
P
o
S
(
L
L
2
0
1
4
)
0
5
2

Non-planar Feynman integrals, Mellin-Barnes
representations, multiple sums

Johannes Blümleina, Ievgen Dubovyka, Janusz Gluza∗,b, Michał Ochmana,
Clemens G. Raaba, Tord Riemanna, Carsten Schneiderc

a Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
b Institute of Physics, University of Silesia, Uniwersytecka 4, PL-40007 Katowice, Poland
c Research Institute for Symbolic Computation, J. Kepler University Linz, A-4040 Linz, Austria

E-mails: johannes.bluemlein@desy.de, e.a.dubovyk@gmail.com,
janusz.gluza@us.edu.pl, michal.ochman@desy.de,
clemens.raab@desy.de, tord.riemann@desy.de, cschneid@risc.jku.at

The construction of Mellin-Barnes (MB) representations for non-planar Feynman diagrams and
the summation of multiple series derived from general MB representations are discussed. A basic
version of a new package AMBREv.3.0 is supplemented. The ultimate goal of this project is the
automatic evaluation of MB representations for multiloop scalar and tensor Feynman integrals
through infinite sums, preferably with analytic solutions. We shortly describe a strategy of further
algebraic summation.

Loops and Legs in Quantum Field Theory - LL 2014,
27 April - 2 May 2014
Weimar, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:johannes.bluemlein@desy.de
mailto:e.a.dubovyk@gmail.com
mailto:janusz.gluza@us.edu.pl
mailto:michal.ochman@desy.de
mailto:clemens.raab@desy.de
mailto:tord.riemann@desy.de
mailto:cschneid@risc.jku.at


P
o
S
(
L
L
2
0
1
4
)
0
5
2

Non-planar Feynman integrals, Mellin-Barnes representations, multiple sums Janusz Gluza

1. Introduction

There are many methods to calculate Feynman integrals, both numerically and analytically.
Here, we follow an attractive method, relying on changing integrals over Feynman parameters
into complex path integrals using the Mellin-Barnes (MB) identity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Several talks at this conference are devoted to this subject with different approaches. We refer to
[11, 12] where Schwinger’s α representation of Feynman integrals is used for their evaluation with
hyperlogarithms (package HyperInt), and to the numerical approach [13, 14] to the Feynman
parameter representation with sector decomposition (package SecDec).

Our starting point is the Feynman parameterization for a typical loop momentum integral of
the form

G(X) =
(−1)Nν Γ

(
Nν − d

2 L
)

N
∏
i=1

Γ(ni)

∫ N

∏
j=1

dx j xn j−1
j δ (1−

N

∑
i=1

xi)
U(x)Nν−d(L+1)/2

F(x)Nν−dL/2 . (1.1)

Here, ni is the power of inverse propagator i, Nν = ∑
N
i=1 ni, d = 4− 2ε , N the number of internal

lines and L the number of loops. The functions U and F are called graph or Symanzik polynomials
[15, 16, 17] and are composed of the Feynman parameters xi (U and F) and of the masses and
momenta of the propagators (F). The general MB relation can be applied to the polynomials U
and F :

1
(A1 + . . .+An)λ

=
1

Γ(λ )

1
(2πi)n−1

×
∫ i∞

−i∞
dz1 . . .dzn−1

n−1

∏
i=1

Azi
i A−λ−z1−...−zn−1

n ×
n−1

∏
i=1

Γ(−zi) Γ(λ + z1 + . . .+ zn−1). (1.2)

The result are multi-dimensional MB integrals.
The aim of our work is to make the procedure of solving these integrals automatic as much as

possible. In general we want to

1. construct MB representations;

2. change them into nested sums;

3. solve the sums numerically or analytically.

Here we discuss shortly some aspects related to these steps. Certainly, there are limitations for
the application of the MB method, whose complexity rises with

• the number L of the loops involved;

• the number of scales resulting from up to N different internal masses and E external massive
and/or off-shell particles;

• the number N of internal lines;

• the rank R in case of tensor integrals; R = 0 for scalar integrals.
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Figure 1: n-loop ladder diagram with k1, ...,kn internal and p1, ..., p4 external momenta.

There are several public software packages for the application of MB integrals in particle
physics calculations. On the MB Tools webpage [6] and on the AMBRE webpage [18] there are
codes related to the MB approach:

• MB by M. Czakon [7] and MBresolve by V. Smirnov [8] – for the analytic continuation of
Mellin-Barnes integrals in ε;

• MBasymptotics by M. Czakon ([6], 2005) – for the parametric expansions of Mellin-
Barnes integrals;

• barnesroutines by D. Kosower ([6], 2008) – for the automatic application of the first
and second Barnes lemmas;

• AMBREv.2.0 [9, 10, 18] – for the creation of (mostly planar) MB representations and later
calls of other tools;

• AMBREv.3.0 by I. Dubovyk, J. Gluza, K. Kajda, T. Riemann ([18], 2014) – for the creation
of non-planar MB representations up to two loops; the three-loop case is under development.

The AMBRE package generates multiloop scalar and tensor Feynman integrals. For planar cases, the
automatic derivation of MB integrals by AMBRE is optimal when using the so-called loop-by-loop
approach (LA). An example are the ladder diagrams shown in Fig. 1 and commented in Tab. 1.

In this contribution, we present a new branch of the AMBRE package, AMBREv.3.0 (July 2014).
This version may treat also non-planar structures with improved efficiency and may treat up to two
loops presently. A global approach (GA) may be chosen where F and U polynomials are changed
into MB representations with help of Eq. (1.2) just in one step. Alternatively, one may choose a
hybrid approach which treats planar subloops separately. The procedures are discussed in section
2. For more details on the LA and GA approaches, see [9]. In section 3 a few comments are given on
how MB integrals can be changed into nested sums, and how to calculate them. The paper finishes
with a summary.

2. Construction of Mellin-Barnes integrals

For non-planar diagrams the GA approach is applied. Further, we use the Cheng–Wu theorem
[16, 19] which states that Eq. (1.1) holds also with the modified δ -function

δ

(
∑
i∈Ω

xi−1

)
, (2.1)
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p3

p4

p1 k1 + k2 + p1 + p2 k1 − p3

p2

k1 + k2 k2

k2 − p4
k1

k1 + k2 + p2

Figure 2: The non-planar massless double box.

where Ω is an arbitrary subset of the lines 1, . . . ,L, when the integration over the rest of the vari-
ables, i.e. for i /∈Ω, is extended to the integration from zero to infinity. One can prove this theorem
in a simple way starting from the α-representation using

1 =

∞∫
0

dλ

λ
δ

(
1− 1

λ

N

∑
i=1

αi

)
⇔ 1 =

∞∫
0

dλ

λ
δ

(
1− 1

λ
∑
i∈Ω

αi

)
(2.2)

and changing variables from αi to αi = λxi as shown above.
Let us see how this works in the case of the non-planar massless two-loop box, Fig. 2. This

integral was first considered in [5] and the Symanzik polynomials are:

U(x) = (x1 + x6)(x2 + x7)+(x3 + x4 + x5)(x1 + x2 + x6 + x7), (2.3)

F(x) = −t x1x4x7−u x2x4x6− s x1x2x5− s x3x6x7− s x3x5(x1 + x2 + x6 + x7). (2.4)

The factorizations in U and F are connected with a proper collection of Feynman parameters
in front of the variables k1,k2, as shown schematically in Fig. 3. Next we will apply the Cheng-Wu
theorem. Then the integral becomes, after introduction of the x variables:

BNP
7 =

(−1)Nν Γ(Nν −d)
Γ(n1) . . .Γ(n7)

∞∫
0

dx3dx4dx5

1∫
0

dx1dx2dx6dx7

N

∏
j=1

xn j−1
j δ [1− (x1 + x2 + x6 + x7)]

× ((x1 + x6)(x2 + x7)+ x3 + x4 + x5)
Nν− 3d

2

(−t x1x4x7−u x2x4x6− s x1x2x5− s x3x6x7− s x3x5)Nν−d , (2.5)

Dimensions of Massless cases Massive cases
planar ladder MB integrals
Number of loops (L) 1 2 3 4 1 2 3 4
No Barnes First Lemma (BFL) 1 4 7 10 3 8 13 18
With BFL 1 4 7 10 2 (1+1) 6 (4+2) 10 (7+3) 14 (10+4)

Table 1: Optimal results for ladder diagrams defined in Fig. 1: Dim(massive case) = Dim(massless case)+
#loops.
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and after resolving part of the F(x) by Mellin-Barnes integrals:

BNP
7 =

(−1)Nν

Γ(n1) . . .Γ(n7)

i∞∫
−i∞

dz1 . . .dz4

∫
dx1 . . .dx7

N

∏
j=1

xn j−1
j δ [1− (x1 + x2 + x6 + x7)]

× (−s)−Nν+d−z2−z3(−t)z2(−u)z3

× Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(Nν −d + z1 + z2 + z3 + z4)

× x−Nν+d−z1−z2−z3
1 xz2+z3

2 x3
−Nν+d−z2−z3−z4x4

z1+z3x5
z2+z4xz1+z2

6 xz3+z4
7

× [x3 + x4 + x5 +(x1 + x6)(x2 + x7)]
Nν− 3d

2 . (2.6)

Now we perform the integrations over Feynman parameters xi. In particular, x3,x4,x5 can rather be
called Cheng-Wu variables, for which we may use the Beta-function:

∞∫
0

dx xN1(x+A)N2 =
A1+N1+N2Γ(1+N1)Γ(−1−N1−N2)

Γ(−N2)
. (2.7)

This, and

1∫
0

∏
i

dxix
Mi−1
i δ (1−∑

i
xi) =

∏i Γ(Mi)

Γ(∑i Mi)
(2.8)

leads finally to the 4-dimensional Mellin-Barnes representation, corresponding, up to some shifts
of variables, to Eq. (8) of [5]:

BNP
7 =

(−1)Nν

Γ(n1) . . .Γ(n7)

i∞∫
−i∞

dz1 . . .dz4(−s)4−2ε−Nν−z23(−t)z3(−u)z2 (2.9)

× Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(2− ε−n45)Γ(2− ε−n67)

Γ(4−2ε−n4567)Γ(n45 + z1234)Γ(n67 + z1234)Γ(6−3ε−Nν)

× Γ(n2 + z23)Γ(n4 + z24)Γ(n5 + z13)Γ(n6 + z34)Γ(n7 + z12)Γ
3(−2+ ε +n4567 + z1234)

× Γ(4−2ε−n124567− z123)Γ(4−2ε−n234567− z234)Γ(−4+2ε +Nν + z1234),

with notations zi... j...k = zi + . . .+ z j + . . .+ zk and ni... j...k = ni + . . .+n j + . . .+nk.

k1
2x1 + k2

2x2 + (k1+k2)2x3 + (k1+k2+p2)2x4 + (k1+k2+p1+p2)2x5 + (k1-p3)2x6 + (k2-p4)2x7

(x1 + x6)(x2 + x7) + (x3 + x4 + x5)(x1 + x2 + x6 + x7)

Figure 3: Efficient factorization scheme for the U polynomial.
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p1

p2

p4

p3

k1 k2 k3

k1 + p1

k1 + p1 + p2 k2 + p1 + p2 k2 − k3 + p1 + p2 + p4

k2 − k3
p4 − k3

k1 − k2

Figure 4: Hybrid method: first F and U polynomials over the k1-subloop are worked out (planar subgraph),
then {k2,k3} are integrated over (non-planar subgraph).

In the new version of the AMBRE package, AMBREv.3.0 [20], the procedure is applied prop-
erly in an automatic way. The corresponding Mathematica sample file MB_GA_2loopNP_-

massless.nb with a derivation of Eq. (2.10) can be found at [18].

In the same way we can use the Cheng-Wu theorem for massless non-planar 3-loop diagrams,
e.g. for that shown in Fig. 4. Here we prefer to use a hybrid method. In a first stage, the planar
subloop over k1 is considered and the corresponding F and U polynomials are changed into MB in-
tegrals. Next the non-planar subloop with momenta k2,k3 is considered using the GA approach for
non-planar diagrams. For the planarity identification, i.e. the check whether a diagram is planar or
not, the Mathematica package PlanarityTest v.1.1 [21] is used [22]. An example for the hy-
brid method can be found at the webpage [18], as file MB_hybrid_3loopNP_massless.nb.

In Tables 2 and 3, the numbers of dimensions of the Mellin-Barnes representation for the
massive 3-loop cases are shown for the loop-by-loop approach (LA) and for the general approach
(GA), respectively. An efficient and satisfactory way to decrease them has not been found so far.
More details on the new implementations in the AMBRE package will be described in a forthcoming
paper.

3. Towards summation of iterated integrals

In a second part of our project of developing automatic tools for deriving and solving Mellin-

Massless case Massive case

2-loop 3-loop 2-loop 3-loop
7 10 11 16
6 9 8 12

Table 2: Mellin-Barnes integrals derived by AMBRE. The loop-by-loop approach (LA) is applied: dimen-
sions of some 2→ 2 non–planar topologies before and after applying Barnes’ first Lemma. The 2-loop
topology corresponds to Fig. 2, while the 3-loop topology corresponds to Fig. 4. Massive case means that
the horizontal lines in Figs. 2 and 4 are massive.
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Massless case Massive case

2-loop 3-loop 2-loop 3-loop
4 7 13 18
4 7 11 15

Table 3: Mellin-Barnes integrals derived by AMBRE. The general approach (GA) is applied. All notations
are as in Table 2.

Barnes integrals we explore the general case of deriving multiple sums of residues for Feynman
integrals, with the idea then to apply algebraic summation techniques like those developed at the
Research Institute for Symbolic Computation (RISC) [23]. As a first step we prepared an appro-
priate Mathematica package, MBsums v.0.9 [24].

In the approach to Feynman integrals advocated here, the MB representations can be cast in a
general form:

1
(2πi)r

i∞∫
−i∞

. . .

i∞∫
−i∞

r
Π
i
dzi F(Z,X ,~n,ε)

Π
j

G j(N j)

Π
k

Gk(Nk)
. (3.1)

The integral ranges over r complex variables zi ∈ Z, and the integration path has to be properly
chosen. The function F depends on kinematical parameters like s, t,u, which are derived from the
scalar invariants of the problem, and on internal masses; they are represented by X . The indices of
the propagators ni constitute~n = {n1, . . . ,nN}, and the dimensional regulator is ε = 2−D/2.

In practice F is a product of powers of dimensionless parameters Xk, with exponents being
linear combinations of zi,ni and ε:

F ∼∏
k

X∑i, j(αizi+β jn j+γε)

k , (3.2)

where the coefficients αi,β j,γ are real, αi,β j,γ ∈R, and the Xk are composed of ratios of invariants
and masses, e.g. Xk ∈ { s

t ,
m2

s , ...}. The Γ-functions Gk(Nk) in Eq. (3.1) have arguments similar to
the exponents occurring in F , Nk = ∑i, j(αizi +β jn j +δε).

The point is how to evaluate the integral in Eq. (3.1) exactly or in some approximation, ana-
lytically or numerically? Assuming the kinematics to be euclidean or minkowskian, allowing for
arbitrary numerics or assuming some small parameters in the set X (see e.g. [25]).

A combined use of AMBRE and MB allows to derive a collection of Mellin-Barnes representa-
tions for scalar or tensor Feynman integrals, already regulated in the dimension D = 4−2ε .

Least problems are faced when seeking some numerical answers for euclidean kinematics. A
combined use of AMBRE and MB with a numerical integration package often is applicable. For
massless problems, one or the other more or less systematic approach towards analytical solutions
is known [26, 27, 28, 11].

For massive, non-planar Feynman integrals however, it is nearly impossible to find complete
analytic solutions. Only one of the problems is that MB integrals start to be truly multidimensional.

An immediate method is changing the regulated MB integrals into (usually) infinite series by
closing the integration contours in the multi-dimensional complex plane and calculating the se-

7
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quence of residues. Depending on closing contours to the left or right, convergent infinite series
can be obtained which might be suitable for further processing. However, the choice of proper
contours depends not only on the general features of the Feynman integral, but also on the values
of kinematical parameters. Let us look at the simple one-dimensional integral

i∞−1/2∫
−i∞−1/2

dz1(−1/s)z1
Γ[−z1]

3Γ[1+ z1]

Γ[−2z1]
(3.3)

which corresponds (up to a factor) to the coefficient of the 1/ε term in the expansion of the massive
QED box function. It might look convergent for e.g. s = −3 when closing the z1 contour to the
right and taking residues, but in fact the Gamma functions of the integrand change the sum into a
chain of alternating and increasing numbers. The integral converges above the threshold, |s|> 4, if
the contour is closed to the right.

The input function of the Mathematica package MBsums is one of the two following:

MBIntToSum[int,{},contours], (3.4)

MBIntToSum[int,kinematics,contours]. (3.5)

Here int is the expression to be evaluated (an output from AMBRE and MB, with or without a
dependence on ε). The list contours is connected with choices of (i) the order of integrations,
and (ii) closing integration contours (to the left (L) or to the right (R)). If the list of kinematics
is not empty, the list of contours will be automatically changed by MBsums in order to achieve
numerical convergence at the specified kinematical point. For instance, for a two dimensional MB
integral which emerges in some massive cases, we have:

int = MBint[((-x)^(z1 - z2) Gamma[1 - z1] Gamma[-z1] (3.6)

Gamma[z1] Gamma[1 + z1] Gamma[1 + z1 - z2]^2

Gamma[-z2] Gamma[-z1 + z2])/Gamma[2 + z1 - 2 z2],

{{eps -> 0}, {z1 -> -(13/32), z2 -> -(5/32)}}].

The corresponding function call might be:

MBIntToSum[int,{x->-1/2},{z2 -> L, z1 -> L}]. (3.7)

In this case the output is:

{{((-1)^(-n1 - 2 n2) (-x)^n1 n1! (-1 + n1 + n2)! (3.8)

(HarmonicNumber[-1 + n1 + n2]- HarmonicNumber[1 + 2 n1 + n2]))

/(1 + 2 n1 + n2)!, n1 >= 0 && n2 >= 1, {n1, n2}}}.

This expression represents a double sum in x = −s/m2, to be summed over non-negative n1 and
n2>0. For details see also the sample file LL2014-MBsums.nb at [24].

Here the situation is relatively simple, but more general conditions are possible, e.g.: n1

>= 0 && n2 >= 0 && n1 > n2. Certainly, for higher dimensional integrals, the multiple

8
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series will be much more involved, as far as conditional statements for the counting parameters ni

are concerned. For a D-dimensional multiple integral, the list contours can be given in D!2D

different ways, depending on the integration order and on the direction of closing the contours.
In the above example, there are eight possible versions. One may try them out and will observe
final expressions of rather different complexity; the most efficient one has been shown here. We
have no recipe to optimize the program properly in this respect and leave this to the user. Another
tricky point for programming was the proper taking into account of multiple residues arising from
singularities of several Gamma functions (and their derivatives) at certain values of the summation
variables.

After getting proper multiple series, one may proceed with their summation, using advanced
summation technologies [29, 30, 31, 32, 33, 34, 35, 36, 37] as encoded in the packages Sigma
[38, 39], EvaluateMultiSums, and SumProduction [40, 41, 42].

In fact, compared to the derivation of multiple series, which is at least in principle straightfor-
ward, the summation is the much more involved part of the problem. In an ideal world, one has
a summation theory at hand which has been solving the summation problem already in generality,
and which is made applicable in a computer algebra package.

In our real world, usually we do not have such a theory and/or package.
There are simple cases with known solutions. One of them is the integral in Eq. (3.3). The

corresponding infinite sum may be done just by Mathematica’s built-in function Sum, but also with
available packages [43, 44, 45, 46].

In our study of planar massive 2-loop box integrals for Bhabha scattering [25], we could sum
up all the infinite sums by XSUMMER [26] after expanding in the small parameter m2

e/s; the
problem became low-dimensional (in fact: factorized into one-dimensional sums) and was solved
by simple polylogarithmic functions. In the famous cases of solving the planar and non-planar
massless QED double boxes, as well as the planar massive one [47], the authors were able to sum
up their expressions until the constant term by dedicated handlings. For the non-planar massive
double box, this was already impossible [48].

We do not discuss here some additional numerical treatments. One can try:

1. Write the sum in terms of nested sums using the Mathematica package Sigma [42].

2. Exploit the structure of the sums by recursively applying rewrite rules to generate iterated
integrals; see the talk by C. Raab at this conference, [49, 50].

3. Simplify the result to a canonical form, e.g. by using the Mathematica package
HarmonicSums [51, 52, 53, 54].

More specifically, the aim is to rewrite infinite sums in terms of iterated integrals

∞

∑
n=0

f (n)xn → h0(x)
∫ x

0
dt1h1(t1) . . .

∫ tk−1

0
dtkhk(tk) (3.9)

over a certain alphabet of integrands, which occur in course of a systematic conversion, as e.g.{
1

t−a
,

1
(t−a)

√
t−b

,
1√

t−b
√

t− c
,

1
(t−a)

√
t−b
√

t− c

}
, (3.10)
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with a,b,c ∈ R.
For instance, in the case of the MB integral in Eq. (3.6), we have

∞

∑
n2=0

∞

∑
n1=0

n2!(n1 +n2)!
(n1 +2n2 +2)!

(S1(n1 +n2)−S1(n1 +2n2 +2))xn2 , (3.11)

with S1(N) = ∑
N
k=1(1/k) the harmonic sum.

So, the steps to be applied are:

1. Compute the inner sum using Sigma [42]:
∞

∑
n2=0

S1(n2)−S1(2n2 +1)
(n2 +1)(2n2 +1)

(2n2
n2

)xn2 . (3.12)

2. Transform the result algorithmically to iterated integrals

1
x

∫ x

0

dt1√
t1
√

4− t1

∫ t1

0

dt2√
t2
√

4− t2

(
−2+

∫ t2

0

dt3
t3/2
3
√

4− t3

∫ t3

0

t4dt4√
t4
√

4− t4

)
. (3.13)

3. Convert the integrals to normal form using integrands of the form (3.10) only,

−1
x

∫ x

0

dt1√
t1
√

4− t1

∫ t1

0

dt2
t2

∫ t2

0

dt3√
t3
√

4− t3
. (3.14)

4. In the present simple case one may remove square roots by the transformation x = − (1−y)2

y ,
see e.g. [55], rewrite the result by HarmonicSums [51, 52, 53, 54], and express the final
harmonic polylogarithms [56] in terms of the classical polylogarithms

y
(1− y)2

(
4ζ3 +2ζ2 ln(y)+

ln(y)3

6
+2ln(y)Li2(y)−4Li3(y)

)
. (3.15)

In general a much wider class of iterated integrals will occur, see e.g. [50, 57].
We are far from a stage where we might say that a summation procedure exists or where an

automatic procedure would apply. It is even unknown in which kind of function space the result of
a multiple sum might be found.

But we see from the more developed method of differential equations for solving Feynman
integrals that the research field is promising.

4. Summary

The MB approach for the calculation of Feynman diagrams relies on an individual approach
to single multi-dimensional complex contour integrals. There are tools which help to solve them,
though still not general enough for the massive cases we are interested in. We reported here on
some progress in constructing MB representations with a new version of the AMBRE package, being
better suited for non-planar Feynman diagrams, and on progress in changing them into suitable
multiple sums, which might be further studied aiming at analytic solutions. At the moment the
main concern in our investigations focuses on systematic solutions of two- and three-dimensional
planar and non-planar MB integrals corresponding to massive Feynman integrals. Using a specific,
relatively simple case of a double sum arising from a massless configuration, we sketched the
subsequent algebraic treatment with algorithms of summation theory.
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