

xNF1(N) and M2(x) ∝
∞

∑
N=0

xNF2(N), (2.9)

we obtain the following system of difference equations,

(N +2)F1(N +1)− (N +2+ ε)F1(N)−2F2(N −1) = K1(N) , (2.10)

(N +2−2ε)F2(N +1)−

(

N +2−
3

2
ε

)

F1(N) (2.11)

−
ε

4
(2+3ε)(F1(N +2)−F1(N +1)) = K2(N) , (2.12)

where K1(N) and K2(N) are the Nth terms of the Taylor expansions of K1(x) and K2(x), respec-

tively. This system can now be solved using Sigma, together with the Mathematica package

OreSys [63]; for further details on this approach we refer to [57]. In order to be able to do so, we

need to obtain a few initial values for the integrals under consideration, which we can do using the

program MATAD [64] or by doing reductions of tensor integrals to scalar integrals [10]. Many of

the master integrals needed to obtain A(3),PS

Qq and some of the terms ∝ T 2
F in A(3)

gg were calculated this

way. Recently, 3-loop quarkonic ladder and V -topology diagrams have also been obtained using

this method, cf. [57].

3. Results

The expressions obtained for the operator matrix elements A(3)
gq , A(3),NS

qq and A(3),TR
qq have been found

to be given in terms of harmonic sums [65, 66] of up to weight five. For A(3),PS

Qq for the first time

generalized sums [44, 67] appear in the final answer, namely,

Sa,~b(ζ ,
~ξ ;N) =

N

∑
k=1

ζ k

ka
S~b(

~ξ ;k)≡ Sa,~b(ζ ,
~ξ ) . (3.1)

In particular, the constant term in A(3),PS

Qq contains the following generalized sums

S1

(

1

2

)

, S2

(

1

2

)

, S3

(

1

2

)

, S1,1

(

1

2
,1

)

, S1,1

(

1,
1

2

)

, S2,1

(

1

2
,1

)

, S1,2

(

1

2
,1

)

, S2,1

(

1,
1

2

)

,

S1,2

(

1,
1

2

)

, S1,1,1

(

1

2
,1,1

)

, S1,1,1

(

1,
1

2
,1

)

, S1,1,1

(

1,1,
1

2

)

, S3 (2) , S1,2 (2,1) , S2,1 (2,1) ,
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etc., where we have omitted the explicit dependence on N.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10−5 10−4 10−3 10−2 10−1

F
2

x

O(a3
s
) contribution of LS

g,2

Q2 = 1000GeV
2

Q2 = 100GeV
2

Q2 = 20GeV
2

Figure 1: The O(a3
s ) contribution by LS

g,2 to the structure function F2(x,Q2) for mc = 1.59 GeV using the

parton distributions [15] (from Ref. [8]).

In terms of a Mellin transform,

f̂ (N) =
∫ 1

0
dx xN−1 f (x) (3.2)

these sums lead to generalized harmonic polylogarithms [44]. Using a recent reduction mechanism

available in HarmonicSums we were able to transform the physical result into the harmonic

polylogarithms [68] evaluated at x and 1 − 2x. There are also other equivalent representations

requiring generalizations of the Mellin transform, cf. [7].

In the case of the terms ∝ T 2
F in A(3)

gg [10] and for V -graph topologies contributing to A(3)
Qg [55]

we also found finite nested (inverse) binomial sums over (generalized) harmonic sums such as

1

4N

(

2N

N

) N

∑
k=0

4k

kl
(

2k
k

)S1(k), l ∈ N (3.3)

or
N

∑
i=1

(

2i

i

)

(−2)i
i

∑
j=1

1

j
(

2 j
j

)S1,2

(

1

2
,−1; j

)

, (3.4)

where S~a(N) denotes a nested harmonic sum.

Doing the inverse Mellin transform of these sums we find that these are expressed in terms of

iterated integrals over root-valued alphabets. In total, we have found that 33 new letters are needed

in the algebraically irreducible representations for the calculations we have done so far.
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The calculation of all these OMEs has allowed us also to check the corresponding contributions

to the 3-loop anomalous dimensions. We find perfect agreement with the literature. In the case of

transversity, these have been calculated for the first time ab initio.
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0

10−5 10−4 10−3 10−2 10−1 1
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∣ ∣ ∣

L
N
S

q
,
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x

Q2 = 20GeV2, O(a2s)
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Q2 = 1000GeV2, O(a2s)
Q2 = 20GeV2, O(a3s)

Q2 = 100GeV2, O(a3s)
Q2 = 1000GeV2, O(a3s)

Figure 2: The flavor non-singlet contribution of the Wilson coefficient LNS
q,2 to the structure function F2(x,Q2)

at 2- and 3-loop order using the NNLO parton distribution functions [15] in the on-shell scheme for mc =

1.59 GeV (from Ref. [6]).

Having calculated these OMEs, the remaining tasks are the convolution with the massless

Wilson coefficients and then with the PDFs, in order to obtain the contributions to the structure

functions. We have obtained numerical results for the Wilson coefficients LPS
q,(2), LS

g,(2) [8] and

LNS
q,(2) [6] to 3-loop order. In Figure 1 the 3-loop corrections by the Wilson coefficient LS

g,2 is

shown. In the kinematic region probed by HERA it reaches ∼ 1%, i.e. the experimental accuracy

and is therefore of importance. They are larger than the 2-loop corrections for this quantity, due to

a term ∝ 1/z emerging first in the 3-loop corrections, cf. [8]. In Figure 2, we show the contribution

of the heavy flavor non-singlet Wilson coefficient to structure function F2(x,Q2) at 2- and 3-loop

order, for different values of Q2. They turn out to be smaller than 1% in the kinematic region of

HERA. In Ref. [6] we also presented the complete transformation coefficients in the VFNS in the

non-singlet case at 3-loop order. Future high-luminosity machines such as the EIC [69] will reach

a much higher resolution for F2(x,Q2) than HERA. Here all these terms will be of experimental

relevance. Numerical results on the pure-singlet contributions will be given later this year.

4. Conclusions

Considerable progress has been made recently in the calculation of the NNLO heavy flavor contri-
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butions to the structure functions in DIS for large values of Q2. By now, six out of eight operator

matrix elements (and the associated anomalous dimensions) have been completed, and partial re-

sults are available for the remaining two OMEs. This progress was possible thanks to the devel-

opment of new computer algebra and mathematical technologies. Several programs have played

a crucial role in these calculations, such as Reduze2 for the reduction to master integrals, and

Sigma, HarmonicSums, EvaluateMultiSums, SumProduction and OreSys for sum-

mation algorithms and the solution of difference equations. These programs and the algorithms

associated with them continue to be developed and refined as we encounter ever more challenging

problems in this endeavor. The 3-loop heavy flavor Wilson coefficients calculated so far yield con-

tributions to F2(x,Q2) of O(. 1%), cf. [6, 8], reaching the experimental accuracy of the structure

function F2(x,Q2) at HERA. We will report on numerical results for further Wilson coefficients and

OMEs in the future. The completion of this project is underway and will allow us to make more

precise determinations of αs and mc, the parton distribution functions, as well as to establish the

VFNS at NNLO, needed for predictions at hadron colliders such as the LHC.
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