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High-energy factorization, or kT -factorization, requires matrix elements with off-shell initial-
state partons. Recently, it has been shown how scattering amplitudes with an arbitrary number
of off-shell gluons can be defined in a manifestly gauge invariant way. Here, we show how such
amplitudes can be calculated via BCFW recursion.
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1. Introduction

The feasibility of calculations for the prediction of observables for high-energy hadron collider
experiments like at the LHC depends on the applicability of factorization prescriptions. These
allow for the separation of the process-dependent ingredients, which are calculable perturbatively,
from the universal ingredients, which must at least partly be determined from experimental data.

The process dependent ingredients are given by scattering amplitudes. Within collinear fac-
torization, the momenta of the particles and partons associated with an amplitude are on-shell, and
the amplitude is defined applying the Lehmann Symanzik Zimmermann reduction prescription on a
connected Green function. In case the dynamics of the process under consideration is governed by
a gauge theory, like quantum chromo dynamics (QCD), this approach ensures the necessary gauge
invariance. For high-energy factorization or kT -factorization [1–4], however, the initial-state mo-
menta need to be off-shell, and the above approach cannot be applied directly.

There exist a few approaches in literature to define and calculate scattering amplitudes with
off-shell partons. Firstly, there is an effective action approach [5, 6], which introduces two new
fields, the reggeon fields, each of which represents an off-shell gluon with a given longitudinal
momentum associated with it. They enter the QCD Lagrangian via terms similar to Wilson lines,
ensuring gauge invariance of the eventual scattering amplitudes involving these fields. A similar
approach for off-shell initial-state quarks can be found in [7].

The effective action approach is not ideal for the automation of the numerical calculation of
helicity amplitudes with increasing number of external particles. It requires the determination of
vertices of higher multiplicity, while efficient methods for numerical calculation of helicity am-
plitude calculation preferably admit at most four-point vertices. In this light, another approach
to define amplitudes with off-shell gluons was developed [8], leading to the same amplitudes as
with the effective action approach, but more suitable for automated numerical calculation. In this
method, the process with the off-shell gluons is embedded in a larger process involving auxiliary
quarks. The initial-state off-shell gluons are replaced by on-shell quarks, and on-shell quarks are
added to the final state. The on-shellness insures a gauge invariant definition of the amplitude, and
the eikonal Feynman rules the auxiliary quarks turn out to follow lead to the same amplitudes as
the ones obtained with the effective action approach. Also this method was generalized to deal with
off-shell initial-state quarks [9].

Wilson lines always appear in one form or another in mentioned approaches, and this obser-
vation was put in a general framework in [10]. There a manifestly gauge invariant and constructive
definition of scattering amplitudes with an arbitrary number of off-shell external gluons was pre-
sented, by considering matrix elements of Fourier transforms of straight infinite Wilson line oper-
ators associated with the off-shell external gluons. In this work, it becomes particularly clear that
what allows the gauge invariant definition is that with each with off-shell external momentum kµ,
a direction pµ is associated, which satisfies p·k = 0, and with each direction, an eikonal line is
associated.

Here, we will indicate how tree-level multi-gluon amplitudes with an arbitrary number of
them off-shell can be calculated via Britto Cachazo Feng Witten (BCFW) recursion [11, 12]. This
method has proven to lead to very compact expressions with relatively little effort in case of helicity
amplitudes with only on-shell partons. We will illustrate how the aforementioned definitions of
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amplitudes with off-shell partons allow for a straightforward generalization of the BCFW recursive
relations, allowing again for compact expressions with relatively little effort. A more detailed
treatment can be found in [13].

2. Definitions

A helicity amplitude for n external gluons is a function of the momenta k1,k2, . . . ,kn and the
directions p1,p2, . . . ,pn, satisfying the conditions

k
µ
1 +k

µ
2 + · · ·+k

µ
n = 0 momentum conservation (2.1)

p21 = p
2
2 = · · ·= p2n = 0 light-likeness (2.2)

p1·k1 = p2·k2 = · · ·= pn·kn = 0 eikonal condition (2.3)

Notice that, in order to deal with time-like momenta, the directions need to be allowed to have
complex-valued components. We will consider only color-ordered or dual amplitudes here, which
consist of planar graphs following the Feynman rules

µ ν =
−ηµν

K2
=

1

2p·K µ
=
√
2pµ

1

2

3

=
1√
2

[
(K1−K2)

µ3ηµ1µ2 +(K2−K3)
µ1ηµ2µ3 +(K3−K1)

µ2ηµ3µ1
]

(2.4)

2

1

3

4

=
−1

2

[
2ηµ1µ3ηµ2µ4 −ηµ1µ2ηµ3µ4 −ηµ1µ4ηµ2µ3

]
The thick lines refer to gluons, and the thin lines refer the eikonal quarks. The symbol p refers to
the direction associated with the eikonal quark line and the symbol K refers to momentum flowing
through a propagator or into a vertex. In the graphical representation of an amplitude, the two
external eikonal quark lines are bent together to represent a single off-shell gluon. For example for
the process /0 → g∗g∗g we have

= + + (2.5)

BCFW recursion is based on the fact that tree-level amplitudes are rational functions of the
momenta, and on the pole structure of these functions in particular. The theory of complex func-
tions, and Cauchy’s theorem in particular, are naturally applied, requiring amplitudes to be defined
for complex external momenta. This analytic continuation just has to be performed such that mo-
mentum conservation and on-shellness are not broken. With off-shell gluons, the amplitude is still
a rational function, now involving also the directions. For the off-shell gluons, the analytic continu-
ation only happens with the momenta, not with the directions. Now, it has to be performed without
breaking the eikonal condition (2.3).
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In the original BCFW approach, two adjacent external momenta, say kµ1 and kµn are shifted

k1 → k̂
µ
1 (z)≡ k

µ
1 +ze

µ , kn → k̂µn(z)≡ kµn−zeµ , (2.6)

where z is a complex variable, and where the shift vector eµ is such that e·e= k1·e= kn·e= 0. So
both momentum conservation and on-shellness are guaranteed. In our approach, the same momenta
are shifted, but with the shift vector connected to the directions:

e·e= p1·e= pn·e= 0 , (2.7)

so that now the eikonal condition is guaranteed to hold. The shift vector can be constructed the
same way as in the original BCFW approach, but in terms of the directions (the definition of the
spinors can be found for example in [8]):

eµ = 1
2〈p1|γ

µ|pn] or eµ = 1
2〈pn|γ

µ|p1] . (2.8)

For the on-shell case, the gluons should have opposite helicity, and for example the first shift vector
applies when gluon 1 has helicity minus. For the off-shell case, either can be used. For mixed cases,
the helicity of the on-shell gluon determines which shift vector applies.

For an on-shell gluon, the shift vector is essentially its polarization vector. Let us try to under-
stand its relation to an off-shell gluon. With the help of an auxiliary four-vector qµ with q2 = 0,
the transverse vector of the off-shell momentum kµ can be defined by

k
µ
T (q) = k

µ−x(q)pµ with x(q)≡ q·k
q·p

. (2.9)

With this definition, kµT satisfies both the relations p·kT = 0 and q·kT = 0. The transverse vector
can be constructed explicitly in terms of pµ and qµ, and we can write

kµ(q) = x(q)pµ−
κ

2

〈p|γµ|q]
[pq]

−
κ∗

2

〈q|γµ|p]
〈qp〉

with κ=
〈q|k/|p]
〈qp〉

, κ∗ =
〈p|k/|q]
[pq]

. (2.10)

The virtuality of the off-shell momentum can then be written as

k2 =−κκ∗ . (2.11)

It turns out that κ and κ∗ are both individually independent of qµ. For any light-like rµ 6= pµ, we
have

κ=
〈q|k/|p]
〈qp〉

=
〈q|k/|p]〈pr〉
〈qp〉〈pr〉

=
〈q|k/p/|r〉
〈qp〉〈pr〉

=
〈q|2k·p−p/k/|r〉
〈qp〉〈pr〉

=−
〈qp〉[p|k/|r〉
〈qp〉〈pr〉

=
〈r|k/|p]
〈rp〉

, (2.12)

where we used that k·p= 0. Similarly the independence of κ∗ from qµ can be demonstrated.
Using the direction pµn to define the transverse momentum of gluon 1 and vice versa, we see

from (2.10) that the shift (2.6) results in a shift of κ∗1,κn, or κ1,κ∗n, depending on the choice (2.8) of
shift vector. This is the off-shell equivalent of the shifting spinors in on-shell BCFW. Summarizing,
we have

k̂
µ
1 = k

µ
1 +

z
2〈p1|γ

µ|pn] k̂µn = k
µ
n−

z
2〈p1|γ

µ|pn]

1∗ off-shell: κ̂1 = κ1−z[p1pn] n∗ off-shell: κ̂∗n = κ
∗
n+z〈p1pn〉 (2.13)

1− on-shell: |p̂1] = |p1]+z|pn] n+ on-shell: |p̂n〉= |pn〉−z|p1〉
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3. Recursive relation

Like in the original BCFW approach, recursive relations for the amplitudes can be derived
analyzing the pole structure and the behavior at infinity of the function

Â(z)≡A(k̂1(z),k2, . . . ,kn−1, k̂n(z)) , (3.1)

where Â(0) = A(k1,k2, . . . ,kn−1,kn) is a color-ordered n-gluon amplitude. It is crucial that this
function vanishes for z→ ∞. Since eikonal quarks at most add powers of z to the denominator
of this function when external momenta are shifted, the reasoning of on-shell BCFW still goes
through, up to the issue of the polarization vectors. In the on-shell case, these add a power of z
to the denominator of the amplitude, ensuring Â(z→ ∞) = 0. In order to ensure this in the off-
shell case, the full propagator denominators of the off-shell external gluons must be included in the
amplitudes. Only after an expression of such an amplitude is found, after the recursive procedure,
it must be multiplied by a factor proportional to the square root of the virtuality of the off-shell
external gluon, in order to get the right on-shell limit if this virtuality is taken to zero [8].

Analyzing the pole structure of the amplitudes in the graphical representation, the recursive
relation can straightforwardly be derived to be

1

2 n− 1

n

=
n−2

∑
i=2

∑
h=+,−

Ai,h +
n−1

∑
i=2

Bi + C + D , (3.2)

where

Ai,h =

1̂

i

h 1

K21,i

i+ 1

n̂

-h Bi =

1̂

i− 1 i

1

2pi·Ki,n

i+ 1

n̂

i

C =
1

κ1
1̂

2 n− 1

n̂

D =
1

κ∗n
1̂

2 n − 1

n̂

(3.3)

The hatted numbers label the shifted external gluons. We use the convention that double lines may
refer to both off-shell and on-shell external gluons, and that only when we wish to specify that an
external gluon is on-shell, we represent it by a thick solid line. For internal momenta, we adopt the
notation

K
µ
i,j ≡ k

µ
i +k

µ
i+1+ · · ·+k

µ
j . (3.4)

The terms Ai,h correspond to the usual contribution in the BCFW construction for on-shell
gluons. The shift variable for the shifted momenta is given by

K̂1,i(z) = 0 ⇒ z=−
K2i,n
2e·Ki,n

=−
K2i,n

〈p1|K/i,n|pn]
. (3.5)

The two blobs represent well-defined amplitudes with an on-shell gluon referred to by the thick
line, and the sum is over the possible helicities of these on-shell gluons.
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The two blobs in terms of type Bi correspond to amplitudes with an off-shell gluon with
direction pµi , associated with the cut eikonal line. The shift variable is now given by

pi·K̂i,n(z) = 0 ⇒ z=−
2pi·Ki,n
2pi·e

=−
2pi·Ki,n
〈p1pi〉[pipn]

. (3.6)

It has to be noted that the momentum of an off-shell gluon can be freely distributed over the two
external eikonal lines associated with the gluon, as long as the inner product of the direction with
each of the momentum fractions vanishes. Exactly this ensures that the two blobs are well-defined
off-shell amplitudes. The term Bi is is absent if i labels an on-shell external gluon.

As mentioned before, the amplitudes under consideration must include the propagator denom-
inator of the external off-shell gluons, giving rise to the terms C and D. These only appear if gluon
1 and n are off-shell respectively. They become on-shell with shifted momenta

k̂
µ
1 ≡ k̂

µ
1

(
z= κ1/[1n]

)
= x1(pn)p

µ
1 −

κ∗1
2

〈n|γµ|1]
〈n1〉

(3.7)

for the term C, and

k̂µn ≡ k̂µn
(
z=−κ∗n/〈n1〉

)
= xn(p1)p

µ
n−

κn

2

〈n|γµ|1]
[n1]

(3.8)

for the term D.

4. Results

A question that immediately arises is how an amplitude with an off-shell gluon is related to
the amplitudes for which this gluon is on-shell. The plural is appropriate here, because the on-
shell gluon may come in two helicities. It turns out that the helicity amplitudes are embedded
in the off-shell amplitudes as separate terms. This coherent sum of terms becomes an incoherent
sum of squared amplitudes in the on-shell limit of the squared amplitude via the residual angular
integration that has to be performed for the transverse momentum when its magnitude is taken to
zero. This integration eliminates the interference terms of different helicities. One of the helicity
amplitudes for the process /0 → g∗ggg∗, for example, is found in [13] to be

A(1∗,2+,3−,4∗) =
1

κ∗1κ4

−〈1|p/3+k/4|4]4

〈2|k/1|4]〈1|k/4|3]〈12〉[43](p3+k4)2
(4.1)

+
1

κ1

〈34〉3[14]3

〈4|k/4+k/1|1]〈2|k/1|4]〈4|k/1|4]〈23〉
+
1

κ∗4

[21]3〈14〉3

〈4|k/4+k/1|1]〈1|k/4|3]〈1|k/4|1][32]
.

Here, we use the short-hand notation |i〉 ≡ |pi〉 etc.. The first term multiplied with κ∗1κ4 gives
A(1−,2+,3−,4+) in the on-shell limit, while the second and the third, multiplied with κ1κ∗4, com-
bine to give A(1+,2+,3−,4−). Realize that A(1+,2+,3−,4+) =A(1−,2+,3−,4−) = 0.

A well-known phenomenon in multi-gluon helicity amplitudes is that they vanish for helicity
configurations in which all, or all but one gluon have the same helicity, and come in particularly
simple expressions for the case in which all but two gluons have the same helicity, the so-called
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maximum-helicity-violating (MHV) configurations. It turns out that these are exactly the expres-
sions for helicity amplitudes with two off-shell gluons, for which all on-shell gluons have the same
helicity:

A(1∗, i∗,(the rest)+) =
1

κ∗1κ
∗
i

〈p1pi〉4

〈p1p2〉〈p2p3〉 · · · 〈pn−2pn−1〉〈pn−1pn〉〈pnp1〉
(4.2)

A(1∗, i∗,(the rest)−) =
1

κ1κi

[pip1]
4

[p1pn][pnpn−1][pn−1pn−2] · · · [p3p2][p2p1]
. (4.3)

5. Conclusions

Calculations of scattering processes performed within high-energy factorization or kT -factor-
ization require matrix elements with off-shell initial state partons. Recent developments have led to
a general manifestly gauge-invariant definition of scattering amplitudes with an arbitrary number
of off-shell gluons. BCFW recursion has been generalized for application to such amplitudes, and
using this approach, compact expressions have been derived for them.
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