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1. Introduction

The exploration of heavy quark production, in particulartt̄ and single-top production, is a cen-
tral issue at today’s (and future) high energy colliders. Atthe LHC present experimental analyses
of tt̄ production reach a level of accuracy of a few percent, and this precision will increase in the
future. This requires on the theoretical side precise predictions, in particular within the SM, which
in view of the smallness of the gauge couplings at high energies means predictions at higher or-
ders in perturbation theory, especially with respect to thecouplingαs of quantum chromodynamics
(QCD), both for cross sections and differential distributions. Notable progress in this context has
recently been made with the computation of the total hadronic tt̄ cross section to orderα4

s [1, 2].
As a contribution towards a fully differential NNLO treatment of tt̄ production at hadron col-

liders, we report, within the antenna subtraction framework, on the construction of double-real and
real-virtual subtraction terms for processes involving the production of a pair of massive quarks by
an uncolored initial stateSat next-to-next-to leading order (NNLO) QCD:

S→ QQ̄+X , (1.1)

whereS denotes, for example, ane+e− pair or an uncolored boson. Employing the subtraction
method, the contribution of orderα2

s to the cross section or to a differential distribution of an
arbitrary IR safe observable associated with reaction (1.1) is given schematically by

σNNLO =

∫

Φ4

(

dσRR
NNLO−dσS

NNLO

)

+

∫

Φ3

(

dσRV
NNLO −dσT

NNLO

)

+
∫

Φ2

dσVV
NNLO+

∫

Φ4

dσS
NNLO+

∫

Φ3

dσT
NNLO . (1.2)

The exclusive double-virtual cross sectiondσVV
NNLO involves the (renormalized) amplitudes forS→

QQ̄ at tree-level, one-loop and two-loop level. The real-virtual correctiondσRV
NNLO requires the

tree-level and (renormalized) one-loop matrix elements for S→ QQ̄g. Finally the computation
of the double-real radiation contributiondσRR

NNLO demands the tree-level amplitudesS→ QQ̄QQ̄,

QQ̄gg, andQQ̄qq̄, whereq denotes a massless quark. In general these individual contributions
give rise to infrared (IR) singularities. While infrared singularities from virtual corrections are
obtained immediately after integration over the loop-momenta, the infrared singularities due to
soft and/or collinear real emission only become explicit after integrating the matrix elements over
the corresponding phase space regions.

Therefore, one introduces subtraction terms, denoted bydσS
NNLO anddσT

NNLO in (1.2), which
approximate, respectively, the double-real and the real-virtual contributions in all their singular
limits and hence regulate their divergences. So, by construction, the integrals overdσRR

NNLO −

dσS
NNLO and overdσRV

NNLO−dσT
NNLO are finite and can be evaluated numerically in four dimensions.

Furthermore, in order to make the cancellation of IR singularities explicit in eq. (1.2), the integrals
of these subtraction terms must be computed over the phase-space regions where IR singularities
arise.

Among other methods, antenna subtraction provides a completely general framework to con-
struct subtraction terms as products of various antenna functions and reduced matrix elements with
remapped momenta. The antenna subtraction framework was initially formulated for massless final
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state partons [3, 4, 5], but has been extended to the case of hadronic collisions, both at NLO [6] and
NNLO [7, 8, 9, 10]. In its massless from, the antenna method has lead to the successful description
of the infrared structure of three-jet events ine+e− annihilation at NNLO [11, 12, 13, 14, 15]. Re-
cently, it has successfully been applied to di-jet production at hadron colliders [16, 17, 18, 19, 20].
Extending the antenna method to NNLO QCD reactions with massive final state quarks is an on-
going effort [21, 22, 23, 24, 25, 26]. Intermediate results for tt̄ production at hadron colliders have
recently become available [22, 26, 27, 28].

2. Massive double-real antenna functions

The subtraction of all double unresolved limits indσRR
NNLO requires new four-parton tree-level

antenna functions: The antennaeA0
4(Q,g,g,Q̄) andÃ0

4(Q,g,g,Q̄) govern the ordered and photon-
like emission of two gluons between a massive quark-antiquark pair, whereasB0

4(Q,q, q̄,Q̄) is
employed to subtract singular limits due to the emission of amassless quark-antiquark pair. They
can be derived by appropriately normalizing the color-ordered squared tree-level matrix elements
of γ∗ → QQ̄ggandγ∗ → QQ̄qq̄ and yield the correct unresolved factor in each limit [5, 25,23].

The integrated subtraction term
∫

Φ4
dσS

NNLO involves the corresponding integrated antenna
functions, which are schematically defined as follows:

X
0

i jkl = (C(ε))−2
∫

dΦXi jkl X0
4(i, j,k, l) , (2.1)

whereC(ε) = (4π)ε e−εγE/(8π2). Since the antenna phase spacedΦXi jkl is proportional to the
normal four-particle phase space, the calculation ofX 0

i jkl amounts to the integration of squared
matrix element of 1→ 4 processes over the respective inclusive phase spaces. Theintegration has
to be performed ind = 4− 2ε dimensions. In order to calculate this class of integrals wefirst
write them in terms of unitarity cuts of massive three-loop propagator-type integrals [29, 30]. This
step makes them accessible to the powerful techniques that have been developed for multi-loop
computations, in particular, integration-by-parts reduction [31, 32, 33, 34, 35] and the method of
differential equations [36, 37, 38].

As a result of the IBP reduction, we can express the integrated antenna functionsA 0
4,QggQ̄

,
˜A 0
4,QggQ̄

, andB0
4,Qqq̄Q̄

in terms of 15 master integrals shown in Fig.1. Analytic results of these
integrals have been presented in Refs. [25, 23]. In case of topology (a), closed-form expressions
for arbitrary d in terms of hypergeometric functions3F2 have been derived by employing phase
space factorization along with standard identities and integral representations of hypergeometric
functions. Their expansion neard = 4 was computed with the help of the computer program
HypExp [39].

For the remaining master integrals we have derived a coupledsystem of first order differential
equations in the variablesq2 and y [36, 37, 38]. This system has been solved in a bottom up
approach order by order inε by the aid of standard techniques. In order to fix the constants of
integration, we have either imposed the vanishing of phase space at threshold, which is located at
y→ 1, or matched the expressions to the known results in the massless limity→ 0 [40].
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(a) {1,s13,s34} (b) {1} (c) {1} (d) {1}

(e) {1,s13} (f) {1,s13,s34} (g) {1,s34} (h) {1,s13}

Figure 1: Definition of the double-real master integrals. In the diagrammatic representations bold (thin)
lines refer to massive (massless) scalar propagators. The invariants in the curly brackets below the cut-
diagrams denote irreducible numerators of the integrand. The double line represents the external momentum
q, with q2 = s. The dashed lines indicate the particles which are on-shell.

By this means, we obtain analytical results for all master integrals of Fig. 1 to all relevant
orders inε in terms of harmonic polylogarithms (HPL) [41] of argumenty = 1−β

1+β , whereβ =
√

1−4m2
Q/q2.

3. Massive real-virtual antenna functions

In order to render the real-virtual cross section for processes of the type (1.1) finite, we have to
introduce the massive one-loop antenna functionsA1

3,QgQ̄ andÃ1
3,QgQ̄, which can be determined from

the interference of the Born amplitude and the leading and subleading color one-loop corrections
to γ∗ → QQ̄g [5, 42]. These antennae are also requied in their integratedform:

X
1

i jk = (C(ε))−1
∫

dΦXi jk X1
3(i, j,k) , (3.1)

with dΦXi jk being proportional to the ordinary three-parton phase space. IBP reduction reveals
that the analytic calculation of the integrated antenna functions A 1

3,QgQ̄ and ˜A 1
3,QgQ̄ amounts to

evaluating 22 master integrals, which are depicted in Fig. 2.

In the topologies (a) and (b) of Fig. 2, the dependence of the integrands on the loop momentum
and the phase space momenta factorizes such that the resultscan be written in terms of ordinary
products of known three-particle phase space integrals (cf. Ref. [21]) and scalar one-loop integrals.
For the other master integrals we have derived differentialequations in the variablesq2 andy in the
same algorithmic fashion as in the case of the four-parton tree-level antenna functions (cf. Sec. 2).
We have solved these differential equations in terms of cyclotomic harmonic polylogarithms [43,
44, 45, 46].

The necessary boundary conditions have been obtained from threshold expansions of the re-
spective integrals which have been calculated by other means. Therefore, the integration constants
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(a) {1,s13} (b) {1,s13} (c) {1,s13,s23} (d) {1}

(e) {1} (f) {1,s13} (g) {1,s13} (h) {1,s13}

(i) {1,s13} (j) {1,s13,s23} (k) {1,s13}

Figure 2: Definition of the topologies for the combined phase space andloop integrations. In the dia-
grammatic representations bold (thin) lines refer to massive (massless) scalar propagators. The double line
represents the external momentumq, with q2 = s. The cut propagators are the ones intersected by the dashed
line.

are given by values of cyclotomoic HPLs at argumenty= 1. These quantities can either be com-
puted numerically based on the defining integral representations of the cyclotomic HPLs, or one
can exploit the various functional relations among the (cyclotomic) HPLs (shuffle relation etc.) in
order to analytically reduce these objects to a smaller set of commonly known transcendental num-
bers. The latter approach relies on intensive usage of computer algebra and has been implemented
by J. Ablinger and J. Blümlein. More details will be given in afuture publication [47].

4. Cross section for e+e− → γ∗ → QQ̄X at order α2
s

As a first application and check we compute the inclusive heavy quark-antiquark production
cross section ine+e−-annihilation via a virtual photon to orderα2

s and to lowest order inα =

e2/(4π). The ratioR is defined by

R =
σ(e+e− → γ∗ → QQ̄+X)

σ(e+e− → γ∗ → µ+ µ−)
= e2

Q

[

NcR(0)+

(

αs(µ2)

2π

)

(

N2
c −1

)

R(1)

+

(

αs(µ2)

2π

)2
(

N2
c −1

)

(

NcR(2)
LC−

1
Nc

R(2)
SC+2TRnf R(2)

f +2TRR(2)
F

)

+O(α3
s )

]

. (4.1)

In the following, we consider one heavy quark, carrying the electric chargeeQ (in units of the
positron chargee) andnf massless quark flavors. To orderαs, the ratio (4.1) has been known for a
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Figure 3: Exact results forR(2)
A = 3R(2)

SC andR(2)
NA = 3(R(2)

LC−R(2)
SC)/2 plotted againstβ =

√

1−4m2
Q/s (solid

line). The renormalization scale is chosen to beµ = mQ. For comparison, the expansions in the threshold
region (dotted curves) [55, 56] and in the asymptotic region(dashed and dash-dotted curves) [59, 60] are
included as well.

long time [48, 49]. To orderα2
s , the leading-color correctionR(2)

LC, the subleading-color correction

R(2)
SC and the massless flavor correctionR(2)

f receive the following contributions (R(2)
F is not discussed

here): The double-virtual correction from the processγ∗ → QQ̄ (i.e. 2-loop times Born and 1-loop
squared) can be obtained in analytic form from the literature [50]. The real-virtual contribution
associated withγ∗ → QQ̄g (1-loop times Born) involves the master integrals of Fig. 2,whereas the
contribution induced by the squared Born amplitudesγ∗ →QQ̄ggandγ∗ →QQ̄qq̄ can be expressed
in terms of the integrals shown in Fig. 1. Furthermore,R(2)

SC receives a contribution from the squared

tree-level matrix element ofγ∗ → QQ̄QQ̄ (in the following denoted byR(2)
E ), which is completely

finite and will be discussed in more detail below.

The contributions from the various subprocesses exhibit explicit poles inε of IR origin. Veri-
fying the IR finiteness ofR(2)

LC, R(2)
SC, andR(2)

f as anticipated according to the KLN theorem [52, 53]

provides an important check of our calculations. Indeed, wefind that inR(2)
LC, R(2)

SC, andR(2)
f all

poles cancel analytically.

As discussed in Ref. [25], our result forR(2)
f is in full agreement with the one of Ref. [54],

which was obtained ind= 4 by the aid of different techniques. For the leading and subleading color
corrections,R(2)

LC andR(2)
SC, approximate results in terms of truncated power series expansions have

been computed, both, at pair production thresholds& 4m2
Q (including terms of orderβ ) [55, 56, 57]

and in the high energy regions≫ m2
Q (through orderm12

Q /s6) [58, 59, 60]. After expanding our

expression forR(2)
LC in the respective regions, we find full agreement with the existing results to all

available orders. The same is true forR(2)
SC in the threshold region. Note that due to the constraint

s≥ 16m2
Q, the termR(2)

E can be omitted for center-of-mass energiess close to the pair-production

threshold ats& 4m2
Q. In the limit m2

Q/s→ 0, the termR(2)
E becomes divergent. However, when we

combine the known expressions of the logarithmically enhanced and finite terms ofR(2)
E in this limit

(cf. Ref. [61]) with the other contributions toR(2)
SC, we recover the massless resultR(2)

SC|mQ=0 =− 3
32.

Finally, Fig. 3 shows our exact expressions forR(2)
A = NcR

(2)
SC andR(2)

NA = Nc(R
(2)
LC −R(2)

SC)/2
plotted against the velocityβ in the entire physical region 0≤ β ≤ 1.

6



P
o
S
(
L
L
2
0
1
4
)
0
5
5

NNLO antenna subtraction for heavy quark pair production Oliver Dekkers

5. Summary and outlook

We addressed, within the antenna subtraction framework, the treatment of infrared singulari-
ties that arise in the computation of observables, in particular distributions, for processes at NNLO
QCD, where a heavy quark-pair is produced by an uncolored initial state. We constructed the mas-
sive NNLO antenna functions that form part of the double-real and real-virtual antenna subtraction
terms and outlined the analytic computation of their integrated counterparts in terms of (cyclo-
tomic) HPLs. Our results include also analytical expressions for sets of master integrals, which we
expect to be useful for other applications, too.

As a first application and check of our results we derived exact expressions for the orderα2
s

corrections to the total heavy quark antiquark production cross section ine+e−-annihilation. We
verified the analytic cancellation of all infrared poles in these contributions. Furthermore, the finite
pieces are in full agreement with existing (approximate) results.

The (integrated) antenna functions discussed above provide the last missing building blocks
for the numerical calculation of cross sections and differential distributions for heavy quark pair
production by uncolored initial states at NNLO QCD within the antenna framework. Future ap-
plications include, for example, the forward-backward asymmetry for b- and t-quarks ine+e−-
annihilation.
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