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1. Introduction

Studies of hard exclusive reactions constitute an important part of the research programs at all
major accelerator facilities. The theoretical description of such processes involves operator matrix
elements between states with different momenta, dubbed generalized parton distributions (GPDs),
or vacuum-to-hadron matrix elements, the distribution amplitudes (DAs). Scale dependence of
these distributions is governed by the renormalization group (RG) equations for the correspond-
ing (nonlocal) operators and are known, at present, to the two-loop accuracy [1 – 3]. This is one
order less compared to the RG equations for the corresponding “inclusive” distributions involving
forward matrix elements [4, 5] and closing this gap is desirable. The direct calculation is very
challenging. Moreover, since the two-loop RGEs for GPDs are already very cumbersome, finding
a suitable representation for the results becomes part of the problem.

It has been known for a long time [6] that one-loop evolution kernels can be restored from the
corresponding anomalous dimensions thanks to conformal symmetry of the QCD Lagrangian. The
generalization of this technique beyond the leading order was developed by D. Müller [7], who has
shown that restrictions based on conformal symmetry allow one to restore full evolution kernels at
given order of perturbation theory from the spectrum of anomalous dimensions at the same order,
and the calculation of the special conformal anomaly at one order less. This technique was used
to calculate the two-loop evolution kernels in momentum space for the GPDs [1 – 3, 8 – 10]. In
Refs. [11, 12] we suggested a different approach to achieve the same goal. Instead of studying
effects of the conformal symmetry breaking in the physical theory [8 – 10] it was proposed to make
use of the exact conformal symmetry of a modified theory – QCD in d = 4−2ε dimensions at criti-
cal coupling. Exact conformal symmetry simplifies considerably the analysis and also suggests the
optimal representation for the results in terms of light-ray operators. We expect that this technique
will become increasingly advantageous in higher orders.

This approach was illustrated in [11] on several examples to the two- and three-loop accuracy
for scalar theories and used in [12] to obtain two-loop evolution equations for the flavor flavor-
nonsinglet light-ray operators. The applications to gauge theories involve several subtleties that
will be discussed below.

2. Preliminaries

Conformal symmetry transformations have the simplest form for the so-called light-ray op-
erators that can be understood as generating functions for the renormalized leading-twist local
operators:

[O](x;z1,z2) ≡ [q̄(x+ z1n)/nq(x+ z2n)] ≡ ∑
m,k

zm
1 zk

2
m!k!

[(Dm
n q̄)(x)/n(Dk

nq)(x)]. (2.1)

Here q(x) is a quark field, the Wilson line is implied between the quark fields on the light-cone,
Dn = nµDµ is a covariant derivative, nµ is an auxiliary light-like vector, n2 = 0, that ensures sym-
metrization and subtraction of traces of local operators. The square brackets [. . .] stand for the
renormalization in the MS scheme. We will tacitly assume that the quark and antiquark have differ-
ent flavor so that there is no mixing with gluon operators. In most situations the overall coordinate x
is irrelevant and can be put to zero; we will often abbreviate O(z1,z2)≡ O(0;z1,z2).
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The RGE fot light-ray operators takes the form [14] (here and below a = αs/4π)(
M∂M +β (a)∂a +H(a)

)
[O(z1,z2)] = 0 , (2.2)

where H is an integral operator acting on the quark light-cone coordinates, zi. It can be written as

H[O](z1,z2) =
∫ 1

0
dα

∫ 1

0
dβ h(α,β ) [O](zα

12,z
β

21) , (2.3)

where zα
12 ≡ z1ᾱ + z2α , ᾱ = 1−α and

h(α,β ) = ah(1)(α,β )+a2 h(2)(α,β )+ . . . (2.4)

is a certain weight function (kernel). One can show that the powers [O](z1,z2) 7→ (z1− z2)
N−1 are

eigenfunctions of the operator H, and the corresponding eigenvalues

γN =
∫

dαdβ h(α,β )(1−α−β )N−1 (2.5)

are nothing else as the anomalous dimensions of local operators of spin N [11]. The kernel h(α,β )

is a function of two variables so that the knowledge of the anomalous dimensions γN is not suf-
ficient, in general, to find it. In a conformal theory, however, it is expected that the operator H
commutes with the generators of the SL(2) transformations, [H,Sα ] = 0. At the leading order the
generators take the canonical form

S(0)+ = z2
1∂z1 + z2

2∂z2 +2(z1 + z2), S(0)0 = z1∂z1 + z2∂z2 +2, S(0)− =−∂z1−∂z2 . (2.6)

Up to the trivial case h(α,β ) = δ (α)δ (β ) the kernel of an operator commuting with the canoni-
cal generators (2.6) is a function of one variable only, h(α,β ) = h̄(τ) , where τ = αβ/ᾱβ̄ is the
so-called conformal ratio. The function of one variable h̄(τ) is determined uniquely by its mo-
ments (2.5) and can easily be reconstructed. It turns out that the one-loop kernel h(1)(α,β ) takes a
remarkably simple form [15]

h(1)(α,β ) =−4CF

[
δ+(τ)+θ(1− τ)− 1

2
δ (α)δ (β )

]
, (2.7)

where the regularized δ -function, δ+(τ), is defined as

∫
dαdβ δ+(τ) f (zα

12,z
β

21)≡
∫ 1

0
dα

∫ 1

0
dβ δ (τ)

[
f (zα

12,z
β

21)− f (z1,z2)
]
. (2.8)

Beyond one loop, conformal symmetry in QCD is broken by quantum corrections but, never-
theless, still imposes nontrivial constraints. We will show that: first, it is possible to construct the
operators Sα(a) that commute with the evolution kernel H(a) in the four-dimensional interacting
theory, [H(a),Sα(a)] = 0 and, second, that this property guarantees that the kernel H(a) can be
restored from its spectrum. To this end we will go over to the theory in noninteger, d = 4− 2ε ,
dimensions at the intermediate steps.

3



P
o
S
(
L
L
2
0
1
4
)
0
4
8

QCD evolution equations from conformal symmetry Alexander Manashov

3. QCD in d = 4−2ε dimensions

The QCD Lagrangian in d = 4−2ε dimensional Euclidean space in covariant gauge has the form

L = q̄(/∂ − ig/A)q+
1
4

Fa
µνFa,µν +∂µ c̄a(Dµc)a +

1
2ξ

(∂Aa)2. (3.1)

For large number of flavours, n f , the beta function

β (a) = M∂Ma = 2a
(
− ε−b0a+O(a2)

)
, b0 =

11
3

Nc−
2
3

n f , (3.2)

has a nontrivial zero for the finely-tuned (critical) value of the coupling a∗ = −ε/b0 + O(ε2).
The theory thus enjoys exact scale and conformal invariance 1 at the critical point [16, 17]. As
a consequence, the RGEs are exactly conformally invariant, but the generators are modified by
quantum corrections as compared to their canonical expressions (2.6):

Sα = S(0)α +a∗∆S(1)α +a2
∗∆S(2)α + . . . (3.3)

One can show that the generator S− (translation) does not receive any corrections, S− = S(0)− , the
deformation of S0 can be calculated exactly in terms of the evolution operator (to all orders in
perturbation theory) [11], whereas the deformation of S+ is nontrivial and has to be calculated
explicitly to the required accuracy [12]:

S0 =S(0)0 − ε +
1
2
H(a∗) , H(a∗) = a∗H(1)+a2

∗H(2)+ . . . (3.4)

S+ =S(0)+ +(z1 + z2)
(
− ε +

1
2

a∗H(1)
)
+a∗(z1− z2)∆++O(ε2) , (3.5)

where

∆+[O](z1,z2) =−2CF

∫ 1

0
dα

(
ᾱ

α
+ lnα

)[
[O](zα

12,z2)− [O](z1,zα
21)
]
. (3.6)

From the technical point of view this calculation replaces evaluation of the conformal anomaly in
the theory in integer dimensions in the approach due to D. Müller [7].

The evolution kernel at the critical point has to commute with the symmetry generators,
[Sα(a∗),H(a∗)] = 0. Taking into account Eq. (3.4) one concludes that H(a∗) commutes with the
two canonical generators, [S(0)− ,H(a∗)] = [S(0)0 ,H(a∗)] = 0, while expanding the last commutator in
series in a∗ one obtains a nested set of commutator relations [11]

[S(0)+ ,H(1)] = 0 , [S(0)+ ,H(2)] = [H(1),∆S(1)+ ] , [S(0)+ ,H(3)] = [H(1),∆S(2)+ ]+ [H(2),∆S(1)+ ] , (3.7)

etc. Note that the commutator of the canonical generator S(0)+ with the evolution kernel H(k) on
the l.h.s. is given in terms of the kernels H(m) and the corrections to the generator ∆S(m)

+ of order,
m < k. The relations (3.7) can be viewed as inhomogeneous first-order differential equations on
the kernels H(k). Their solution determines H(k) up to an SL(2)-invariant term (solution of the

1QCD is critically equivalent to the Non-Abelian Thirring model [17] that allows one to develop technique for
calculation critical indices different from the standard perturbative expansion, see e.g. Refs. [18 – 21]
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corresponding homogeneous equation [H(k)
inv ,S

(0)
α ] = 0), which can be restored from the spectrum of

the anomalous dimensions. This procedure is described in detail in Ref. [11].
Last but not least, it is well known that in MS-like schemes the evolution kernels (anomalous

dimensions) do not depend on the space-time dimension. It means that the kernel H(a) can be
restored from the kernel at the critical point, H(a∗), simply by replacing a∗ → a in the power
series for H(a∗). Finally, rewriting ε in terms of the critical coupling, ε =−b0a∗s +O(a∗2s ), in the
generators S0(a∗), S+(a∗) one immediately concludes that the generators Sα(a), commute with the
kernel H(a). In this way the evolution kernel in four-dimensional theory inherits the symmetries
of the evolution kernel in conformal theory.

4. Conformal Ward Identities

To begin with, action of the generators Sα on the light-ray operator (which is auxiliary and
scheme-dependent object) has to be defined in a consistent way. We will do this by expanding the
light-ray operator over local conformal operators that can be classified according to their transfor-
mation properties with respect to the conformal group. These are determined by the nature of the
critical point and are scheme-independent (i.e. can be viewed as “physical” observables).

The transformation laws for the leading-twist operators are completely fixed by their critical
dimension and spin. A local operator that transforms under dilatation (D) and special conformal
transformation (Kµ ) as follows

i[D, [ON ](x)] =
(

x∂x +∆
∗
N

)
[ON ](x) , (4.1)

i[Kµ , [ON ](x)] =
[

2xµ(x∂ )− x2
∂

µ +2∆
∗
N xµ +2xν

(
nµ ∂

∂nν
−nν

∂

∂nµ

)]
[ON ](x) . (4.2)

is called a conformal operator, by definition. The light-ray operator can be expanded over the basis
of conformal operators ONk(x) = ∂ k

+[ON ](x) where ∂+ ≡ (n∂ ) with certain coefficient functions

[O(x;z1,z2)] = ∑
Nk

ΨNk(z1,z2)ONk(x) . (4.3)

The functions ΨNk are homogeneous polynomials of degree N+k of the quark coordinates, and, in
general, depend on the coupling a∗. They can be thought of as coordinates of the light-ray operator
in the conformal basis spanned by ONk.

Action of the conformal symmetry generators on ONk follows from (4.1), (4.2) i.e. it is fixed by
their transformation properties (scaling dimension and spin). For the light-ray operators, obviously,

i[D, [O(x;z1,z2)]] = ∑
Nk

ΨNk(z1,z2) i[D,ONk(x)] ,

i[Kµ , [O(x;z1,z2)]] = ∑
Nk

ΨNk(z1,z2) i[Kµ ,ONk(x)] , (4.4)

and similar for the other generators. Taking into account the expressions in (4.1), (4.2) one ob-
tains after some algebra (recall that the operator [O(x;z1,z2)] depends implicitly on the auxiliary
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vector n)

i[(nP)[O(x;z1,z2)]] =−S−[O(x;z1,z2)] , (4.5)

i[D, [O(x;z1,z2)]] =
(
(x∂x)+2S0−n∂n

)
[O(x;z1,z2)] , (4.6)

i
2
[Kµ , [O(x;z1,z2)]] =

(
nµS++2xµS0 + xµ(x∂x)−

1
2

x2
∂

µ

+nµ(x∂n)− xµ(n∂n)− (xn)∂ µ
n

)
[O(x;z1,z2)] , (4.7)

where the operators S+ and S0 are defined by their action on the coefficient functions of conformal
operators as follows

S0ΨNk(z1,z2) = ( jN + k)ΨNk(z1,z2) , S+ΨNk(z1,z2) = (k+1)(2 jN + k)ΨNk+1(z1,z2) (4.8)

and jN = (∆∗N +N)/2 is the conformal spin of the operator. For the special choice x = 0 in Eq. (4.7)
one obtains

i[Kµ , [O(z1,z2)]] = 2nµS+ [O(z1,z2)], i[D, [O(z1,z2)]] = (2S0− (n∂n))[O(z1,z2)] . (4.9)

This definition guarantees that the generators Sα satisfy the SL(2) commutation relations.
The expression (3.4) for the generator S0 follows directly from the definition (4.8), taking

into account that the polynomials ΨNk are eigenfunctions of the evolution kernel, H(a∗)ΨNk =

γN(a∗)ΨNk. Next, it follows from Eq. (4.7) that the correlation function of two nonlocal operators
defined with respect to different auxiliary vectors, n and n̄, [On(x = 0,z1,z2)] and [On̄(x,w1,w2)],
respectively, satisfies the following equation:(

2(nn̄)S(z)+ −
1
2

x2(n̄∂x)

)
〈[On(z1,z2)][On̄(x,w1,w2)]〉= 0 . (4.10)

The superscript S(z)+ indicates that it is a differential operator acting on z1,z2 coordinates and we
also assume that (xn̄) = (xn) = 0. The explicit expression for S+ can be derived from the conformal
Ward identity for the corresponding correlator

〈δ+SR [O
(n)](z) [O(n̄)](x,w)〉= 〈δ+[O(n)](z) [O(n̄)](x,w)〉+ 〈[O(n)](z)δ+[O

(n̄)](x,w)〉 , (4.11)

bringing it to the form (4.10). Here δ+ is the transformation generated by the generator Kn̄ = (n̄K)

and

δ+SR = 4ε

∫
ddx(xn̄)(LA +Lξ +Lghost)+2(d−2)n̄µ

∫
ddx
(

Z2
c c̄Dµc− 1

ξ
Aµ(∂A)

)
. (4.12)

Details of the calculation can be found in Refs. [11, 12]. We stress that considering the correlator
of two light-ray operators instead of the Green function of the light-ray operator with quark and an-
tiquark fields considerably simplifies the analysis. Indeed, the Green function is gauge-dependent
and does not transform in a proper way under conformal transformations. Another advantage is
that the last term in Eq. (4.12) which does not vanish in d = 4 dimension and explicitly breaks
conformal symmetry of QCD Lagrangian, drops out from the correlator of gauge-invariant objects
as it is reduced to a BRST variation.
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5. Two loop kernels

The two-loop kernel h(2)(α,β ) contains contributions of two color structures and a term pro-
portional to the QCD beta function,

h(2)(α,β ) = 8C2
Fh(2)1 (α,β )+4CFCAh(2)2 (α,β )+4b0CFh(2)3 (α,β ) . (5.1)

The noninvariant part of the kernels (5.1) can be restored from the commutator relation Eq. (3.7).

[S(0)+ ,H(2)] = [H(1),∆S(1)+ ] . (5.2)

Note that ∆S(1)+ (3.5) contains terms in b0 and CF . Hence the commutator [∆S(1)+ ,H(1)] contains
two color structures, b0CF and C2

F , respectively. It follows than that the kernel h(2)2 (α,β ) (5.1)
satisfies the homogeneous equation [S(0)+ ,H(2)

2 ] = 0, alias it is SL(2)-invariant and can be written as
a function of the conformal ratio, h(2)2 (α,β ) = h(2)2 (τ).

Going through the calculations one gets [12]

h(2)1 (α,β ) =−δ+(τ)
(

φ1(α)+φ1(β )
)
+ϕ1(α,β )+θ(τ̄)

[
2Li2(τ)+ ln2

τ̄ + lnτ− 1+ τ̄

τ
ln τ̄

]
+θ(−τ̄)

[
ln2(−τ̄/τ)− 2

τ
ln(−τ̄/τ)

]
+

(
−6ζ (3)+

1
3

π
2 +

21
8

)
δ (α)δ (β ) ,

h(2)2 (α,β ) =
1
3
(
π

2−4
)

δ+(τ)−2θ(τ̄)

[
Li2(τ)−Li2(1)+

1
2

ln2
τ̄− 1

τ
ln τ̄ +

5
3

]
−θ(−τ̄)

[
ln2(−τ̄/τ)− 2

τ
ln(−τ̄/τ)

]
+

(
6ζ (3)− 2

3
π

2 +
13
6

)
δ (α)δ (β ) ,

h(2)3 (α,β ) =−δ+(τ)

[
ln ᾱ + ln β̄ +

5
3

]
−θ(τ̄)

[
ln(1−α−β )+

11
3

]
+

13
12

δ (α)δ (β ) , (5.3)

where τ̄ = 1− τ , and the functions φ1(α) and ϕ1(α,β ) are given by the following expressions

φ1(α) =− ln ᾱ

[
3
2
− ln ᾱ +

1+ ᾱ

ᾱ
lnα

]
,

ϕ1(α,β ) =−θ(1− τ)
[1

2
ln2(1−α−β )+

1
2

ln2
ᾱ +

1
2

ln2
β̄ − lnα ln ᾱ− lnβ ln β̄

− 1
2

lnα− 1
2

lnβ +
ᾱ

α
ln ᾱ +

β̄

β
ln β̄

]
. (5.4)

6. Conclusion

Our result for the two-loop evolution kernels of flavor-nonsinglet operators in Eqs. (5.1), (5.3)
is equivalent to the corresponding evolution equation for GPDs obtained in Ref. [3] in momentum
space and has manifest SL(2)-symmetry properties. This feature presents the crucial advantage
of the light-ray operator formalism which makes this technique attractive for higher-order calcula-
tions. Exact conformal symmetry of QCD at the critical point is very helpful on intermediate steps
of the calculation as it provides one with algebraic group-theory methods to calculate the commu-
tators of integral operators that appear in Eqs. (3.7). Evolution equations for GPDs can be obtained
from our expressions by a Fourier transformation which is rather straightforward, cf. [22].
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