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Precision determinations of the top-quark mass require theory predictions with a well-defined

mass parameter in a given renormalization scheme. The top-quark’s running mass in the MS

scheme can be extracted with good precision from the total cross section at next-to-next-to-leading

order in QCD. The Monte Carlo top-quark mass parameter measured from comparison to events

with top-quark decay products is not identical with the pole mass. Its translation to the pole mass

scheme introduces an additional uncertainty of the order of 1 GeV.
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1. Introduction

Since the discovery of the top-quark almost 20 years ago the mass of the heaviest elementary

particle currently known has been measured with an ever increasing and, by now, with unprece-

dented precision. The top-quark mass is a fundamental parameter of the Standard Model (SM) and

the precise value is indispensable for predictions of cross sections at the Large Hadron Collider

(LHC). Moreover, in the absence of direct evidence for new physics beyond the SM, precision

theory predictions confronted with precision measurements have become an important area of re-

search for self-consistency tests of the SM or in searching for new physics phenomena. This has

been the motivation for significant progress, both on the theoretical and the experimental side, in

addressing issues arising in precision top-quark mass determinations, see, e.g., [1,2] for reviews of

recent activities.

Here, two examples are given, where the numerical value of the top-quark mass mt directly

affects relevant physics interpretations. On the left in Fig. 1, the current experimental results for the

W -boson mass MW and the top-quark mass mt are shown in comparison with the theory predictions

of the SM and its minimal supersymmetric extension (MSSM) for a range of Higgs boson masses

MH , see, e.g., [3]. The plot indicates consistency of the values for the various mass parameters MW ,

mt and MH at the level of 1σ uncertainties within the SM. On the right in Fig. 1 the direct impact

of the top-quark mass on the Higgs sector is illustrated. Regions of stability of the electroweak

vacuum in the mt and MH plane are plotted, which can be obtained from extrapolating the SM up

to the Planck scale, see, e.g., [4–8]. Thus, at high scales the existence of a well-defined minimum

of the Higgs potential that can induce breaking of the electroweak symmetry, depends crucially on

the precise numerical value of mt .
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Figure 1: Left: Current experimental results for MW and m
pole
t and their 1σ uncertainties in comparison with

the SM (red band) and the MSSM prediction (light-shaded green band). (Figure courtesy S.Heinemeyer, cf.

Ref. [3]). Right: Ellipses for the 1σ uncertainties in the [MH ,m
pole
t ] plane with Higgs mass MH = 125.6±0.4

GeV and αs(MZ) = 0.1187 confronted with the areas in which the SM vacuum is absolutely stable, meta-

stable and unstable up to the Planck scale. (Figure from Ref. [9]).
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2. Top-quark mass definition

Quark masses are not physical observables. This implies, first of all, that the determination of

mt relies on the comparison of theory predictions σth(mt) for cross sections with the experimentally

measured values σexp for a given observable and kinematics as the best fit solution to the equation

σexp = σth(mt). The accuracy of this approach is intrinsically limited by the sensitivity S of

σth(mt) to mt ,
∣

∣

∣

∣

∆σ

σ

∣

∣

∣

∣

= S ×
∣

∣

∣

∣

∆mt

mt

∣

∣

∣

∣

. (2.1)

Thus, for a given experimental error or a theoretical uncertainty ∆σ on the cross section, the greater

the sensitivity S the better the accuracy for mt can be achieved.

In Quantum Chromodynamics (QCD), quark masses are simply parameters of the Lagrangian.

They appear in the theory predictions σth(mt) and, as such, they are subject to the definition of a

renormalization scheme once quantum corrections at higher orders are included. In many QCD

applications the pole mass is the conventional scheme choice. The top-quark’s pole mass m
pole
t is

introduced in a gauge invariant and well-defined way at each finite order of perturbation theory

as the location of the single pole in the two-point correlation function. The pole mass scheme is,

in fact, inspired by the definition of the electron mass in Quantum Electrodynamics. For heavy

quarks, however, this has its short-comings [10, 11], because due to confinement quarks do not

appear as free particles in asymptotic states in the S-matrix. Therefore, the pole mass m
pole
t must

acquire non-perturbative corrections, because in the full theory the quark two-point function does

not display any pole. This leads to an intrinsic uncertainty in the definition of m
pole
t of the order of

ΛQCD related to the renormalon ambiguity [12].

Fortunately, one can consider alternative definitions based on the (modified) minimal subtrac-

tion in the MS scheme, which realizes the concept of a running mass mt(µ) at a scale µ . More

generally, one can define so-called short-distance masses mt(R,µ), where R is a scale associated

with the scheme. The MS mass is then just one example of a short-distance mass mt(R,µ) with R

taken at the scale R ∼ mt . Other schemes define a so-called 1S mass [13, 14] through the perturba-

tive contribution to the mass of a hypothetical 3S1 toponium bound state or a “potential-subtracted”

(PS) mass [15].

As alternative renormalization schemes, all short-distance masses mt(R,µ) can be related to

the pole mass m
pole
t through a perturbative series,

m
pole
t = mMSR

t (R,µ)+δmt(R,µ) , δmt(R,µ) = R
∞

∑
n=1

n

∑
k=0

ank αn
s (µ) lnk

(

µ2

R2

)

, (2.2)

with coefficients ank known to three loops in QCD [16, 17].

A variety of methods for top-quark mass extractions has been proposed thus far, see, e.g., [1,2],

which use a number of distinct observables. Examples include determinations of mt from the total

cross section, or its extraction from the distribution of the invariant mass of a lepton and a b-jet,

see, e.g., [18, 19] and [20, 21], respectively.

With enough statistics, as expected from the LHC runs at increased collision energy, also

exclusive observables with reconstructed top-quarks come into focus. The (normalized) differential

distribution of the tt̄ +1-jet cross section with respect to the invariant mass of the tt̄ +1-jet system
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displays very good sensitivity to mt , S ∼ 10 . . .20 in Eq. (2.1) depending on the kinematical region

and can, potentially, lead to very precise values for mt , see [22].

All those methods employ mostly the pole mass scheme. The 1S mass and the PS mass have

been considered in applications to hadro-production of top-quark pairs in [23,24]. In the sequel we

will discuss the determination of the running mass in the MS scheme and mt from reconstructed

kinematics as well as the relation of those mass parameters to the pole mass m
pole
t .

3. Running top-quark mass

The running mass in the MS scheme has so far been used in theory predictions for the inclusive

cross section [28,29] or for differential distributions in [27]. Such (semi-)inclusive observables are

known with good precision, i.e., to next-to-leading order (NLO) in perturbative QCD in the case

of differential distributions [30, 31] or even to next-to-next-to-leading order (NNLO) in the case

of the inclusive cross section [32–35], see also [36–38] for approximate NNLO differential cross

sections. These computations are typically carried out in the pole mass scheme so that Eq. (2.2)

can be employed to relate m
pole
t to the MS mass. For theory predictions in terms of the MS mass the

perturbative expansion in the strong coupling converges significantly faster. At the same time, the

residual scale dependence as a measure of the remaining theoretical uncertainty is much improved

when using the MS mass in contrast to the pole mass m
pole
t .

These findings are illustrated in Figs. 2 and 3. The theory predictions for inclusive top-quark

pair production with the MS and the pole mass are compared in Fig. 2. The result in terms of

the MS mass mt(mt) displays a much improved convergence as the higher order corrections are

successively added. The corresponding scale dependence is shown in Fig. 3 and the predictions

with the MS mass exhibit a much better scale stability of the perturbative expansion. It is also

interesting to observe, that the point of minimal sensitivity where σLO ≃ σNLO ≃ σNNLO is located

at scales µ = O(mt(mt)), i.e., it coincides with the natural hard scale of the process for the MS

mass (Fig. 3, left), whereas it resides at fairly low scales, µ ≃ m
pole
t /4 ≃ 45 GeV for the pole mass

predictions (Fig. 3, right).

For the distribution in the invariant mass mtt̄ of the top quark pair the same findings can be seen

in Fig. 4. For the MS mass predictions the convergence is improved. Also the overall shape of the

distribution changes in comparison to case of the pole mass, the peak becomes more pronounced,

while the position of the peak remains stable against radiative corrections. This is essential for

precision determinations of the MS mass in specific kinematic regions of the invariant mass distri-

bution from LHC data in the upcoming high-energy runs.

The results for the running mass imply, that experimental determinations of the mass parameter

from the measured cross section can be performed with very good accuracy and a small residual

theoretical uncertainty. This has been done in [25], where a fully correlated fit of the running mass

from data for the total cross section at Tevatron and the LHC has given the value for the MS mass

at NNLO to

mt(mt) = 162.3±2.3 GeV , (3.1)

with an error in mt(mt) due the experimental data, the PDFs and the value of αs(MZ). An additional

theoretical uncertainty from the variation of the factorization and renormalization scales in the usual
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Figure 2: The LO, NLO and NNLO QCD predictions for the tt̄ total cross section at the LHC (
√

s = 8 TeV)

as a function of the top-quark mass in the MS scheme mt(mt) at the scale µ =mt(mt) (left) and in the on-shell

scheme m
pole
t at the scale µ = m

pole
t (right) with the ABM12 PDFs. (Figure from Ref. [25]).
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Figure 3: The scale dependence of the LO, NLO and NNLO QCD predictions for the tt̄ total cross section at

the LHC (
√

s= 8 TeV) for a top-quark mass mt(mt)= 162 GeV in the MS scheme (left) and m
pole
t = 171 GeV

in the on-shell scheme (right) with the ABM12 PDFs and the choice µ = µr = µ f . The vertical bars indicate

the size of the scale variation in the standard range µ/m
pole
t ∈ [1/2,2] and µ/mt(mt) ∈ [1/2,2], respectively.

(Figure from Ref. [25]).
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Figure 4: The differential cross section versus the invariant mass mtt̄ of the top-quark pair in the pole

(left) and the MS (right) mass scheme at the LHC with
√

S = 8 TeV. The dotted (green) curves are the

LO contributions, the dashed (blue) curves include NLO corrections and are obtained with the PDF set

CT10 [26]. The scale dependence in the ranges µ/m
pole
t or µ/m(m)∈ [1/2,2] is shown as a band around the

NLO curve. (Figure from Ref. [27]).
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range (µ/mt(mt)∈ [1/2,2]) is small, ∆mt(mt) =±0.7 GeV. Eq. (3.1) is equivalent to the pole mass

value of

m
pole
t = 171.2±2.4±0.7 GeV , (3.2)

using the known perturbative conversion Eq. (2.2) at two loops. This is the value displayed in both

plots of Fig. 1, which show good consistency of the procedure and also with the top-quark mass

values obtained from other determinations within the current uncertainties. The accuracy of a mass

determination in this way is limited to order 1%, though, by the overall sensitivity of the total cross

section to the mass parameter, S ∼ 5 in Eq. (2.1).

4. Monte Carlo mass

The currently most precise measurement of the top-quark mass has been reported in [39] as

the world combination of the experiments ATLAS, CDF, CMS and D0,

mt = 173.34 ± 0.76GeV . (4.1)

This combination is based on determinations of mt as a best fit to the mass parameter implemented

in the respective Monte Carlo program used to generate the theory input. It is referred to as Monte

Carlo (MC) top-quark mass definition and is, therefore, lacking a direct relation to a mass parameter

in a well-defined renormalization scheme.

Nonetheless, the MC mass definition can be translated to a theoretically well-defined short-

distance mass definition at a low scale with an uncertainty currently estimated to be of the order

of 1 GeV, see [1, 40]. This translation uses the fact that multi-observable analyses like in [39]

effectively assign a high statistical weight to the invariant mass distribution of the reconstructed

boosted top-quarks, because of the large sensitivity of the system on the mass parameter, especially

around the peak region.

The top-quark invariant mass distribution can be computed to higher orders in perturbative

QCD, cf., Fig. 3, and its peak position can also be described in an effective theory approach based

on a factorization [41, 42] into a hard, a soft non-perturbative and a universal jet function. Each of

those functions depends in a fully coherent and transparent way on the mass at a particular scale.

The reconstructed top object largely corresponds to the jet function which is governed by a short-

distance mass mMRS
t at the scale of the top quark width Γt , see, e.g., [1,40]. This line of arguments

allows one to systematically implement proper short-distance mass schemes for the description of

the MC mass in Eq. (4.1), which can then indeed be converted to the pole mass.

Thus, the top-quark mass parameter mMC
t is identified with a scale-dependent short-distance

mass mMSR
t (R) at low scales, cf. [40],

mMC
t = mMRS

t (3+6
−2 GeV) , (4.2)

with an uncertainty ∆mt originating from the range of possible scales, R ≃ 1 . . .9 GeV. The value

of ∆mt can be read off from Tab. 1 as ∆mt =
+0.32
−0.62 GeV. It should be emphasized, though, that this

uncertainty is only an estimate of the conceptual uncertainty that is currently inherent in Eq. (4.2).

Very likely, the true corrections are not exactly calculable since a complete analytic control of the

6
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MC machinery is not feasible and the exact definition of the MC mass also depends on details of

the parton shower, the shower cut and the hadronization model, see, e.g., [43].

Subsequently, there are two choices to convert mMSR
t in Eq. (4.2) to the pole mass m

pole
t . The

first possibility applies the renormalization group to run mMSR
t from the low scales, R≃ 1 . . .9 GeV,

up to R = mt in order to obtain the corresponding value for the MS mass mt(mt). This procedure

effectively resums large logarithms. Afterwards, mt(mt) is then converted to the pole mass at a

given order in perturbation theory. Tab. 1 illustrates this procedure for mMSR
t (3GeV)= 173.40 GeV,

see [1] for a extensive documentation.

mMSR
t (1) mMSR

t (3) mMSR
t (9) mt(mt) m

pole
1lp m

pole
2lp m

pole
3lp

173.72 173.40 172.78 163.76 171.33 172.95 173.45

Table 1: Columns 1-3: Top-quark MSR masses at different scales. Column 4: MS mass mt(mt) converted

at O(α3
s ) for αs(MZ) = 0.1185 from the MSR mass mMRS

t (3 GeV). Columns 5-7: Pole masses at 1, 2 and 3

loop converted from the MS mass mt(mt). All numbers are given in GeV units.

The second choice converts the short distance mass mMSR
t at the low scales directly to the pole

mass as shown in Tab. 2. This leads to relatively small corrections, however, the convergence of the

perturbative expansion is poor and it is therefore disfavored. In the application of the one-, two- or

three-loop conversion formula, the value of the mass parameter shifts by roughly ∆mt ∼ 0.15GeV

with every additional order. This is due to large logarithms which need to be resummed via the

renormalization group equation [44].

mMSR
t (3) m

pole
1lp m

pole
2lp m

pole
3lp

173.40 173.72 173.87 173.98

Table 2: Column 1: Top-quark MSR mass at R = 3 GeV. Columns 2-4 show the 1, 2 and 3 loop pole

masses converted from the MSR mass mMRS
t (3 GeV). All numbers are given in GeV units.

In summary, this leads to the following result for the pole mass, which corresponds to the MC

mass in Eq. (4.1),

m
pole
t = 173.39 ± 0.76GeV (exp) + ∆mth , (4.3)

where the small increase by 0.05GeV in the central value compared to Eq. (4.1), is due to the shift

of the three-loop pole mass with respect to mMSR
t (3GeV) in Tab. 1. The theoretical uncertainty can

be estimated to

∆mth =
+0.32
−0.62 GeV(mMC

t → mMSR
t (3GeV)) + 0.50GeV (mt(mt)→ m

pole
t ) , (4.4)

where, as indicated, the first part of the uncertainty is due to the scale choices when relating the MC

mass to the short-distance mass and is subject to the qualifications mentioned above. The second

part of the uncertainty, ∆mt = +0.50GeV, estimates the unknown higher order corrections in the

conversion of the MS to the pole mass. Those corrections are positive and the quoted value for ∆mt

is taken as the difference between the two-loop and the three-loop conversion, see column 6 and 7

in Tab. 1. This part can definitely be diminished once the relation of the pole to the MS mass, i.e.,

the respective coefficients ank in Eq. (2.2), are known to four loops in QCD.
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Altogether, the additional uncertainties in Eq. (4.4) are sizeable and have not been addressed

in [39] when interpreting the experimental measurement of the top-quark mass in Eq. (4.1). The

theory uncertainties are not uncorrelated, i.e., the linear sum ∆mth =
+0.82
−0.62 GeV in Eq. (4.4) should be

combined in quadrature with the experimental error in Eq. (4.3) leading to m
pole
t = 173.39+1.12

−0.98GeV

for the MC mass in Eq. (4.1).

5. Summary

The top-quark mass is an outstanding parameter in the SM. Its numerical value is important for

many precision tests of the model at current collider energies as well as for possible extrapolations

to high energies.

In QCD an unambiguous definition of the mass parameter requires the choice of a renormaliza-

tion scheme, which is conventionally taken to be the pole mass, although this has its short-comings

due to the renormalon ambiguity. A theoretically well-defined determination of the top-quark mass

as a short-distance mass is possible in QCD even to NNLO by using inclusive observables like the

total cross section for hadro-production of top-quark pairs. This has the advantage that the theory

predictions in terms of the MS mass converge faster at higher orders and are less affected by scale

variations. Results for the determination of the top-quark mass in this way have been presented in

Eqs. (3.1) and (3.2).

The top-quark mass parameter measured via kinematical reconstruction from the top-quark

decay products by comparison to MC simulations, termed the MC mass, is not identical to the pole

mass. However, the measured values can be converted to the pole mass provided certain assumption

on the relation of the MC mass to a short-distance mass at a low scale are made. This conversion

leads to an additional uncertainty of the order of 1 GeV as quantified in Eqs. (4.2)-(4.4). Within the

current accuracies, all those determinations show good consistency. Further efforts both in theory

and experiment are required though, to reduce the uncertainty.
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