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We introduce a new set of identities, dubbed Schouten identities, valid for Master Integrals in
a fixed integer number of dimensions. We describe in detail how such identities can be used in
order to simplify the differential equations for the four master integrals of the two-loop massive
sunrise graph.
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1. Introduction

The Feynman integrals associated to the two-loop loop self-mass Feynman graph of Fig.(1),
usually referred to as sunrise, have been widely studied in the literature within the framework of
the integration by parts identities [1, 2], and it is by now well known that they can be expressed
in terms of four Master Integrals (MIs), [3], which satisfy a system of four first-order coupled
differential equations, [4] (equivalent to a single fourth-order differential equation for any of the
Master Integrals).
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Figure 1: The two-loop sunrise.

In the Euclidean kinematics (so that p2 is positive when spacelike) the MIs can be chosen as
follows:

S(d; p2) =
∫

Ddq1D
dq2

1
D1D2D3

,

S1(d; p2) =− d
dm2

1
S(d; p2) =

∫
Ddq1D

dq2
1

D2
1D2D3

,

S2(d; p2) =− d
dm2

2
S(d; p2) =

∫
Ddq1D

dq2
1

D1D2
2D3

,

S3(d; p2) =− d
dm2

3
S(d; p2) =

∫
Ddq1D

dq2
1

D1D2D2
3
. (1.1)

The propagators are

D1 = q2
1 +m2

1 , D2 = q2
2 +m2

2 , D3 = (p−q1−q2)
2 +m2

3 , (1.2)

and we define the loop integration measure as:∫
Ddq =

1
C(d)

∫ ddq
(2π)d−2 , (1.3)

with

C(d) = (4π)(4−d)/2
Γ

(
3− d

2

)
. (1.4)

With that definition the “double" tadpole reads

T12(d) = T (d;m1,m2) =
∫

Ddq1D
dq2

1
D1D2

=
(m1 m2)

d−2

(d−2)2(d−4)2 , (1.5)

together with the similarly defined T13(d) = T (d;m1,m3), T23(d) = T (d;m2,m3).
It has been shown [5], by using algebraic geometry arguments, that similarly to the equal mass

case studied in detail in [6], in d = 2 dimensions, the full scalar amplitude S(d; p2) satisfies a
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second-order differential equation. The equation was then solved in [7] by suitably extending the
method of [6]. Note that the analytic solution of the second-order differential equation is equivalent
to the analytic knowledge of two (of the four) Master Integrals of the sunrise with different masses.
Finally it has been recently shown that the finite piece of the scalar amplitude in d = 2 can be
expressed in terms of the newly introduced Elliptic polylogarithms [8, 9].

The problem of how to extend these results up to arbitrary orders in (d−4), and in general, of
how to systematically simplify the system of four coupled differential equations in order to obtain,
in d = 2, the second order equation derived in [5], remains. To this end in [10] we introduced
a family of particular polynomials in the scalar products of the vectors occurring in the Feynman
integrals, dubbed Schouten polynomials, which have the property of vanishing at some fixed integer
value of the dimension d. By using those polynomials one can introduce an ad hoc set of amplitudes
which vanish in a non trivial way at that value of d (say at d = N for definiteness). If those new
amplitudes are expressed in terms of the “conventional” Master Integrals, their vanishing gives a
set of relations between the latter, valid at d = N, which we call Schouten identities. One can then
introduce a new set of Master Integrals including some of the independent amplitudes vanishing at
d = N, write the system of differential equations satisfied by the new set of Master Integrals and
expand them recursively in powers of (d−N) around d = N. The newly system of equations takes
then a simpler block structure around d = N.

The pattern is very general, and applies in principle to the integrals of any Feynman graph.
Working out explicitly the case of the sunrise amplitudes at d = 2 with different masses, one finds
the existence of two independent Schouten identities, i.e. of two independent relations between
the usual Master Integrals. This indicates that two of the four MIs are not independent in d = 2
and therefore two out of the four differential equations can be decoupled in this limit. The other
two equations remain coupled and, at order zero in d = 2, give rise to the second-order differental
equation found in [5]. At first-order in (d−2) we find in particular two relatively simple equations
for the first terms of the expansion of the two new MIs, in which the zeroth-orders of the two
“conventional” MIs appear as non homogeneous known terms. This pattern can in principle be
iterated up to any order in (d − 2). One can finally move from d ≈ 2 to the physically more
interesting d ≈ 4 case by means of the Tarasov-Lee shifting relations [11, 12]; it is found that for
obtaining the zeroth-order term in (d−4) of all the four MIs (of the old or of the new set) at d ≈ 4
one needs, besides the zeroth-order term in (d−2) of the two “old” MIs at d ≈ 2, also the first term
in (d−2) of the new MIs [10].

2. Schouten identities for Master Integrals

As it is well known, in any integer number of dimensions d = N one cannot have more than N
linearly independent vectors. This piece of information can be used to derive new identities among
MIs. Let us consider 2 linearly independent vectors aµ ,bµ in d = 2 dimensions. Consider now the
quantity

ε(a,b) = εµν aµ bν , (2.1)

where εµν is the Levi-Civita tensor with two indices, with ε11 = ε22 = 0 and ε12 = −ε21 = 1. By
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squaring Eq.(2.1) we get at once

ε
2(a,b) = a2b2− (a ·b)2 . (2.2)

So far all quantities are defined strictly in d = 2 dimensions. As it is obvious by its very
definition, if the dimension d takes any non-vanishing integer value smaller than 2, the r.h.s of
equation (2.1) vanishes, and so does the r.h.s of (2.2). We proceed then defining the Schouten
polynomial P2(d;a,b) as

P2(d;a,b) = a2b2− (a ·b)2 , (2.3)

where now all quantities are assumed to be defined in d-continuous dimensions. By its very defi-
nition the Schouten polynomial P2 vanishes for d < 2:

P2(1;a,b) = 0 .

Following the very same procedure, given any triplet of vectors aµ ,bµ ,cµ defined in d = 3
dimensions, we consider the quantity

ε(a,b,c) = εµνρ aµbνcρ , with ε123 = 1 , (2.4)

and evaluate its square as

ε(a,b,c)2 = a2b2c2−a2(b · c)2−b2(a · c)2− c2(a ·b)2 +2(a ·b)(b · c)(a · c) , (2.5)

where, again, all quantities are to be thought for the moment strictly in d = 3 dimensions. We
define then the Schouten polynomial P3(d;a,b,c) as:

P3(d;a,b,c) = a2b2c2−a2(b · c)2−b2(a · c)2− c2(a ·b)2 +2(a ·b)(b · c)(a · c) , (2.6)

where now the three vectors aµ , bµ , cµ are to be interpreted as d-dimensional vectors. By con-
struction, P3(d;a,b,c) vanishes at d = 1 and d = 2 dimensions

P3(1;a,b,c) = P3(2;a,b,c) = 0 . (2.7)

Needless to say, the procedure can be easily iterated in any integer number of dimensions N,
provided that one has N independent vectors to start with. We note that the Schouten polynomial
generated by a given set of vectors is nothing by their Gram determinant.

Obviously in physical applications we are interested mainly in the d→ 4 limit. In this sense
one would naively expect that the only relevant Schouten polynomials are those which vanish in
d = 1,2,3,4 dimensions, and so built up starting from 5 different vectors. Nevertheless, by means
of the Tarasov-Lee dimensional shifts [11, 12], one can reach d = 4 from any different, even value
of d. In this sense the d = 1 Schouten polynomials (2.3), easily established for any Feynman
amplitude in which at least 2 vectors occur, are of no practical use. The next simplest example are
the Schouten polynomials in d = 2 (2.6), which can in turn be built up for any Feynman amplitude
with at least 3 independent vectors.
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3. The Schouten identities for the two-loop massive sunrise graph

Let us consider now the two-loop massive sunrise graph introduced above. The latter depends
on three momenta p,q1,q2, we can therefore introduce the Schouten amplitudes defined, for arbi-
trary d, as

Z(d;n1,n2,n3, p2) =
∫

Ddq1D
dq2

P3(d; p,q1,q2)

Dn1
1 Dn2

2 Dn3
3

, (3.1)

where the ni are positive integer numbers. The convergence of the integrals, for a given value of
d, depends of course on the powers ni, as the Schouten polynomial in the numerator contributes
always with four powers of the loop momenta q1 and q2. We are interested here in the d = 2 case.
If the Schouten amplitude is convergent at d = 2, due to Eq.(2.7), it is also vanishing at d = 2, i.e.
Z(2;n1,n2,n3, p2) = 0. Note that in the massive case all the integrals we are considering are i.r.
finite, therefore the divergences can only be of u.v. nature. A generalization to the case where i.r.
are present is currently under study.

On the other hand, the Schouten amplitudes Eq.(3.1) can be reduced in terms of the “conven-
tional” MIs given in Eq.s(1.1), and using Z(2;n1,n2,n3, p2) = 0 one can study their limiting values
as d→ 2. One finds in particular that the Schouten amplitudes which provide non-trivial relations
among the conventional MIs as d→ 2 are those with the minimal values of the ni needed to ensure
the convergence. One finds for example:

Z2(d; p2) = Z(d;2,1,2, p2)

=
(d−1)

12
[
−(d−2)p2 +(d−3)(m2

1−2m2
2 +m2

3)
]

S(d; p2)

+
(d−1)

12
(p2 +m2

1−3m2
2 +3m2

3) m2
1S1(d, p2)

− (d−1)
6

(p2 +m2
2) m2

2S2(d; p2)

+
(d−1)

12
(p2 +3m2

1−3m2
2 +m2

3) m2
3S3(d; p2)

+
(d−1)(d−2)

24
[T (d;m1,m2)−2T (d;m1,m3)+T (d;m2,m3)] , (3.2)

and similarly for the other two permutations Z1(d; p2)=Z(d;1,2,2) and Z3(d; p2)=Z(d;2,2,1, p2).
Increasing the powers of the denominators one finds instead:

Z(d;2,2,2, p2) =−(d−1)(d−2)
4

×
[
(d−3)S(d; p2)+m2

1S1(d; p2)+m2
2S2(d; p2)+m2

3S3(d; p2)
]
, (3.3)

which obviously does not give any information as d→ 2.

On the other hand, studying this limit for one of the Zi, say the Z2(d; p2) defined above, one
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finds:

Z2(2; p2) =− 1
12

(m2
1−2m2

2 +m2
3)S(2; p2)

+
1

12
(p2 +m2

1−3m2
2 +3m2

3) m2
1S1(2, p2)

− 1
6
(p2 +m2

2) m2
2S2(2; p2)

+
1

12
(p2 +3m2

1−3m2
2 +m2

3) m2
3S3(2; p2)

+
1

96
ln

m2
2

m1m3

= 0 , (3.4)

and similarly for Z1(d; p2) and Z3(d; p2), which can be found in [10] and we don’t write here for
the sake of brevity. Summing the relations for the three Zi(d; p2) one finds

Z1(d; p2)+Z2(d; p2)+Z3(d; p2) =−(d−1)(d−2)
4

p2 S(d; p2) , (3.5)

which proves that in the limit d → 2 only two of the Zi are linearly independent. This suggests
to take as new MIs two of the conventional MIs plus two independent Schouten amplitudes. A
possible choice is

S(d; p2) , S1(d; p2) , Z2(d; p2) , Z3(d; p2) . (3.6)

4. The differential equations in the new basis

The next step consists in deriving a new set of differential equations for the basis defined in
Eq. (3.6). The explicit expressions are cumbersome and we refer to [10] for details, while we are
interested here only in the general structure of these equations. They can be written as

d
d p2 S(d; p2) =C00(d; p2)S(d; p2)+C01(d; p2)S1(d; p2)

+C02(d; p2)Z2(d; p2)+C03(d; p2)Z3(d; p2)

+D01(d; p2)T12(d)+D02(d; p2)T13(d)

+D03(d; p2)T23(d) , (4.1)

d
d p2 S1(d; p2) =C10(d; p2)S(d; p2)+C11(d; p2)S1(d; p2)

+C12(d; p2)Z2(d; p2)+C13(d; p2)Z3(d; p2)

+D11(d; p2)T12(d)+D12(d; p2)T13(d)

+D13(d; p2)T23(d) , (4.2)
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d
d p2 Z2(d; p2) = (d−2)

[
C20(d; p2)S(d; p2)+C21(d; p2)S1(d; p2)

+C22(d; p2)Z2(d; p2)+C23(d; p2)Z3(d; p2)

+D21(d; p2)T12(d)+D22(d; p2)T13(d)

+D23(d; p2)T23(d)
]
, (4.3)

d
d p2 Z3(d; p2) = (d−2)

[
C30(d; p2)S(d; p2)+C31(d; p2)S1(d; p2)

+C32(d; p2)Z2(d; p2)+C33(d; p2)Z3(d; p2)

+D31(d; p2)T12(d)+D32(d; p2)T13(d)

+D33(d; p2)T23(d)
]
. (4.4)

Recall that all coefficients Ci j(d; p2) and Di j(d; p2) depend also on the three masses mi, i =
1,2,3. Note moreover that they are all rational functions and do not develop any pole as d → 2.
Another crucial point is that Eq.s (4.3, 4.4) both have an explicit factor (d−2) in the r.h.s, which
implies that, order by order in (d−2), these equations are decoupled from the corresponding order
of Eq.s (4.1, 4.2) and can be therefore, at least in principle, solved by quadrature. Finally, since
Z2(2; p2) = Z3(2; p2) = 0, then at order zero in (d−2) Eq.s (4.1, 4.2) form a system of two coupled
differential equations, which can be rephrased as a second-order differential equation for S(2; p2)

or, equivalently, for S1(2; p2). Upon doing this one recovers for S(2; p2) precisely the differential
equation obtained in [5]. The solution of this equation can be used to determine S1(2; p2). These
can then be plugged into Eq.s (4.3, 4.4) giving two decoupled first-order differential equations for
the first orders in (d−2) of the two new MIs, Z(1)

2 (2; p2), Z(1)
3 (2; p2). This procedure can be iterated

in principle up to any order [10].

5. Conclusions and outlook

We showed how the recently introduced Schouten identities can be applied to the case of the
massive two-loop sunrise graph with different masses, finding that in d = 2 dimensions only two of
the four Master Integrals (MIs) are actually independent, so that the other two can be expressed as
suitable linear combinations of the latter. In the general case of arbitrary dimension d and different
masses, the four MIs are known to fulfil a system of four first-order coupled differential equations
in the external momentum transfer. The system can equivalently be re-phrased as a fourth-order
differential equation for one of the MIs only.

Using these relations we introduced a new set of four independent MIs, valid for any number
of dimensions d, whose property is that two of the newly defined integrals vanish identically in
d = 2. The new system of differential equations for this set of MIs takes then a simpler block
form when expanded in (d−2), showing that order by order in (d−2) the scalar amplitude of the
two-loop massive sunrise fulfils a second order differential equation.
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The applications of these identities to more complicated cases, also involving i.r. divergent
amplitudes, is currently under study, and might constitute a promising tool for systematically de-
coupling systems of many coupled differential equations.
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