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1. Introduction

With the recent discovery of the Higgs boson [1] and first measurements of its properties, the
Standard Model (SM) has reached an unprecedented level of experimental confirmation. All free
parameters of the SM have been now measured directly, and the agreement with indirect predictions
from electroweak precision observables is highly non-trivial. A global electroweak SM fit including
direct and indirect observables gives a high p-value of about 20%, see e.g. Ref. [2]. For instance,
the direct measurements for the top-quark mass and W -boson mass are mt = 173.24± 0.81 GeV
[3] and MW = 80385±15 MeV [4], respectively, while the fit to precision data yields mt = 177.0±
2.1 GeV and MW = 80358±7 MeV, see also Fig. 1.

The electroweak precision fit uses inputs from a variety of sources, most notably the mea-
surement of the muon decay constant (which leads to the strongest indirect constraint on MW)
and properties of the Z-boson from measurements of e+e− collisions at

√
s≈MZ (which are very

sensitive to mt and the Higgs boson mass MH). These quantities have been measured with uncer-
tainties of O(0.1%) or less. To match this precision on the theory side, one- and two-loop radiative
corrections, as well as dominant higher-order contributions must be included.

Due to the efforts of several groups over many years, complete two-loop corrections are avail-
able for MW [5] and the effective leptonic weak mixing angle sin2

θ `
eff [6], which is extracted from

the Z-pole left-right and forward-backward asymmetries. For the Z-boson width (ΓZ) and branch-
ing ratios, and the hadronic pole cross-section σ0

had ≡ σ [e+e− → Z → hadrons], the O(ααs) [7]
and O(N f α

2) [8] corrections have been computed, where N f stands for “fermionic” contributions
from diagrams with at least one closed fermion loops, which are expected to be dominant compared
to the “bosonic” two-loop corrections. In addition, universal leading 3- and 4-loop corrections for
large values of mt, of O(αtα

2
s ), O(α2

t αs), O(α3
t ) and O(αtα

3
s ), are known for all aforementioned

observables [9]. Here the abbreviation αt = αm2
t has been used. As evident from Tab. 1, the theory

errors from missing higher-order corrections are safely below current experimental uncertainties.
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Figure 1: Comparison of direct determinations (green) of mt and MW with the indirect determination from
electroweak precision data before (gray) and after (blue) the Higgs discovery. From Ref. [2].
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MW ΓZ σ0
had Rb sin2

θ `
eff

Exp. error 15 MeV 2.3 MeV 37 pb 6.6×10−4 1.6×10−4

Theory error 4 MeV 0.5 MeV 6 pb 1.5×10−4 0.5×10−4

Table 1: Current experimental errors and theory uncertainties for the SM prediction of some of the most
important electroweak precision observables. Here Rb ≡ Γ[Z→ bb̄]/Γ[Z→ hadrons].

2. Z-boson width at two loops

As a concrete example for the electroweak two-loop corrections to electroweak precision ob-
servables, this section will discuss the calculation of the O(N f α

2) contribution to the (partial)
Z-boson width(s). The total Z-width is defined through the imaginary part of the complex pole of
the Z-boson propagator,

s0 = M2
Z− iMZΓZ. (2.1)

This definition leads to a Breit-Wigner function with constant width near the Z-pole, σ ∝

|s− s0|−2 = [(s−M2
Z)2 + M2

ZΓ2
Z]−1. Note that this differs from the Breit-Wigner function with

a running width used in the experimental analyses, so that one has to include a finite shift when
relating MZ and ΓZ to the reported measured values:

MZ = Mexp
Z −34.1 MeV, ΓZ = Γ

exp
Z −0.9 MeV. (2.2)

Expanding (2.1) up to next-to-next-to-leading order (NNLO) and using the power counting ΓZ ∼
O(α)MZ, the result for ΓZ can be written as [8]1

ΓZ =
1

MZ
ImΣZ(s0) =

1
MZ

[
ImΣZ

1+ReΣ′Z

]
s=M2

Z

+O(Γ3
Z), (2.3)

where ΣZ is the Z self-energy. Using the optical theorem, the imaginary part of the self-energy can
be related to the decay process Z→ f f̄ , resulting in

ΓZ = ∑
f

Γ f , Γ f =
N f

c MZ

12π

[
R f

V F f
V +R f

AF f
A

]
s=M2

Z
, F f

V ≈
|v f |2

1+ReΣ′Z
, F f

A ≈
|a f |2

1+ReΣ′Z
, (2.4)

where N f
c = 3(1) for quarks (leptons). Here the functions R f

V,A have been introduced, which capture
effects from final-state QED and QCD corrections. They are known up to O(α4

s ), O(ααs) and
O(α2) in the limit of massless fermions, while mass corrections are known up to three-loop order
[10]. The electroweak corrections are contained in Σ′Z and the effective Z f f̄ vector and axial-vector
couplings v f and a f . Note that v f and a f include contributions from photon-Z mixing. Eq. (2.4) is
accurate up to NNLO.

For the calculation of the fermionic electroweak O(α2) corrections, Feynman diagrams have
been generated with FeynArts 3.3 [11]. In addition to the diagrams for the Z → f f̄ vertex cor-
rections, one also needs two-loop self-energy diagrams for the on-shell renormalization [12]. In
the on-shell renormalization scheme used here, particle masses are defined through the (complex)

1Here a term ∝ ImΣ′′Z has been omitted, since ImΣ′′Z = 0 at leading order for massless final-state fermions.
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pole of the propagators. For the electroweak NNLO contributions, only MZ, MW, MH and mt are
taken non-zero, while all other fermion masses have been neglected (except for the final-state QED
and QCD corrections, where also non-vanishing bottom, charm and tau masses have been taken
into account). The electromagnetic coupling is renormalized in the Thomson limit, i.e. for zero
momentum exchange, while αs is defined in the MS scheme.

Two-loop integrals with a sub-loop self-energy bubble can be easily reduced to a small set
of master integrals using a generalization of the Passarino-Veltman method [13] and integration-
by-parts identities [14]. These master integrals can be evaluated numerically in terms of simple
one-dimensional integrations [15]

the k-integrations and one of the s-integrations an be performed and yieldT1:::N+2(pi;m21; : : : ;m2N+1;m2N+2)= B0(m2N+2;m2N ;m2N+1)T (1)(pi;m21; : : : ;m2N�1;m2N+2)� 12�i Z 1s0 ds�B0(s;m2N ;m2N+1)s �m2N+2 T (1)(pi;m21; : : : ;m2N�1; s) : (68)T (1) denotes a one-loop N-point funtion in whih s enters in the remaining one-dimensional integrationas a mass variable.A diagram with two four-verties leads to a result whih is similar to the remaining integration inp1 p2pN�1pN m1mN�1mNmN+1 ......ttttT1:::N+1(pi;m2i ) = 12�i 1Zs0 ds�B0(s;m2N ;m2N+1)�� �1k2 � s 1(k + p1)2 �m21 : : : 1(k + p1 + : : :+ pN�1)2 �m2N�1�= � 12�i 1Zs0 ds�B0(s;m2N ;m2N+1)T (1)(pi;m21; : : : ;m2N�1; s) : (69)4.2 ExamplesAn appliation of (69) to the London transport diagram leads toT123(p2;m21;m22;m23) = � 12�i 1Z(m2+m3)2ds�B0(s;m22;m23)B0(p2; s;m21) ; (70)a result whih would also follow from (5). In that ase a suitable subtration [6℄ isT123N(p2;m21;m22;m23) = T123(p2;m21;m22;m23)� T123(p2;m21; 0;m23) (71)�T123(p2; 0;m22;m23) + T123(p2; 0; 0;m23) :For T1234 one obtains from (68)T1234(p2;m21;m22;m23;m24) 17

=−2
∫

∞

(mN+mN+1)2
ds Im[B0(s,m2

N ,m2
N+1)] I

(1)(p1, ..., pN ;s,m2
1, ...,m

2
N−1),

where B0 is the usual one-loop two-point integral, while I(1)({pi};{m j}) is a general scalar one-
loop integral with momenta {pi} and masses {m j}.

For two-loop vertex integrals with a triangle sub-loop, a technique based on numerical inte-
gration over Feynman parameters has been used [16]. Before the numerical integral can be carried
out, potential divergences must be subtracted. The global ultraviolet (UV) divergence of an integral
I(2) =

∫
ddk1ddk2 G(k1,k2,{pi}) is extracted by the operation

I(2) =
∫

ddk1ddk2
[
G(k1,k2,{pi})−G(k1,k2,{0})

]
+
∫

ddk1ddk2 G(k1,k2,{0})≡ I(2)
gs + I(2)

glob.

(2.5)
Then I(2)

gs is free of global UV singularities, while I(2)
glob is a two-loop vacuum integral, which can

be solved analytically [17]. I(2)
gs may still contain sub-loop UV singularities. After introducing

Feynman parameters for the divergent sub-loop (assumed to be the k1 loop), shifting the loop
momentum, and appropriately canceling k1 between the numerators and denominator, the integral
has the form

I(2)
gs =

∫ 1

0
dx1 . . .dxm−1

∫
ddk1ddk2

[
C1

[k2
1−A]m

+
C2

[k2
1−A]m−1 + · · ·+ Cm−1

[k2
1−A]2

]
, (2.6)

where A and the Ci can depend on k2 but not k1. The sub-loop UV divergence is contained in the last
term ∝Cm−1 and can be removed with the subtraction term I(2)

sub =
∫ 1

0 dx1 . . .dxm−1
∫

ddk1ddk2
Cm−1

[k2
1−µ2]2 ,

where µ2 is a suitably chosen constant parameter. Since µ2 is constant, the k1 and Feynman param-
eter integration of I(2)

sub can be trivially performed analytically, whereas I(2)
gs − I(2)

sub is now UV-finite.
Infrared divergences can also be handled with suitable subtraction terms [16], but for the

present calculation a photon mass has been used instead, see Refs. [8, 18] for details.
After also introducing Feynman parameters for the k2 loop, the Feynman parameter integration

of the subtracted integral is performed numerically. In the presence of physical thresholds, the
integrand will in general contain additional singularities where the denominator term A vanishes.
These internal singularities are formally integrable but lead to difficulties for standard integration

4



P
o
S
(
L
L
2
0
1
4
)
0
5
0

Electroweak precision tests Ayres Freitas

algorithms. However, they can be avoided with a complex variable transformation [19]

xi = zi− iλ zi(1− zi)
∂A
∂xi

∣∣∣
~x=~z

, 0≤ zi ≤ 1, (2.7)

so that

A(~x) = A(~z)− iλ ∑
i

zi(1− zi)
(

∂A
∂xi

)2

~x=~z
+O(λ 2). (2.8)

For sufficiently small λ , one can see that A(~x) will never vanish as long as there is no point where
A(~z) = ∇A(~z) = 0 at the same time. More details of the calculation can be found in Ref. [8].

3. Z-boson width: Results

In the following, numerical results for the form factors F f
V,A from (2.4) will be presented. For

this purpose, the vector and axial-vector components of the electroweak one-loop and fermionic
two-loop corrections were combined with the O(ααs) contributions from Ref. [7], which also
had to be split into vector and axial-vector parts. Furthermore, the universal leading higher-order
corrections of O(αtα

2
s ), O(α2

t αs), O(α3
t ) and O(αtα

3
s ) [9] have been included. The results are

expressed in terms of the on-shell masses MZ, MH and mt, the MS strong coupling constant αs(MZ),
and the shift ∆α of the electromagnetic coupling between the scales q2 = 0 and M2

Z, ∆α = 1−
α(0)/α(M2

Z). Note that the W -mass is computed using the SM prediction for MW [5].
The results can be conveniently expressed in terms of a simple parametrization formula

F f
X = F0 +a1LH +a2L2

H +a3∆H +a4∆
2
H +a5∆t +a6∆

2
t +a7∆tLH

+a8∆αs +a9∆αsLH +a10∆αs∆t +a11∆α +a12∆Z,

(3.1)

LH = log
MH

125.7 GeV
, ∆H =

MH

125.7 GeV
−1, ∆t =

( mt

173.2 GeV

)2
−1,

∆αs =
αs(MZ)
0.1184

−1, ∆α =
∆α

0.059
−1, ∆Z =

MZ

91.1876 GeV
−1.

Table 2 shows the values of the coefficients obtained from a fit of (3.1) to the full result.
Results for the complete observables, i.e. the total and partial widths including the final state

radiation functions R f
V,A, have been presented elsewhere [8].

4. Outlook

Electroweak precision observables are a very useful tool for accurate indirect tests of the SM
and setting stringent constraints on new physics. At the current level of experimental precision,
they are sensitive to one- and two-loop and even leading higher-order effects. Nevertheless, due
to tremendous efforts by many groups, the error of the theoretical predictions within the SM has
been reduced comfortably below the experimental uncertainty for the most relevant quantities, see
Tab. 1. The LHC experiments are expected to provide interesting independent determinations of
MW and sin2

θ `
eff [20], but the overall experimental precision for these quantities will not improve

markedly.
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Form factor F0 a1 a2 a3 a4 a5 a6

F`
V [10−5] 19.84 −1.012 −0.1654 0.1467 −0.00440 7.449 1.47

F`
A [10−5] 3446.44 −3.2302 −2.4615 2.1482 −0.05666 25.856 −2.59

Fν
V,A [10−5] 3456.63 −3.2844 −2.4733 2.1561 −0.05674 26.075 −2.69

Fu,c
V [10−5] 505.88 −4.3145 −1.013 0.9632 −0.02295 23.31 −1.79

Fu,c
A [10−5] 3448.32 −3.2438 −2.4645 2.1502 −0.05668 25.982 −2.66

Fd,s
V [10−5] 1650.61 −5.0642 −1.7806 1.6318 −0.04038 29.384 −3.15

Fd,s
A [10−5] 3450.99 −3.2528 −2.4664 2.1514 −0.05669 25.824 −2.63

Fb
V [10−5] 1620.96 −4.7874 −1.7196 1.5915 −0.04005 −3.582 −1.97

Fb
A [10−5] 3408.18 −2.9546 −2.4005 2.1073 −0.05631 −21.79 −1.02

Form factor a7 a8 a9 a10 a11 a12 max. dev.

F`
V [10−5] −0.278 −0.13 −0.17 2.6 −42.7 1373 0.05

F`
A [10−5] 0.0010 −3.80 −0.44 7.06 −1.4 6915 0.07

Fν
V,A [10−5] −0.0005 −3.86 −0.44 7.06 −1.2 6943 0.07

Fu,c
V [10−5] −0.067 −3.88 −0.37 6.07 −145.2 5639 0.05

Fu,c
A [10−5] 0.0004 −4.79 −0.43 6.97 −1.3 6922 0.07

Fd,s
V [10−5] 0.028 −5.52 −0.45 7.55 −131.2 7491 0.07

Fd,s
A [10−5] 0.0036 −4.96 −0.43 6.97 −1.1 6927 0.07

Fb
V [10−5] 0.334 −1.28 −0.50 11.9 −130.6 7446 0.07

Fb
A [10−5] 0.340 0.96 −0.49 13.0 −1.7 6917 0.07

Table 2: Coefficients for the parametrization formula (3.1) for the Z f f̄ form factors. Within the ranges
70 GeV < MH < 1000 GeV, 165 GeV < mt < 190 GeV, αs = 0.1184±0.0050, ∆α = 0.0590±0.0005 and
MZ = 91.1876± 0.0084 GeV, the formula approximates the full result with maximal deviations given in
the last column. When restricting oneself to the range MH = 125.7± 2.5 GeV, the maximum deviation is
reduced by a factor of more than 5.

However, a future high-luminosity e+e− machine like ILC will substantially increase the ex-
perimental precision, thus posing a challenge for theorists to match this precision. In Table 3, the
expected ILC precision is compared with the current and projected theory uncertainty for several
observables. For the projection, it is assumed that the leading fermionic three-loop corrections of
order O(N2

f ααs), O(N f ααs), O(N3
f α3) and O(N2

f α3) will be computed, where N f indicates the
number of closed fermion loops. These contributions imply three-loop self-energies and three-
loop vertices with sub-loop bubbles. The remaining theory error is estimated by approximating the
perturbation series with a geometric series.

As evident from the table, it seems not preposterous to believe that the theory calculations can
achieve a level of precision comparable or better than the expected ILC precision. In fact, for most
quantities, the parametric error due to the uncertainty of input parameters will dominate over the
perturbative theory error.
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MW ΓZ Rb sin2
θ `

eff

ILC exp. error 3. . . 5 MeV ∼1 MeV 1.5×10−4 1.3×10−5

Current theory error 4 MeV 0.5 MeV 1.5×10−4 4.5×10−5

Projected theory error 1 MeV 0.2 MeV 0.5 . . .1×10−4 1.5×10−5

Parametric error for ILC 2.6 MeV 0.5 MeV < 10−5 2×10−5

Table 3: Projected experimental errors of ILC running at
√

s≈MZ and
√

s≈ 2MW [21] and current and ex-
pected future theory uncertainties for the SM prediction for several important electroweak precision observ-
ables. The future theory errors are estimated under the assumption that O(N2

f ααs), O(N f ααs), O(N3
f α3)

and O(N2
f α3) corrections will become available. The parametric error describes the uncertainty of the

SM prediction due to uncertainties of input parameters: δmt = 100 MeV, δαs = 0.001 (from ILC), and
δMZ = 2.1 MeV (from LEP).
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